血红蛋白在过硫酸钾、铜离子存在下的电化学行为及其分析应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血红蛋白是动物及人体内执行输氧任务的蛋白质,也有维持血液酸碱平衡的作用,是脊椎动物血液的有色成分。体内血红蛋白的病变以及含量异常会导致许多疾病,因而血红蛋白的测定是临床血液常规检测的重要组成部分。本论文用单扫描极谱法研究血红蛋白的电化学行为,发现过硫酸钾对血红蛋白在滴汞电极上有催化作用,在铜离子存在下血红蛋白的还原波可以增大,同时也发现过硫酸钾、铜离子共同存在下,血红蛋白的灵敏度可以进一步提高,与文献方法相比,它们的检测限降低了1~2个数量级,而且操作简便、经济实用。
     论文研究工作分为三部分,主要内容如下:
     1.血红蛋白在氧化剂K2S2O8存在下的平行催化波及其应用。在pH 9.5的NH3-NH4Cl缓冲溶液中,血红蛋白在– 0.7 V (vs.SCE)处有一个不灵敏的还原峰,加入K2S2O8后,可产生一灵敏度极高的动力波,约为原来的12倍。血红蛋白的含量在2.0×10-10~5.0×10-8 mol/L范围内与此波高呈线性关系。应用该法测定了人体新鲜静脉血中血红蛋白的含量。机理研究表明:该极谱波是过硫酸钾催化血红蛋白中的卟啉环还原产生的。
     2.铜(II)离子存在下血红蛋白的极谱波及应用。在pH 10.1 NH3-NH4Cl和2.2×10-4 mol/L硫酸铜组成的溶液中于– 0.77 V (vs.SCE)处有一灵敏的极谱波,该波二阶导数峰峰电流与血红蛋白浓度在5.0×10-11 ~ 1.2×10-7 mol/L范围呈线性关系,检出限可达1.0×10-11 mol/L。运用该法测定了人体尿样中血红蛋白含量。最后探讨了该极谱波产生的机理。
     3.探讨了过硫酸钾、铜(II)离子同时存在下血红蛋白产生的极谱行为。在pH 10.4的NH3-NH4Cl缓冲溶液中,当铜离子、过硫酸钾同时存在时,血红蛋白可以产生一灵敏度极高的催化波,相比之前波高提高了约35倍。该极谱波二阶导数峰电流与血红蛋白浓度在4.65×10-12 ~ 2.48×10-7 mol/L范围内呈线性关系,检测限进一步降低。
Hemoglobin is a protein of transporting oxygen. It is the colored component of blood and keeps the balance of pH. The abnormal content of hemoglobin causes many diseases, so the determination of hemoglobin is an important part of clinical blood routine detection. This thesis studies the determination of hemoglobin by polarography wave, we found potassium persulfate can cataly hemogloin on the dropping mercury electrode, and in the presence of copper ions, the reducton wave of hemoglobin can be increased; at the same time, the sensitivity of hemoglobin can be further improved when potassium persulfate and copper ions in the presence together. Compared with the literature, their detection limit was more reduced, and these methods are simple、ecomomical.
     The study has three parts, the primary contents are described as follows:
     In chapter one, the determination of hemoglobin and potassium persulfate are studied by a parallel catalytic wave. In pH 9.5 NH3-NH4Cl buffer solution hemoglobin brings forth a small reductive wave at– 0.70 V (vs. SCE) by using single sweep polarography. This reductive wave can be catalyzed by oxidant potassium persulfate. The derivative peak height is linearly proportional to the concentration of hemoglobin in the range of 2.0×10-10 ~5.0×10-8 mol/L. The detection limit is 1.0×10-10 mol/L. The proposed method has been applied to the determination of hemoglobin content in venous blood samples with satisfactory results. The mechanism study has showed that the polarographic wave is attributed to the oxidation of protoporphyrin (IX) of heme prosthetic group.
     In chapter two, it shows the polarographic reduction wave of hemoglobin and Cu~(2+). In pH 10.1 NH3-NH4Cl ~ 2.2×10-4 mol/L Copper Sulfate supporting electrolyte, Hemoglobin in a single sweep polarography on in - 0.77 V (vs. SCE) have near a polarographic catalytic wave. The second-order derivative peak current of the polarographic catalytic wave with peak potential - 0.77 V (vs. SCE) was proportional to the Hemoglobin concentration in the range of 5.0×10-11 ~1.2×10-7mol/L. The detection limit is 1.0×10-11 mol/L. This method has been used to determine the hemoglobin in urine, the results was satisfactory. The production mechanism of polargraphic wave of hemoglobin was discussed.
     Chapter three discusses the behaviour of the polarographic wave of hemoglobin in compositing system of potassium persulfate and Cu~(2+). The new catalytic wave is 35 times than before. The derivative peak height is linearly proportional to the concentration of hemoglobin in the range of 4.65×10-12 ~ 2.48×10-7 mol/L. The detection limit was reduced.
引文
[1]曾溢滔.人类血红蛋白[J],科学出版社,2002,1
    [2]王绫.金属离子与人体氧的利用关系[J].分子科学与化学研究,1983,4(1):128
    [3]陈常兴.血红蛋白的生物学功能[J].临祈医专学报,1990,12(1):73-75
    [4]沈同.生物化学(上册)[M].北京:高等教育出版社(第二版):181-189
    [5]陶令霞.谈血红蛋白和肌红蛋白的异同[J].安阳师专学报,1999,(4):100-101
    [6]东北农学院.兽医临床诊断学[M].农业出版社,1980:160-162
    [7]卢宗藩.家畜及试验动物生理生化参数[M].农业出版社,1983:45-112
    [8] International Committee for standardization in Haematology of the European Society of Haematology.Recommendation and requirements for haemoglobinometry in human blood. J Clin Pathol,1965,18:353
    [9] International Committee for standard in Hematology, Hecommendations for reference method for hemoglobinometry in human blood (ICSH standard EP 6:1977) and apcifications for international hemoglobinoyanide reference preparatlon (ICSH standanrad EP614.1977). J Clin Path,1978,31:139
    [10]熊以树,龚建华,熊衍峰,熊衍霞.两种方法检测血红蛋白结果分析[J].章南医学学报,1998,18(1):86-87
    [11]陈宏础摘译.用十二烷基硫酸钠测定血红蛋白[M],国外医学临床生化与检验学分册,1981,2:50
    [12]康健等.最新Hb测定法—碱性高铁血红素D-575法[J].中华血液学杂志,1985,6(5):240
    [13]涂文瑞,卢爱薇.碱性羟基高铁血红素(AHD-575)法测定血红蛋白的探讨[J].学会,2001,(10):39-40
    [14]卢淑文.碱化血红蛋白光电比色法[M].北京:人民出版社,1996;197-198
    [15] Zander R. et al. Alkaline haematin D-575, a new tool for the determination of haemoglobin as an alternative to the cyanhaemiglobin method. Description of the method. Clin Chim Acta. 1984, 136:83-93
    [16]张国俊.血红蛋白PIE515测定法[J].临床检验杂志,1991,9(2):84
    [17]王龙武,石自明.酸化血红素501法测定血红蛋白的实验探讨[J],湖南医学,1991,8(4):210-212
    [18]李介华.一种新的血红蛋白测定方法的实验研究[J].医学检验杂志,1990,5(1):9-11
    [19]李景海.新的血红蛋白(Hb)测定方法—拉开粉(NBX)法[J].中华血液学杂志,1981,5(6):347-348
    [20] Vanzetti G. An azide-methimoglobin Method for hemoglobin determination in blood[J]. J Lab Clin Med, 1966,67(1):116-126
    [21]刘瑞锁,郝学梅等.水溶法测定血红蛋白[J].泰山医学学报,1992,13(40):410-411
    [22]孙传福,郭文贤等.用硼砂测定血红蛋白的探讨[J].中华医学检验杂志,1991,14(2):117
    [23]童若春,王建中.四种血红蛋白测定的方法学评价[J].中华医学检验杂志,1989,12(2):112-113
    [24]杨清尧,樊长福.血红蛋白五种比色测定方法的比较[J].莱阳农学院学报,1989,6(4):33-39
    [25] Kalabina L.V. , Khim. Mashiostp. Teknol. 1981, 18:54
    [26]何治柯,罗庆尧,余席茂,袁丁,曾云鹗.牛血红蛋白的化学发光分析研究[J].分析科学学报,1993,9(4):43-45
    [27]莫小曼,黄春保,刘巧玲等.反相流动注射化学发光法测定牛血红蛋白的研究及应用[J].分析科学学报,2004,20(5):528-530
    [28] Yang X.F.; Guo X.Q.; Li H. Fluorimetric determination of hemoglobin using spiro form rhodammine B hydrazide in a micellar medium.Talanta 2003,61:439-445
    [29] Van Bommel; De Jong; A.P.J.M.; Tjaden U.R.; Irth H.; Van der Greef J. High-performance liquid chromatography coupled to enzyme-amplified biochemical detection for the analysis of hemoglobin after pre-column biotinylation.J.Chromagr.A 2000,886:19-29
    [30]冶保献,周性尧。血红蛋白在裸银电极上的直接电化学及其分析应用[J],高等学校化学学报,1996,17(1):33-37
    [31]林琳,张珂,冶保献等。在四甲基氯化铵促进下血红蛋白在裸银电极上的电化学行为及分析应用[J].分析化学,1996,24(11):1281-1283
    [32]何亚楠,李根喜,史海蓉等。测定血红蛋白的一种电化学分析方法[J].分析化学,1997,25(1):49-51
    [33]鞠熀先,荀以刚,陈洪渊.碳纤维微电极研究(18):亚甲基蓝/Nafion修饰微柱碳纤维电极测定血红蛋白的研究[J].高等学校化学学报,1994,15(6):827-831
    [34]金松子,王韬,张春煦等.血红蛋白在磷脂-月桂酸修饰的玻碳电极上的电化学行为及其分析应用[J].化学学报,2002,60(7):1269-1273
    [35]孙伟,焦奎,王海玉.血红蛋白作为过氧化物模拟酶的电化学分析法的研究.第七届全国青年分析测试研讨会[C].南京:南京大学,2002. 276-277
    [36]中华人民共和国卫生部.中国输血技术操作规程(血站部分)[M].天津:科学技术出版社,1998.3.5
    [37]刘丙现,赵丽萍,张琳,于秀清.血红蛋白目测比色板法在无偿献血初筛中的应用[J].中国输血杂志,2005,18(1):45
    [38]邓雪莲,于志军等.血红蛋白目测比色板用于无偿献血筛选的可行性[J].中国输血杂志,2005,18(1):34-35
    [39] Lewis S M,Stott G J,Wynn K J. An inexpensive and reliable new haemoglobin colour scale for rassessing anaemia. J Clin Pathol,1998,51(1):21
    [40] Lewis S M,Emmanuel J.Validity of the haemoglobin colour scale in blood donor screening.Vox Sang,201,80(1):28
    [41]高峰,主译.临床用血[M].北京:人民卫生出版社,2003.29
    [42]张评.适用于流动采血站的血红蛋白测定新方法[J].中国输血杂志,2005,18(2):141-142
    [43] Gao H, Zhang Z X. Theory of Polarographic Current[M]. Beijing(in chinese),1986 (高鸿,张祖训,极谱电流理论,科学出版社,北京,1986)
    [44]高小霞.极谱催化波[M].北京:科学出版社,1991:173
    [45] Torpova V F, Polyakov Y N, Movchan N I, Dudnikova T Y. Khim. Khim. Tekhnol[M]. 1979, 22:302
    [46]宋俊峰,薛静,过玮.苯甲醛-过二硫酸盐体系中苯甲醛的极谱催化波[J].催化学报,2000,21:437-440
    [47]宋俊峰,薛静,过玮.极谱催化波法测定苯甲醛[J].分析化学,2001,29:38-41
    [48]宋俊峰,何盈盈,过玮.极谱催化波法测定黄连素[J].分析化学,2000,28:1538-1541
    [49] Song J F, He Y Y, Guo W. Polarographic determination of berberine in the presence of H2O2 in medicinal plants[J]. Pharm.Biomed.Anal, 2002,28:355-363
    [50] Guo W, Lin H, Liu L M, Guo Z A, Song J F. Chin. J. Chem,2002, 20:502
    [51] Guo W, Lin H, Liu L M, Guo Z A, Song J F. Polarographic determination of diazepam with its parallel catalytic wave in the presence of persulfate[J]. Pharm.Biomed.Anal, 2004,34:1137-1144
    [52] Song J F, Shao Y, Guo W, Determination of lomefloxacin, an antibacterial drug, in pharmaceutical preparations based on its polarographic catalytic wave in the presence of 2-iodoacetamide[J]. Anal. Sci.,2001,17:1145-1148
    [53] Song J F, Su Y J, Guo W, Freseniusc J.Anal.Chem.,2000,368:426
    [54] Levinson S S, Goldman J. Measuring hemoglobin in plasma by reaction with tetramethylbenzidine. Clin,Chem. 1982,28:471-474
    [55] Zhang,K.;Cai,R.;Chen,D.;Mao,L. Determination of hemoglobin based on its enzymatic activity for the oxidation of o-phenylenediamine with hydrogen peroxide .Anal .Chim .Acta 2000,413:109-113
    [56] Igarashi S, Yotsuyanagi T, Aomura K. Fluorometric determination of trace metal ions with water-soluble porphyrins. Bunseki Kagaku 1979, 28:449-450
    [57] Yang,X.F.;Guo,X.Q.;Li,H. Fluorimetric Determination of hemoglobin using spiro from rhodamine B hydrazide in a micellar medium .Talanta 2003,61:439-445
    [58] Igarashi S, Itoh J, Yotsuyanagi T, Aomura K. Spectrophotometric determination of small amounts of cadumium with tetraphenylporphinetrisufonic acid. Nippon Kagaku Kaishi 1978, VOLUME NO:212-216
    [59] Quickenden,T.I.;Cooper,P.D. Increasing the specificity of the forensic luminol test for blood. Luminescence 2001,16:251-253
    [60] Palecek E, in Topics in Bioelectrochemistry and Bioenergetics. Wiley London; 1983,65-155
    [61] Song J F, Kang X F, Gao W. Determination of hemoglobin in plasma and serum by linear-sweep polarography. Frsen.J.Anal.Chem. 1997,357:127-129
    [62] Li G, Long Y, Chen H, Zhu D. Determination of traces of hemoglobin by Square wave stripping voltammetry at a silver microelectrode. Frsen.J.Anal.Chem. 1996, 356:359-360
    [63] Ju H, Sun H, Chen H. Properties of poly-β-aminoanthraquinone modified carbon fiber electrode as a basis for hemoglobin biosensors. Anal.Chim.Acta. 1996,327:125-132
    [64] Shi J H, Luo D B. Polarographic Reduction Wave of Hemoglobin and its Application to Micro-Determination. Instrumentation Science and Technology 2005, 33:533-540
    [65] Cheng C, Cai Y F. The development and utilization of edible animal blood resource. Food and Fermentation Industries 1998,24(3):66-72
    [66] Liu R S, He X M. Determination of hemoglobin by water. J. TaiShan Medical College 1992,13(4):410-411
    [67] Zhang Z X, Tu Y F. Investigation of second derivative oscillopolarography with Iinearly chaning potential. Chem J (hin Univ Cin Chinese) 1985,6(5):403-408
    [68] Fielding H E, Langley P E. A simple method for measurement of hemoglobin in serum and urine. Am J Clin Pathol 1958,30:528-529
    [69] Beau A F. A method for hemoglobin in serum and uine. Am J Clin Pathol. 1962,38:111-112
    [70] Havran L, Billova S, Palecek E. Electroactivrty of Avidin and Streptavidin. Avidin Signals at Mercury and Carbon Electrodes Respond to Biotin Binding. Electroanalysis 2004,16:1139-1148
    [71] Wang J, Villa V, Tapia T. Trace Measurements of the Disulphide Proteins Trypsin and chymotrypsin Based on Adsorptive Stripping Voltammbery. Bioelectrochem Bioenerg. 1988,19:39-47
    [72] Anna M. Fiahane等著.黄仲贤等译.生物无机化学原理[M].上海:复旦大学出版社(1984)
    [73] M. N.休斯著.陈自在等译.生物无机化学[M].农业出版社(1986)
    [74]王夔.分子科学与化学研究[J]. 1983,1:21
    [75]王爱香,韩长秀.铜- ( NH4) 2S2O8 -二甲基黄体系负催化光度法测定痕量铜[J].冶金分析,2005,25(1)
    [76]程池,蔡永峰.可食用动物血液资源的开发利用[J].食品与发酵工业,1998,24(3):66-72
    [77]陶慰孙.蛋白质分子基础,第二版[M].北京:高等教育出版社,1995:285
    [78] Shi Jiahong;Luo Dengbai. Polarographic Reduction Wave of Hemoglobin and its Application to Micro-Determination. Instumentation Science & Technology. 2005, 33:533-540
    [79] Brett,C.M.A.;Inzelt,G.;Kertesz,V. Poly(methylene blue)modified electrode sensor for haemoglobin. Anal.Chim.Acta 1999,385:119-123
    [80]王福民.基于溶解氧乙酰螺旋霉素极谱平行催化氢波的研究[J].药学学报,2005,40(12):1135-1138
    [81]李宁,宋俊峰,徐茂田.托卡胺的平行催化氢波法测定[J].应用化学,2004,21(11):1093-1096
    [82]刘利民,过玮,严峰.氨-碘酸盐介质中白喉类毒素的平行催化氢波[J].分析实验室,2002,21(2):4-7

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700