水稻白叶枯病抗性基因Xa31(t)的精细定位及候选基因的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻白叶枯病(Bacterial Blight, BB)是一种严重的细菌性病害。自1884年在日本第一次被发现以来,水稻白叶枯病已在南纬20度至北纬58度的世界范围内被观察到。在我国,除新疆外,各稻区均有发生,华东、华中和华南发生普遍。引起水稻白叶枯病的黄单胞杆菌(Xanthomonas oryzae pv. Oryzae,Xoo)为革兰氏阴性菌,它通过气孔或伤口入侵宿主木质部(维管束)进行繁殖,沿叶脉产生灰褐色至白色病斑。由黄单胞杆菌引起的水稻白叶枯病在流行年份可导致水稻减产20~30%,严重时高达50%。
     到目前为止,已被确定的水稻白叶枯病抗性基因至少有36个,23个显性基因,13个隐性基因,编号已排到Xa36(t)。王春台等在云南地方品种‘扎昌龙’(Za Chang Long,ZCL)中发现了一个新的抗性基因,并命名为Xa31(t),定位于水稻4号染色体的G235和C600两个分子标记之间,物理距离相差100 Kb。本研究对Xa31(t)进行进一步精细定位,筛选克隆目的区域的候选基因。获得了以下主要研究结果:
     1.构建了一个含有294个单株的ZCL/IRBB1的F2代群体,根据目的基因在染色体上的目的区域,以NCBI公布的水稻品种日本晴(Oryza Sativa L. SSP. Japonica cv. Nipponbare)基因组序列为基础,选取相应的BAC或PAC克隆,在各克隆均匀选取序列片段,与水稻9311 (Oryza Sativa L.SSP. Indica)基因组序列进行BLAST比对,找到无同源或同源性较低的区域,用Primer5.0共设计PCR引物46对。最后筛选到5对多态性PCR分子标记,用于对作图群体的遗传分析。将Xa31(t)进一步定位到约20 Kb内。
     2.在抗性基因Xa31(t)的目标区域,根据网上公布的日本晴的基因组序列,用生物信息学的方法预测候选基因,然后对候选基因进行BLAST分析,根据含有水稻白叶枯病抗性结构域和ORF,确定了5个候选基因。对这5个候选基因设计引物,进行长片段PCR扩增,得到了两个候选基因的全长序列,构建TA克隆载体进行测序,筛选正确的克隆;以pCMABIA1300构建的表达载体,转化水稻感病品种日本晴和台北309,已获得了部分阳性植株,其抗性正在鉴定之中。
Bacterial blight (BB) of rice is a kind of serious bacterial diseases in rice. Since it was first found at 1884 in Japan, BB has been observed in worldwide rice-planting area from the south latitude 20 degrees to north latitude 58 degrees. In China, BB occurs in every rice planting areas except Xinjiang Province. BB is caused by a kind of Gram-negative bacteria, Xanthomonas (Xanthomonas oryzae pv. Oryzae,Xoo) through the stoma or wound xylem (vascular bundle) of host rice plant to reproduce taupe and white disease spot along leaf vein turns. .Rice bacterial blight disease can cause the 20~30% loss of rice output in pop year, even up to 50% in serious occurring year.
     Up to now, there are at least 36 BB resistance genes, 23 dominant genes and 13 recessive genes, in rice have been identified, Wang et al. discoered a new resistance gene named Xa31(t) from ZCL, a regional rice variety from Yunnan province in southwest China. It was mapped on rice chromosome 4, between G235 and C600 the two molecular markers, and the Physical distance is 100 Kb. The aim of this research is to further make a fine map of Xa31(t) and to clone its candidate genes. The main results are as follows:
     1. A F2 population with 294 individual plants from a cross of ZCL×IRBB1 has been constructed. Fouty six pairs of PCR primers disigned by PrePrimer 5.0 based on sequence of Nipponbare and 9311 genomes within the mapped target gene (Xa31(t)) region on chromosome 4 are used for polymorphic analysis between the two parents of ZCL and IRBB1, and 5 pairs of polymophic PCR molecular markers has been selected. Using these 5 markers screen the 294 individual plants of the F2 population from a cross of ZCL×IRBB1. Genetic analysis are finally limiting Xa31(t) within a region of about 20 Kb.
     2. According to the sequence of about 20 Kb in the region of resistance gene Xa31(t) located in the Nipponbare genomics, 5 candidate genes were predicted by bioinformatics analysis. and full-length cDNAs of 2 candidate genes had been obtained from ZCL. The ORFs of two candidate genes were recombined with the expression vector pCMABIA1300, respectively and introduced into rice callus of Nipponbare and TB309 by the means of Agrobacterium-mediated transformation. A few of positive plants have been identified and the resistance analysis on these plant are being studied now.
引文
[1]鲍思元,谭明谱,林兴华.水稻抗白叶枯病基因Xa14的遗传定位.作物学报, 2010, 36(3): 422-427.
    [2]邓其明.水稻寡分蘖候选基因的定位、克隆及水稻白叶枯病抗性分子标记辅助育种[学位论文].四川农业大学, 2005.
    [3]方中达,许志刚,伍尚忠,徐羡明,过崇俭,殷尚智,章琦.中国水稻白叶枯病菌致病型的研究.植物病理学报, 1990, 20( 2): 81-88.
    [4]高东迎,向阳海,孙立华,陆作楣.抗水稻白叶枯病新基因Xa-25(t)的RAPD分析.中国水稻科学, 2002, 16(2): 179-181
    [5]郭嗣斌,张端品,林兴华.小粒野生稻抗白叶枯病新基因的鉴定与初步定位.中国农业科学, 2010, 43(13): 2611-2618.
    [6]韩德俊,李振岐,曹莉,陈耀锋.大麦抗白粉病基因Mlo的研究进展.西北植物学报, 2003, 23(3): 496-502.
    [7]金旭炜,王春连,杨清,江祺祥,樊颖伦,刘古春,赵开军.水稻抗白叶枯病近等基因系CBB30的培育及Xa30(t)的初步定位.中国农业科学, 2007, 40(6): 1094-1100
    [8]林兴华,王春台,文国松,张端品,谢岳峰,张启发.广谱高抗水稻白叶枯病新基因的精细定位.遗传, 1998, 20 (增刊) : 116
    [9]苗丽丽,王春连,郑崇珂,车晋英,高英,温义昌,李贵全,赵开军.水稻抗白叶枯病新基因的初步定位.中国农业科学, 2010, 43(15): 3051-3058.
    [10]谈移芳.汕优63遗传改良的部分性状遗传学基础分析[学位论文].武汉:华中农业大学, 2000.
    [11]谭光轩,任翔,翁清妹,时振英,祝莉莉,何光存.药用野生稻转育后代一个抗白叶枯病新基因的定位.遗传学报, 2004, 31(7): 724-729.
    [12]王春台.水稻白叶枯病抗性基因Xa22(t)和Xa24(t)的精细定位和物理图谱的构建[学位论文].武汉:华中农业大学, 2000.
    [13]王金生.水稻白叶枯病研究进展.江苏省植物病理学会第九届会员代表大会暨学术研讨会论文集, 1999.
    [14]王友红,张鹏飞,陈建群.植物抗病基因及其作用机理.植物学通报, 2005, 22 (1): 92-99.
    [15]熊卫,余功新,林兴华,张端品,谢岳峰. 1994五土个云南稻品种抗白叶枯病基因分析.华中农业大学学报, 13(2): 99-110.
    [16]张小红,王春连,李桂芬,张晓科,梁云涛,孙亮庆,赵开军.转Xa23基因水稻的白叶枯病抗性及其遗传分析.作物学报, 2008, 34(10): 1679-1687.
    [17]章琦,施爱农,王春连. 9个水稻品种对水稻白叶枯病抗性遗传研究.作物学报, 1994, 20 (1): 84-92.
    [18]章琦.水稻白叶枯病抗性基因鉴定进展及其利用.中国水稻科学, 2005, 19 (5): 453-459.
    [19]章琦.水稻白叶枯病质量抗性遗传和抗病主基因鉴定.水稻白叶枯病抗性的遗传及改良.章琦主编.科学出版社.北京. 2007, 130-177.
    [20]郑崇珂,王春连,于元杰,梁云涛,赵开军.水稻抗白叶枯病新基因Xa32(t)的鉴定和初步定位.作物学报, 2009, 35(7): 1173-1180.
    [21] Antony G, Zhou J, Huang S, Li T, Liu B, White F, Yang B. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell, 2010, 22(11): 3864-76.
    [22] Blair MW, McCouch SR. Microsatellite and sequence-tagged site markers diagnostic for the rice bacterial leaf blight resistance gene xa5. Theor Appl Genet, 1997, 95: 174-184.
    [23] BroschéM, Vinocur B, Alatalo ER, Lamminm?ki A, Teichmann T, Ottow EA, Djilianov D, Afif D, Bogeat-Triboulot MB, Altman A, Polle A, Dreyer E, Rudd S, Paulin L, Auvinen P, Kangasj?rvi J. Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol, 2005, 6(12): R101.
    [24] Brown JK, Tellier A. Plant-Parasite coevolution: bridging the gap between genetics and ecology. Annu Rev Phytopathol, 2010. 49: DOI: 10.1146/annurev-phyto -072910-095301
    [25] Chen HL, Wang SP, Zhang QF. New gene for bacterial blight resistance in rice located on chromosome 12 identified from Minghui 63, an elite restorer line.Phytopathology, 2002, 92(7): 750-754
    [26] Chen S, Liu XQ, Zeng LX, Ouyang DM, Yang JY, Zhu XY. Genetic analysis and molecular mapping of a novel recessive gene xa34(t) for resistance against Xanthomonas oryzae pv. Oryzae. Theor Appl Genet, 2011, 122(7): 1331-1338.
    [27] Chen X, Temnykh S, Xu Y, Cho YG, McCouch SR. Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet. 1997, 95: 553-567
    [28] Chisholm ST, Coaker G, Day B, Staskawicz BJ. Host-microbe interactions: shaping the evolution of the plant immune response. Cell, 2006, 124(4): 803-14.
    [29] Cho K, Shibato J, Agrawal GK, Jung YH, Kubo A, Jwa NS, Tamogami S, Satoh K, Kikuchi S, Higashi T, Kimura S, Saji H, Tanaka Y, Iwahashi H, Masuo Y, Rakwal R. Integrated transcriptomics, proteomics, and metabolomics analyses to survey ozone responses in the leaves of rice seedling. J Proteome Res, 2008, 7(7): 2980-2998.
    [30] Chu Z, Yuan M, Yao J, Ge X, Yuan B, Xu C, Li X, Fu B, Li Z, Bennetzen JL, Zhang Q, Wang S. Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes Dev. 2006, 20(10): 1250-5.
    [31] Collins MS, Franklin S, Strong I, Meulemans G, Alexander DJ. Antigenic and phylogenetic studies on a variant Newcastle disease virus using anti-fusion protein monoclonal antibodies and partial sequencing of the fusion protein gene. Avian Pathol, 1998, 27(1): 90-6.
    [32] Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci U S A, 2002, 99(4): 2404-9.
    [33] Dharmadi Y, Gonzalez R. DNA microarrays: experimental issues, data analysis, and application to bacterial systems. Biotechnol Prog, 2004, 20(5): 1309-24.
    [34] Dodds HM, Hanrahan J, Rivory LR. The inhibition of acetylcholinesterase by irinotecan and related camptothecins: key structural properties and experimentalvariables. Anticancer Drug Des, 2001, 16(4-5): 239-46.
    [35] Ellis JG, Rafiqi M, Gan P, Chakrabarti A, Dodds PN. Recent progress in discovery and functional analysis of effector proteins of fungal and oomycete plant pathogens. Curr Opin Plant Biol, 2009, 2(4): 399-405.
    [36] Ezuka A, Horino O, Totiyama K, Shinodo H, Morinaka R. Inherence of resistance of rice variety Wase Aikoku 3 to Xanthomonas oryzae. Bull Tokai-kinki Nat Agr Exp Sta, 1975, 28: 124-130.
    [37] Farrokhi N, Burton RA, Brownfield L, Hrmova M, Wilson SM, Bacic A, Fincher GB. Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes. Plant Biotechnol J, 2006, 4(2): 145-67.
    [38] Fiehn O, Kopka J, D?rmann P, Altmann T, Trethewey RN, Willmitzer L. Metabolite profiling for plant functional genomics. Nat Biotechnol, 2000, 18(11): 1157-1161.
    [39] Finkelstein D, Ewing R, Gollub J, Sterky F, Cherry JM, Somerville S. Microarray data quality analysis: lessons from the AFGC project. Arabidopsis Functional Genomics Consortium. Plant Mol Biol, 2002, 48(1-2): 119-131.
    [40] Frey IM, Rubio-Aliaga I, Siewert A, Sailer D, Drobyshev A, Beckers J, de Angelis MH, Aubert J, Bar Hen A, Fiehn O, Eichinger HM, Daniel H. Profiling at mRNA, protein, and metabolite levels reveals alterations in renal amino acid handling and glutathione metabolism in kidney tissue of Pept2-/- mice. Physiol Genomics, 2007, 28(3): 301-310.
    [41] Gu K, Yang B, Tian D, Wu L, Wang D, Sreekala C, Yang F, Chu Z, Wang GL, White FF, Yin Z. R gene expression induced by a type-III effector triggers disease resistance in rice. Nature, 2005, 435(7045): 1122-1125.
    [42] Henikoff S, Comai L. Single-nucleotide mutations for plant functional genomics. Annu Rev Plant Biol, 2003, 54: 375-401.
    [43] Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana.Proc Natl Acad Sci U S A, 2004, 101(27): 10205-10210.
    [44] Hoefgen R, Nikiforova VJ. Metabolomics integrated with transcriptomics: assessing systems response to sulfur-deficiency stress. Physiol Plant, 2008, 132(2): 190-198.
    [45] Hogenhout SA, Van der Hoorn RA, Terauchi R, Kamoun S. Emerging concepts in effector biology of plant-associated organisms. Mol Plant Microbe Interact, 2009, 22(2): 115-122.
    [46] Hopkins CM, White FF, Choi SH, Guo A, Leach JE. Identification of a family of avirulence genes from Xanthomonas oryzae pv. oryzae. Mol Plant Microbe Interact. 1992, 5(6): 451-459.
    [47] Iyer AS, McCouch SR. The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant Microbe Interact, 2004, 17(12): 1348-1354.
    [48] Iyer-Pascuzzi AS, McCouch SR. Recessive resistance genes and the Oryza sativa-Xanthomonas oryzae pv. oryzae pathosystem. Mol Plant Microbe Interact, 2007, 20(7): 731-739.
    [49] Jiang GH, Xia ZH, Zhou YL, Wan J, Li DY, Chen RS, Zhai WX, Zhu LH. Testifying the rice bacterial blight resistance gene xa5 by genetic complementation and further analyzing xa5 (Xa5) in comparison with its homolog TFIIAgamma1. Mol Genet Genomics, 2006, 275(4): 354-366.
    [50] Johal GS, Briggs SP. Reductase activity encoded by the HM1 disease resistance gene in maize. Science, 1992, 258: 985-987.
    [51] Jumtee K, Bamba T, Okazawa A, Fukusaki E, Kobayashi A. Integrated metabolite and gene expression profiling revealing phytochrome A regulation of polyamine biosynthesis of Arabidopsis thaliana. J Exp Bot, 2008, 59(6): 1187-1200.
    [52] Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J, 2007, 50(6): 967-981.
    [53] Khush GS, Bacalangco E, Ogawa T. A new gene for resistance to bacterial blight from O. longistaminata. Rice Genet Newsl, 1990, 7: 121-122.
    [54] Khush LGS and Angeles ER. A new gene for resistance to race 6 of bacterial blight in rice, Oryza saliva. Rice Genet Newsl, 1999, 16(0): 92-93
    [55] Kim DH, Kang JG, Yang SS, Chung KS, Song PS, Park CM. A phytochrome- associated protein phosphatase 2A modulates light signals in flowering time control in Arabidopsis. Plant Cell, 2002, 14(12): 3043-3056.
    [56] Kinoshita T. Report of the committee on gene symbolization and linkage map. Rice Genet Newsl, 1993, (10): 1-5.
    [57] Korinsak S, Sriprakhon S, Sirithanya P, Jairin J, Korinsak S, Vanavichit A, Toojinda T. Identification of microsatellite markers (SSR) linked to a new bacterial blight resistance gene xa33(t) in rice cultivar‘Ba7’. Maejo Int J Sci Technol, 2009, 3(2): 235-247
    [58] Lee KS, Rasabandith S, Angeles ER, Khush GS. Inheritance of resisrance to bacterial blight in 21 cultivars of rice. Phytopathology, 2003, 93: 147-152.
    [59] Lee SW, Han SW, Bartley LE, Ronald PC. From the Academy: Colloquium review. Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci U S A, 2006, 103(49): 18395-18400.
    [60] Lee SW, Han SW, Sririyanum M, Park CJ, Seo YS, Ronald PC. A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science, 2009, 326(5954): 850-3.
    [61] Leister RT, Ausubel FM, Katagiri F. Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPM1. Proc Natl Acad Sci U S A, 1996, 93(26): 15497-15502.
    [62] Lin XH, Zhang DP, Xie YF, Gao HP, Zhang Q. Identifying and mapping a new gene for bacterial blight resistance in rice based on RFLP markers. Phytopathology. 1996, 86: 1156-1159.
    [63] Liu Z, Faris JD, Oliver RP, Tan KC, Solomon PS, McDonald MC, McDonaldBA, Nunez A, Lu S, Rasmussen JB, Friesen TL. SnTox3 acts in effector triggered susceptibility to induce disease on wheat carrying the Snn3 gene. PLoS Pathog, 2009, 5(9): e1000581.
    [64] Mackey D, Holt BF 3rd, Wiig A, Dangl JL. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell, 2002, 108(6): 743-754.
    [65] Mary CA, Nair SK, Saraswathy P. Survival of Xanthomonas oryzae pv. oryzae (ishiyama, 1922), Swings et al., 1990. J Trop Agr, 2001, (39): 76-78.
    [66] Matsuzaki K, Kato H, Sakai R, Toue S, Amao M, Kimura T. Transcriptomics and metabolomics of dietary leucine excess. J Nutr, 2005, 135(6 Suppl): 1571S- 1575S.
    [67] Mew TW. Current status and future prospects of research on bacterial blight of rice. Ann Rev Phytopathol, 1987, 25: 359-382.
    [68] Meyers BC, Chin DB, Shen KA, Sivaramakrishnan S, Lavelle DO, Zhang Z, Michelmore RW. The major resistance gene cluster in lettuce is highly duplicated and spans several megabases. Plant Cell, 1998, 10(11): 1817-32.
    [69] Nam H, Chung BC, Kim Y, Lee K, Lee D. Combining tissue transcriptomics and urine metabolomics for breast cancer biomarker identification. Bioinformatics, 2009, 25(23): 3151-3157.
    [70] Noda T, Ohuchi A. A new pathogenic race of Xanthomonas campestris pv. oryzae and inheritance of resistance of differential rice variety, Tetep to it. Ann Phytopath Soc Jpn, 1989, 55: 201-207.
    [71] Ogawa T, Kaku H, Yamamoto T. Resistance gene of rice cultivar, Asominori to bacterial blight of rice. Jpn J Breed, 1989, 39: 196-197.
    [72] Ogawa T, Lin L, Tabien RE, Khush GS. A new recessive gene for resistance to bacterial blight of rice. Rice Genet Newsl, 1987, 4: 98-100.
    [73] Ogawa T, Morinaka T, Fuiii K, Kiruma T. Inheritance of resistance of rice varieties Kogyoku and Java14 to bacterial group V of Xanthomonas oryzae. Ann Phytopath Soc Jpn, 1978, 44: 137-141.
    [74] Ogawa T, Yamamoto T. Inheritance of resistance of bacterial blight in rice. InRice genetics. IRRI, Manila, 1986, 471-479.
    [75] Oliver DJ, Nikolau B, Wurtele ES. Functional genomics: high-throughput mRNA, protein, and metabolite analyses. Metab Eng, 2002, 4(1): 98-106.
    [76] Park CJ, Peng Y, Chen X, Dardick C, Ruan D, Bart R, Canlas PE, Ronald PC. Rice XB15, a protein phosphatase 2C, negatively regulates cell death anXA21-mediated innate immunity. PLoS Biol, 2008, 6(9): e231.
    [77] Petpisit V, Khush GS, Kauffman HE. Inheritance of resistance to bacterial blight in rice. Crop Sci, 1977, 17: 551-554.
    [78] Piffanelli P, Ramsay L, Waugh R, Benabdelmouna A, D'Hont A, Hollricher K, J?rgensen JH, Schulze-Lefert P, Panstruga R. A barley cultivation-associated polymorphism conveys resistance to powdery mildew. Nature, 2004, 430(7002): 887-891.
    [79] Ronald PC, Albano B, Tabien R, Abense L, Wu K, McCouch S, Tanksley SD. Genetic and physical of the rice bacterial blight resistance locus, Xa21. Mol Gen Genet, 1992, 236: 113-120.
    [80] Sakaguchi S. Linkage studies on the resistance to bacterial leaf blight, Xanthomonas oryzae (Uyeda et Ishiyama) Dowson, in rice. Bull Natl Inst Agr Sci Jpn Ser, 1967, D16: 1-18 (In Japanese with English summary).
    [81] Sana TR, Fischer S, Wohlgemuth G, Katrekar A, Jung KH, Ronald PC, Fiehn O. Metabolomic and transcriptomic analysis of the rice response to the bacterial blight pathogen Xanthomonas oryzae pv. oryzae. Metabolomics, 2010, 6(3): 451-465.
    [82] Sidhu GS. Genetics analysis of bacterial blight in seventy cultivars of rice (Oryzae sativa L.). Theor Appl Genet, 1978, 53: 105-111.
    [83] Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P. A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science, 1995, 270(5243): 1804-1806.
    [84] Steinberg CE, Stürzenbaum SR, Menzel R. Genes and environment - striking the fine balance between sophisticated biomonitoring and true functional environmental genomics. Sci Total Environ, 2008, 400(1-3): 142-161.
    [85] Sun X, Cao Y, Yang Z, Xu C, Li X, Wang S, Zhang Q. Xa26, a gene conferring resistance to Xanthomonas oryzae pv. oryzae in rice, encodes an LRR receptor kinase-like protein. Plant J, 2004, 37(4): 517-527.
    [86] Takahashi R, Yokoji H, Misawa H, Hayashi M, Hu J, Deguchi T. A null mutation in the human CNTF gene is not causally related to neurological diseases. Nat Genet, 1994, 7(1): 79-84.
    [87] Tan KC, Ipcho SV, Trengove RD, Oliver RP, Solomon PS. Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology. Mol Plant Pathol, 2009, 10(5): 703-15.
    [88] Taura S, Ogawa T, Yoshimura A, Ikeda R, Iwata N. Identification of a recessive gene to rice bacterial blight of mutant line XM6, Oryzae Sativa L. Jpn J Breed, 1992, 42: 7-13.
    [89] Taura S, Ogawa T, Yoshimura A, Ikeda R, Omura T. Identification of a recessive gene in induced mutant line XM5, Oryzae sativa L. Jpn J Breed, 1991, 41: 427-432.
    [90] Thompson JN, Burdon JJ. Gene-for-gene coevolution between plants and parasites. Nature, 1992, 360: 121-125
    [91] Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U, Willmitzer L, Fernie AR. Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep, 2003, 4(10): 989-993.
    [92] Vander Biezen EA, Jones JD. Plant disease-resistance proteins and the gene-for-gene concept. Trends Biochem Sci, 1998, 23(12): 454-456.
    [93] Verhoeckx KC, Bijlsma S, Jespersen S, Ramaker R, Verheij ER, Witkamp RF, van der Greef J, Rodenburg RJ. Characterization of anti-inflammatory compounds using transcriptomics, proteomics, and metabolomics in combination with multivariate data analysis. Int Immunopharmacol, 2004, 4(12): 1499-1514.
    [94] Vijayendran C, Barsch A, Friehs K, Niehaus K, Becker A, Flaschel E. Perceiving molecular evolution processes in Escherichia coli by comprehensive metabolite and gene expression profiling. Genome Biol, 2008, 9(4): R72.
    [95] Wang CT, Tan MP, Xu X, Wen GS, Zhang DP, Lin XH. Localizing the Bacterial Blight Resistance Gene, Xa22(t), to a 100-Kilobase Bacterial Artificial Chromosome. Phytopathology. 2003, 93(10): 1258-1262.
    [96] Wang CT, Wen GS, Lin XH, Liu XQ, Zhang DP. Identification and fine mapping of the new bacterial blight resistance gene, Xa31(t), in rice. Eur J Plant Pathol, 2009, 123: 235-240.
    [97] White FF, Yang B. Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction. Plant Physiol, 2009, 150(4): 1677-1686.
    [98] Wu L, Goh ML, Sreekala C, Yin Z. XA27 depends on an amino-terminal signal-anchor-like sequence to localize to the apoplast for resistance to Xanthomonas oryzae pv oryzae. Plant Physiol, 2008, 148(3): 1497-1509.
    [99] Xiang Y, Cao Y, Xu C, Li X, Wang S. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26. Theor Appl Genet, 2006, 113(7): 1347-1355.
    [100] Yamamoto T, Ogawa T. Inheritance of resistance in rice cultivars, Toyonishiki, Milyang 23 and IR24 to Myanmar isolates of bacterial leaf blight pathogen. JARQ, 1990, 24: 74-77.
    [101] Yang S, Tschaplinski TJ, Engle NL, Carroll SL, Martin SL, Davison BH, Palumbo AV, Rodriguez M Jr, Brown SD. Transcriptomic and metabolomic profiling of Zymomonas mobilis during aerobic and anaerobic fermentations. BMC Genomics, 2009, 10: 34.
    [102] Yang Z, Sun X, Wang S, Zhang Q. Genetic and physical mapping of a new gene for bacterial blight resistance in rice. Theor Appl Genet, 2003, 106: 1467–1472.
    [103] Yoshimura A, Mew TW, Khush GS, Omura T. Inheritances of resistance to bacterial blight in rice cultivar, cas 209. Phytopathology, 1983, 73: 1409-1412.
    [104] Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX, Kono I, Kurata N, Yano M, Iwata N, Sasaki T. Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci U S A, 1998, 95(4): 1663-1668.
    [105] Yoshimura S, Yoshimura A, Nelson RJ, Mew TW, Iwata N. Tagging Xa1, thebacterial blight resistance gene in rice, by using RAPD markers. Jpn J Breed, 1995, 45: 81-85.
    [106] Yoshimura S. Genetic analysis of bacterial blight resistance genes in rice by using molecular markers. Bull Inst Trop Agric Kyushu Univ, 1993, 16: 1-63.
    [107] Zhang HB, Choi S, Woo SS, Li Z, Wing RA. Construction and characterization of two rice bacterial artificial chromosome libraries from the parents of a permanent recombinat inbred mapping population. Mol Breed, 1996, 2: 1-14.
    [108] Zhang Q, Lin SC, Zhao BY, Wang CL, Yang WC, Zhou YL, Li DY, Chen CB, Zhu LH. Identification and tagging a new gene for resistance to bacterial blight (Xanthomonas oryzae pv. oryzae) from O. rufipogon. Rice Genet Newsl, 1998, 15: 138-142.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700