黄土丘陵沟壑区茭蒿(Artemisia giraldii)的生态适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茭蒿(Artemisia giraldii)隶属菊科(Composiate)蒿属(Artemisia),多年生草本状半灌木,以茭蒿为建群种的干草原是我国温带南部和暖温带森林草原带及典型草原带南部边缘地区的重要草原类型,同时茭蒿也是重要的水土保持植物。茭蒿能够特异分布于黄土丘陵沟壑区的沟谷中,且长期、稳定的存在。沟壑交错的地貌导致热量、水分等环境因子在沟谷中重新分配,使得沟谷成为一种不同于地带性生境的特殊生境。选取位于鄂尔多斯高原东北部、黄土高原北缘的丘陵沟壑区作为研究区,从个体、种群、群落三个层面入手研究茭蒿对沟谷特殊生境的适应性,以期揭示茭蒿的生态适应机制,为黄土丘陵沟壑区植被建植和水土保持综合治理提供科学依据。主要研究结果如下:
     1、茭蒿的区系地理分布
     茭蒿的地理分布范围为E101°-116°,N34°-41°,海拔390-2800m之间,其现代分布中心为黄土高原,茭蒿现代分布中心的形成是在茭蒿不断适应黄土地质和黄土高原环境变化中协同进化而来的。
     2、茭蒿群落及生境特征
     (1)、茭蒿适合分布于黄土丘陵沟壑区30°-50°的陡沟坡上,坡度小于或大于这一范围,茭蒿的生物量均明显下降,表明30°-50°左右的黄土沟坡为茭蒿特异占领的生境。
     (2)、茭蒿在黄土沟谷中形成以它为建群种的群落类型,其中在沟谷阳坡形成茭蒿单优群落,群落盖度低,物种种类贫乏,平均生物量为13.88g·m-2;在沟谷阴坡与硬质早熟禾形成共建群落,群落盖度较高,物种种类较丰富,平均生物量较高,为36.55g·m-2。
     (3)、茭蒿群落生境相比梁顶生境具有以下特征:土壤容重小、孔隙度大、易被侵蚀;土壤TOC、全氮、速效氮含量低,土壤贫瘠;水分散失较快。
     3、茭蒿种群特征
     (1)、茭蒿种群年龄结构在沟谷阴坡为增长型,在阳坡为稳定型;相比梁顶,茭蒿在沟谷中具有高的种群密度和根冠比。
     (2)、茭蒿种群在梁顶生境中随着撂荒恢复演替的进行,分布格局由随机分布转向小尺度聚集分布再转变为较大尺度聚集分布,与此同时,种群空斑面积显著增加,种群领地减小;而在沟谷生境中茭蒿种群呈现典型的随机分布,种群空斑面积显著低于梁面各群落,种群领地显著高于梁顶。
     (3)、梁顶—沟谷的生境梯度上,茭蒿的生态位宽度最大,表明其具有较强的资源利用能力,对环境的适应能力较强,可以广泛分布在梁顶和沟谷各种生境中;与茭蒿生态位重叠程度较高的一组植物中大多数是梁顶植物群落演替前期优势程度较高或出现较早的物种,表明从生态位属性上看茭蒿为一个演替前期物种。
     4、茭蒿繁殖特征
     (1)、茭蒿种群的生殖分配以无性繁殖为主,仅投入很少的一部分能量用于有性繁殖。
     (2)、茭蒿种子质量很小,千粒重仅为0.0901±0.0051g,这种特性有利于其种子的传播;茭蒿种子质量虽然很小,但在相同条件下,与其他植物种子发芽率并没有表现出显著差异,即种子质量的大小没有对茭蒿种子的萌发造成影响。
     (3)、沟谷中茭蒿每基株分生的无性系分株数量最多,无性繁殖的平均扩散面积最大;梁顶上的茭蒿基株具有最少的无性系分株数和最小的平均扩散面积。表明沟谷生境中茭蒿的无性繁殖能力优于梁顶生境。
     (4)、土壤种子库中,75%的茭蒿种子位于0-5cm土层中;沟谷中茭蒿种子表现出随着沟谷稳定程度的增加,种子密度增大,并且始终都是群落土壤种子库中重要值最大的物种;梁顶上的土壤种子库中,茭蒿的种子密度是所有生境中最低的,重要值显著下降。表明,沟谷中的茭蒿种群具有较强的繁殖潜力。
     5、茭蒿的生理生化特征
     从叶片的水分生理特征上看,茭蒿与本氏针茅和铁杆蒿的抗旱性没有显著差别;生理生化指标分析表明,茭蒿与本氏针茅和铁杆蒿表现出的抗旱性接近,不同生境中的茭蒿种群所表现出的抗旱性也接近,均无显著差异。表明茭蒿具有一定的抗旱性,能够适应沟谷中较为干旱的生境特征。
     6、茭蒿的生态效应
     茭蒿在黄土丘陵较陡沟坡上可以长期、稳定存在并形成优势度较高的群落,作为一种天然分布于此的群落类型,茭蒿群落具有自组织、自维持的特性。因此,茭蒿是黄土丘陵沟壑区陡坡水土流失治理的优良物种。
Artemisia giraldii is an herbaceous subshrub of Compositae family. It constitutes steppe plant communities found in the forest-steppe subzone and the typical steppe subzone of the southern part of the warm temperate zone in China. The species plays an important role in soil and water conservation in this area. The plant is very common in Loess Plateau and has colonized its loess hill and gully region. This specific habitat is formed by a network of numerous gullies and hilly ridges. Such landform heterogeneity, characterized by high fragmentation, is responsible for redistribution of water and heat resources. We chose this loess hill and gully region, situated in the north-east of Ordos Plateau and north of Loess Plateau, as the study area. Systematic analyses of Artemisia giraldii at individual, population, and community levels were conducted to elucidate its ecological adaptability to the gully habitat and develop strategies for maintaining vegetation structure and sound soil and water conservation practices in this region. Main results of the study are as follows:
     1. Geographical distribution of Artemisia giraldii
     Artemisia giraldii is generally found in the area between 101°and 116°of eastern longitude and 34°and 41°of northern latitude at the elevation range of 390-2800 m. The main areal of the species is centered on Loess Plateau indicating evolutionary adaptation of Artemisia giraldii to environmental character of this area.
     2. Community structure and habitat characteristics of Artemisia giraldii
     (1) We found that the optimal topographic slope for Artemisia giraldii growth was about 30°-50°. Biomass of Artemisia giraldii was substantially lower at localities above or below this value. This finding suggests that Artemisia giraldii has adapted to this gully habitat.
     (2) Artemisia giraldii formed two major plant communities on slopes of loess gullies. The monodominant community of sunlit slopes has lower coverage, lower species richness, and smaller average biomass of 13.88 g·m-2. Shaded slopes are occupied by a community co-dominated with Poa sphondylodes. It is characterized by higher coverage, higher species richness, and larger average biomass (36.55 g·m-2).
     (3) Soil properties of slopes occupied by Artemisia giraldii are quite different from soils covering ridge tops. They are characterized by smaller soil bulk density and higher soil porosity, which means they are easily eroded. Soil water under Artemisia giraldii communities is diffused faster. Slope soils are also poorer as shown by lower contents of total organic carbon (TOC), total nitrogen, and readily available nitrogen.
     3. Population structure of Artemisia giraldii
     (1) Demographic structure of Artemisia giraldii populations correlates with slope conditions. Shaded slopes have higher abundance of older individuals compared with sunlit slopes. Population densities and root-to-top ratios of Artemisia giraldii growing in gullies were higher than those on hills and ridge tops.
     (2) As a result of restorative succession processes after field abandonment on the ridge top, the spatial pattern of Artemisia giraldii changed from initially random to clumped at finer scale and, later, clumped at large scale. These changes were accompanied by significant overall population increase and the simultaneous decrease of the habitat area. Spatial patterns of the plant are typically random in gullies, and the area occupied by its populations is significantly smaller when compared to the ridge top. At the same time, the area occupied by Artemisia giraldii is larger than that of the ridge top.
     (3) Artemisia giraldii has the widest ecological niche which allowed it to utilized resources available and adapt equally well along the habitat gradient from hill ridge top to a gully. Our findings suggest that Artemisia giraldii has significant niche overlap with other species that were dominant in these communities at the earlier stages of succession and appeared earlier in the succession series. We conclude that Artemisia giraldii was a dominant species at the beginning of succession.
     4. Reproduction ecology of Artemisia giraldii
     (1) Data on reproductive allocation of Artemisia giraldii revealed that most of energy expenses of the plant were channeled to asexual reproduction and only a little was used for sexual production.
     (2) The weight of 1000 seeds of Artemisia giraldii was 0.0901±0.0051 g. We hypothesize this trait allows the species to achieve higher dispersal rate. Seed germination rate of Artemisia giraldii was not different from other species with similar traits. This suggests that smaller seed weight of Artemisia giraldii was not an advantage for the success of seed germination.
     (3) The number of ramets per genet and the asexual reproduction average diffusion area per genet of Artemisia giraldii were highest in the gully and smallest in the ridge tops.
     (4) Soil seed bank data showed that 75% of Artemisia giraldii seeds were concentrated in the soil at the depth of 0-5 cm. As the gully stabilizes, the seed density in the soil seed bank of Artemisia giraldii increases and its value of importance is the highest in all communities. The seed density was lowest at the ridge top and its value of importance decreased significantly.
     5. Physiological characteristics of Artemisia giraldii
     We compared water physical characteristics of Artemisia giraldii, Artemisia sacrorum and Stipa bungeana, and found no significant differences in their drought resistance traits. Analyses of physiological characteristics of these three species also revealed their similarity in term of drought resistance. Our findings suggest that Artemisia giraldii has developed drought resistance and adapted to dry conditions in the gully habitat.
     6. The overall ecological effect of Artemisia giraldii
     Artemisia giraldii grows on the 40°slopes of loess gullies. It can persist there a long time and forms communities in which it plays a dominant role. Being a natural vegetation, Artemisia giraldii-formed communities self-organize and perform quite well in the area. We therefore consider it as a species useful for soil and water conservation in the hilly-gully region
引文
[1]内蒙古植物志编委会.内蒙古植物志(第2版).呼和浩特:内蒙古人民出版社,1989.
    [2]吴征镒.中国植被.北京:科学出版社,1980.
    [3]中国农科院畜牧研究所中国饲料数据库.
    [4]Tim R. McVicar, ZhongMing Wen, Tom G. Van Niel,LingTao Li, QinKe Yang,Rui Li and Feng Jiao Mapping Perennial Vegetation Suitability and Identifying Target and Priority Areas for Implementing the Re-Vegetation Program in the Coarse Sandy Hilly Catchments of the Loess Plateau, China CSIRO Land and Water Technical Report 18/05.
    [5]王义凤.黄土高原地区植被资源及其合理利用.北京:中国科学技术出版社,1991.
    [6]蒋霞.西北干旱区多种植物地理分布与气候的相关性及其可能潜在的分布预测.硕士论文,中国科学院植物研究所,2003.
    [7]雷明德等.陕西植被.北京:科学出版社,1999.
    [8]马子清主编.山西植被.北京:中国科学技术出版社,2000.
    [9]内蒙古草场资源遥感应用考察队伊克昭盟分队,李博等.内蒙古鄂尔多斯高原自然资源与环境研究.北京:科学出版社,1990.
    [10]赵利清.博士学位论文,内蒙古大学,2008.
    [11]林有润.论蒿属的演化系统兼论蒿属与邻近属的亲缘关系.植物研究,1982,1-60.
    [12]林有润.论世界蒿属植物区系.植物研究,1995,1-37.
    [13]扈廷茂.内蒙古五种蒿属植物的染色体研究.内蒙古大学学报(自然科学版),1991,22(3):422-427.
    [14]曹瑞,张寿州.两种蒿属植物的染色体数目和核型研究.武汉植物学研究.1990.8(1):9-12.
    [15]工凌诗,中国东北蒿属龙蒿组植物核型研究.木本植物研究,2000,20(4):401-411.
    [16]王铁娟,韩国栋,柴兆芳.蒿属叶绿体DNA trnL-F的序列分析与系统发育的意义.内蒙古大学学报(自然科学版),2007,38(6):665-671.
    [17]山宝琴,贺学礼.毛乌素沙地12种蒿属植物叶的解剂特征.西北农林科技大学学报(自然科学版),2007,35(6):211-217.
    [18]杨超,梁宗锁.陕北撂荒地上优势蒿类叶片解剖结构及其生态适应性.生态学报,2008,28(10):4732-4738.
    [19]蒋林,林有润.中国蒿属植物比较形态和解剖学研究Ⅱ花粉形态.热带亚热带植物学报,1996,4(3):1-14.
    [20]山宝琴,贺学礼,陈彦生.黄土高原蒿属植物花粉形态研究.西北植物学报,2007,27(7):1373-1379.
    [21]祝东立,贺学礼,石硕.小五台山15种蒿属植物种子形态及萌发特性研究.西北植物学报,2007,27(11):2328-2333.
    [22]张成娥,刘国彬,陈小利.坡地不同利用方式下土壤微生物和酶活性以及生物量特征,土壤通报,1999,30(3):101-103.
    [23]徐杰.鄂尔多斯及其毗邻地区生物界皮层苔藓植物物种组成、地理分布及生态学研究.内蒙古大学,博士学位论文,2004.
    [24]朱志诚等.茭蒿群落生物量初步研究.中国草地,1997,1(5):6-13.
    [25]朱志诚等.陕北黄土高原森林地带草本植物群落类型及其动态特征.中国草原,1989,(3):18-24.
    [26]朱志诚等.陕北黄土高原森林草原地带植被恢复演替初步研究.山西大学学报,1993,16(1):94-100.
    [27]李宝灵,朱亮锋,林有润,陆碧瑶.中国蒿属植物化学分类的初步研究.华南植物学报,1992,试刊1:87-100.
    [28]郑维发.三种丰产蒿—华北米蒿、牛尾蒿原变种、牛尾蒿无毛变种的次生代谢物的化学成分及抗真菌活性研究.南京大学博士学位论文,1996.
    [29]张馨,张志英.中国蒿属药用植物资源.陕西中药研究所:中药材.1990,13(7):16-20.
    [30]中国植物志编辑委员会.中国植物志.北京:科学出版社.2004.
    [31]Baskin JM, Baskin CC. Endemism in rock outcrop plant communities of unglaciated easten United States:an evaluation of the roles of the edaphic,genetic and light factors.Journal of Biogeography,1988,15:829-840.
    [32]Gram W K,Borer E T,Cottingham K L,Seabloom E W,Boucher V L,Goldwasser L,Micheli F,Kendall B,Burton R S.Distribution of plants in a California serpentine grassland:are rocky hummocks spatial refuges for native species?Plant Ecology,2004,172:159-171.
    [33]Larson DW, Matthes U, Kelly PE.Cliff ecology:Pattern and process in cliffe cosystems.Cambridge:Cambridge University Press,2000:1-358.Porembskis,Barthlottw. Inselbergs.Springer,2000:1-196.
    [34]倪绍祥,姜永清,池宏康.内蒙古准格尔旗资源遥感研究.北京:中国科学技术出版社.1992.
    [35]严钦尚,曾昭璇.地貌学.高等教育出版社.北京.1985.
    [36]中国数字植物标本馆:www.cvh.org.cn.
    [37]河北植物志编辑委员会.河北植物志.石家庄:河北科学技术出版社,1986.
    [38]贺士元等.北京植物志.北京:北京出版社,1987.
    [39]中国科学院内蒙古宁夏综合考察队.内蒙古植被.北京:科学出版社,1985.
    [40]中国数字植物标本馆的新旧地名数据库查询系统:www.cvh.org.cn/jiudiming/list.asp
    [41]蒋林,林有润.中国蒿属植物比较形态和解剖学研究Ⅰ叶表皮结构.植物研究,1993,13(4):353-370.
    [42]蒋林,林有润.中国蒿属植物比较形态和解剂学研究Ⅲ茎、叶解剖构造.仲恺农业技术学院学报,1997,10(1):12-23.
    [43]牛忠磊.中国绢蒿属叶表皮特征及其解剖学研究.西北农林科技大学.硕士论文.2007.
    [44]司马义.巴拉提.伊犁绢蒿解剖特征的初步研究.干旱区研究,1990,3:58-60.
    [45]孙会忠.中国绢蒿属(Seriphidium)植物系统分类学研究.西北农林科技大学:博硕士论文.2007.
    [46]Sharply A N, Williams J R. EPIC-Erosion/Productivity Impact Calculator:1. Model Documentation.USDA Technical Bulletin, NO.1768,1990.
    [47]张金屯,2004;数量生态学.北京:科学出版社.
    [48]蒙旭辉,李向林,辛晓平,周尧治.2009.不同放牧强度F羊草草甸草原群落特征及多样性分析.草地学报,17(2):239-244.
    [49]宋创业,郭柯,刘高焕.2008.浑善达克沙地植物群落物种多样性与土壤因子的关系.生态学杂志,27(1):8-13.
    [50]郑奕.塔里木河上游与下游地区天然植被群落特征对比分析,干旱区资源与环境,2008,22(1):153-157.
    [51]上鑫厅,上炜,梁存柱.典型草原退化群落不同恢复演替阶段羊草种群空间格局的比较.植物生态学报.2009,33(1):63-70.
    [52]王立龙,上广林,黄永杰,李晶,刘登义.黄山濒危植物小花木兰生态位与年龄结构研究,生态学报,2006,26(6):1862-1871.
    [53]余世孝,L.奥罗西.种群多维生态位宽度测度.生态学报,1994,14(1):32-39.
    [54]杨立学.俄罗斯大果沙棘(Hippophae rhamnoides L.)种子萌发特性.生态学报.2007,27 (6):2215-2222.
    [55]孙会忠,贺学礼.3种绢蒿属植物种子萌发特性的比较.西北农林科技大学学报,2007,35(2):198-202.
    [56]朱颖,董玉芝,昝少平,陈炜.15种忍冬属植物的数量分类研究.新疆农业科学,2009,46(4):691-695.
    [57]张天曾.黄土高原纲论.中国环境科学出版社.北京.1993.
    [58]陈永宗等.黄土高原现代侵蚀及治理.科学出版社.北京.1988.
    [58]李海涛.植物种群分布格局研究概况.植物学通报,1995,12(2):19-26.
    [59]李雪梅,程小琴.生态位理论的发展及其在生态学各领域中的应用.北京林业大学学报,2007,29(2):294-298.
    [60]张富,余新晓,景亚安,石观海等.黄土高原水土保持防治措施对位配置研究.北京.黄河水利出版社,2007.
    [61]包国章,李向林,郭继勋等.湖北高山草地白三叶种群的能量动态特征.东北师范大学学报(自然科学版),2001,33(2):84-88.
    [62]李丹.典型草原群落恢复演替过程中植物种间竞争强度与行为的动态研究.内蒙古大学硕士学位论文,2008.
    [63]Stebins G L复旦大学遗传研究所译.植物的变异和进化.上海:上海科学技术出版社,1963.
    [64]Merrell D J黄瑞复等译.生态遗传学.北京:科学出版社,1991.
    [65]BegonM, Harpper JL,Townsend CR.Ecology:Indi-viduals Populations, and Communities. London:Black-wel,l 1990.
    [66]Hickman JC. Environmentalunpredictability and plastic energy allocation strategies in the annualPolygonum cascadense(Polygonaceae).Journal of Ecology,1975,63:689-701.
    [67]ZotzG, RichterA. Changes in carbohydrate and nutri-ent contents throughout a reproductive cycle indicate that phosphorus is a limiting nutrient in the epiphytic bromeliad,Werauhia sanguinolenta. Annals of Botany,2006,97:745-754.
    [68]高慧,高玉葆,刘海英,刘景玲.不同坡位大针茅生长与生殖分配特征.应用生态学报,2009,20(9):2123-2128.
    [69]董鸣.1996a.资源异质性环境中的植物克隆生长:觅食行为.植物学报,38(10):828-835.
    [70]陈玉福,董鸣.毛乌素沙地根茎灌木羊柴的基株特征和不同生境中的分株种群特征.植物生态学报.2000,24(1):40-45.
    [71]华鹏.几种干旱区植物种子萌发和散布特征的研究.2004.新疆大学硕士研究生学位论文.
    [72]崔现亮,王桔红,齐威,郑秀芳.青藏高原东缘灌木种子的萌发特性.生态学报.2008,28(11):5294-5302.
    [73]王慧春,赵久忠,周华坤.温度和土壤水分对甘肃马先蒿种子萌发的影响.安徽农业科学.2008,36(34):14873-14875.
    [74]杨文钰,关华.种子萌发生理研究进展(Ⅰ).种子.2002(5):31-32.
    [75]杨立学.俄罗斯大果沙棘(Hippophae rhamnoides L.)种子萌发特性.生态学报.2007,27(6):2215-2222.
    [76]邰建辉,上彦荣,陈谷.无芒隐子草种子萌发、出苗和幼苗生长对土壤水分的响应.草业学报.2008,17(3):105-110.
    [77]Simpson R. Ecology of soil SeedBank.1989, San Diego:Academic Press.149-209.
    [78]HaPPer JL.PoPulation Biology of Plant.1977, London:Academic Press.
    [79]Lambers H, et a.l Inherent variation in growth rate between higher plants:a search for physiological causes and ecological consequences.Advances in Ecological Research,1992,23: 188-242.
    [80]Grime J P, et a.l Integrated screening validates primary axes of specialization in plants.Oikos, 1997,79:259-281.
    [81]蒲锦春,刘家琼,刘新民,贾惠兰.中国沙漠,1989,9(3):44-53.
    [82]李向义,Thomas F M,Foetzki,曾凡江.自然状况下头状沙拐枣对水分条件变化的响应.植物生态学报,2003,27(4):516-521.
    [83]蒋志荣.沙冬青抗旱机理的探讨.中国沙漠,2000,20(1):71-74.
    [84]杨鑫光,傅华,李晓东.干旱胁迫对霸王水分生理特征及细胞膜透性的影响.西北植物学报,2009,29(10):2076-2083.
    [85]龚吉蕊,赵爱芬,张新时.多浆荒漠植物与中生植物对干旱胁迫反映的比较研究.北京师范大学学报.自然科学版,2005,41(2):194-198.
    [86]黄子琛.荒漠植物的水分关系与抗旱性.甘肃林业科技,1992,14(2):1-7.
    [87]杨九艳.鄂尔多斯锦鸡儿属(Caragana Fabr.)植物的生态适应性研究.内蒙古大学博士学位论文,2006.
    [88]中国科学院内蒙古草原生态系统定位站.草原生态系统研究—Ⅰ.北京:科学出版 社.1985.
    [89]Solbrig O T. Studies on the population biology of the genus ViolaII:The effectofplant size on fitness in Violasororia. Evolution,1981,35:1081-1093.
    [90]张炜银,李鸣光,王伯荪等.外来杂草薇甘菊在不同群落中的种子生产特征.武汉植物学研究,2003,21(2):143-147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700