新型絮凝剂聚合硅酸硫酸铝形态学及絮凝机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝过程(混合、凝聚、絮凝)是水处理工艺中应用最普遍的关键环节之一,在使用该法处理废水时,药剂费占处理成本的50%。因此,对于高效、廉价的混凝剂的研制开发工作一直受到人们的关注。铝盐作为生活用水、工业用水和工业废水处理剂已得到广泛应用,为了提高其电荷中和能力或增强其配位能力,可以在聚合铝中引入其它离子而形成复合型聚铝盐。本文以硫酸铝、水玻璃等为原料采用共聚法(将一定的NaOH加入到不同Al/Si摩尔比和硅酸聚合度的混合液)和复合法(按一定的Al/Si摩尔比将不同聚合度的硅酸加入到不同碱化度的聚合硫酸铝溶液)两种制备方法研制出具有不同硅酸聚合度、碱化度(B)、Al/Si摩尔比的新型絮凝剂聚合硅酸硫酸铝(PASiS)。
    本文采用Al-Ferron逐时络合比色法和显微电泳技术对PASiS进行研究,探讨了制备方法和参数变化对PASiS形态分布和水解产物荷电特征的影响,并将PASiS用于水处理实验。实验结果表明,聚硅酸和铝水解聚合物发生相互作用生成了聚合度更大的铝硅络合物,已经发生水解聚合作用的铝水解产物以及高聚合度的硅酸的络合作用能力较小。PASiS仍是以羟基聚合物为主要形态分布,当B=1、Al/Si摩尔比为2.5、硅酸聚合时间为150min时,PASiS的ζ电位高于PAS。B值对PASiS的铝水解形态分布和絮凝效果有较大影响,在0.5~1.5范围内B值的增加有助于生成聚合度更大的多羟基聚合体和提高絮凝性能;Al/Si摩尔比和硅酸聚合状态对PASiS的铝水解形态分布和絮凝效果有一定影响,在适当的Al/Si摩尔比和硅酸聚合状态条件下,PASiS的絮凝效果良好。PASiS的絮凝效果优于PAC、PAS、PASC、PAM等絮凝剂,又以共聚法制备的PASiS的絮凝效果好于复合法制备的PASiS。
    通过铝水解形态、ζ电位和絮凝性能分析,本文得出PASiS具有良好的电中和和吸附架桥能力,但以吸附架桥和网捕沉淀为PASiS主要絮凝机理。在此基础上,推测PASiS中聚硅酸与铝水解聚合产物主要以下面两种方式相互作用:一种方式为聚硅酸直接与铝水解产物中的羟基成氢键连接(Si-O…HO-Al),生成[Alx(OH)y]H3SiO4(3x-y-1)+等,这种结构较为牢固。另一方面聚硅酸可能与铝水解产物中的铝以氧桥连接(Si-O-A)形成大的络合物分子,在微量滴定的过程中,"SiO4"结构取代“AlO4”结构形成类似于Al12AlO4(OH)247+的SiO4Al12(OH)248+结构,这种键合方式更为牢固。
    最后实验得出,聚合硅酸硫酸铝(PASiS)混凝剂不是一种化合物,而是一种聚硅酸与聚铝的水解络合产物再聚合后的混合物,PASiS在起絮凝作用时,是由铝水解络合物与含硅氧基的络合物及聚硅酸共同作用的,絮凝效果与这三部分的含量和形态有关。在水处理中不同碱化度、硅酸聚合度及Al /Si摩尔比的PASiS表
    
    现出不同的絮凝性能,具体情况应视处理水样的不同而有所不同。
Coagulation is an important technology used generally in water treatment. The cost of coagulants approximately accounts for 50 percent of the total cost of the water treatment. Therefore, the researches of high efficient、cheap coagulants have been concern. Polyaluminum salt have been widely used as water treatment agent for living, industrial water service and industrial effluent. To improve its abilities of neutralizing electric charge or complexing, it is effective to introduce some other ions into polyaluminum salt to form polyblend of aluminum salt. A series of polyaluminum silicate sulfate (PASiS) with different basicities(B)、Al/Si molar ratios and polymerization degree of silicic acid were prepared by means of two kinds of preparation methods: one is to add NaOH into Al2(SO4)3 and polysilicic acid mixed solution at different Al/Si molar ratios and polymerization degree; the other is to add polysilicic acid with different polymerization degree into polyaluminum sulfate(PAS) solution with different basicities(B) at Al/Si molar ratios.
    The effects of aluminum species distribution and charged characteristic of hydrolysis products of PASiS prouced by various preparation methods and factors were investigated by the Al-Ferron timed complex colorimetric methodand the micro -electrophoresis method. Then PASiS were applied in the wastewater treatment. The experimental results show that the interaction between polysilicic acid and hydrolysis aluminum species in PASiS forms aluminum-silicate polymer composite with larger size polymer. But it is difficult to the hydrolyzed aluminum species and the large polymerization degree of silicic acid to interact with each other. The multinuclear hydroxy aluminum is still the major species in PASiS. Especially the ζ-potential of this PASiS with B=1, Al/Si=2.5,t=150min is higher than that of PAS. B has agreat effect on the distribution of aluminum species andζ-potential and flocculation property. With the B value increasing in the range of B=0.5~1.5, the larger polymer aluminum-silicate composite would form, the better flocculation efficiency would be. But the more B would make silicic acid coagulate. Al/Si molar ratio and polymerization degree of silicic acid also effect on the distribution of aluminum species of PASiS.
    
    
    Through studies of the species and ζ-potential and flocculation property, it was suggested that PASiS has the favorable abilities of charge neutralization and absorption -bridging, and absorption-bridging is the dominate mechanism. The interaction patterns between silicic acid and hydrolysis aluminum has two ways: one is that silicic acid interact directly with hydroxyl of hydrolysis aluminum by hydrogen bond(Si-O...HO-Al) to form the structure such as [Alx(OH)y]H3SiO4(3x-y-1)+; the other is that silicic acid bind the hydrolysis aluminum by oxygen bridge (Si-O-Al). During the microtitration, the structure "SiO4"would partly take the palace of the structure"AlO4" to form the larger polymer molecule such as [SiO4Al12(OH)248+], which is similar to Al12AlO4(OH)247+.
    PASiS flocculant is not a compound but a mixture, which included polymeric aluminum-silicate composite and polysilicic acid and polymeric hydrolyzed aluminum species. In the wastewater treatment, it is polymeric aluminum-silicate composite and polysilicic acid and polymeric hydrolyzed aluminum species that took effect together. The flocculation properties of PASiS are related to the contents and species of the three parts above. PASiS with different B and Al/Si molar ratio and polymerization degree of silicic acid would show different flocculation properties in the treatment of different water and wastewater.
    The PASiS could be good flocculating efficiency only at a proper Al/Si molar ratio and polymerization degree of silicic acid. The PASiS has better flocculation property than PAS, and the PASiS prepared by the copolymerization technique has better flocculation property than the PASiS prepared by the composite technique.
引文
[1] 栾兆坤,汤鸿霄.我国无机高分子絮凝剂产业发展现状与规划.工业水处理,2000,20(11):1-6
    [2] 姚重华.凝剂与絮凝剂.中国环境科学出版社.1991
    [3] 汤鸿霄.机高分子复合絮凝剂的研制趋向.中国给水排水,1999,15(2):1-3
    [4] Iler R K. The Chemistry of Silical [M]. New York: John Wiley﹠son. 1979:185-189
    [5] Farmer V C. The Infrared Spectra of Minerals [M]. London: Mineral Soc Monog.1974
    [6] 秦蓁.金属离子对聚硅酸絮凝效果的影响.工业水处理,1996,19(3):8-9
    [7] 唐永星,吴绍情等.硅离子与聚铝离子在稳定胶体中的相互作用.环境化学,1997,16(1):60-62
    [8] 高宝玉,李翠萍,岳钦艳等.铝离子与聚硅酸的相互作用.环境化学,1993,12(4):268-273
    [9] 严瑞璇主编.《水处理剂应用手册》.化学工业出版社, 2000
    [10] 高宝玉,岳钦艳,王淑仁.含铝离子的聚硅酸絮凝剂研究.环境科学,1990,11(5):37-41
    [11] 高宝玉,岳钦艳,王吉顺等.含铝离子的聚硅酸絮凝剂的性能及应用.工业水处理,1993,13(1)17-19
    [12] 李玉江,黄英利,吴涛.絮凝剂PASC的制备及其性能.山东工业大学学报,1996,26(2)166-170
    [13] 栾兆坤,宋永会.聚硅酸金属盐絮凝剂的制备和絮凝性能.环境化学. 1997,16(5):534-539
    [14] 宋永会,栾兆坤.新型聚铝硅复合絮凝剂的制备及性能研究.环境化学,1997,16(6):541-543
    [15] 高宝玉,岳钦艳等.聚硅氯化铝混凝剂的形态及带电特性研究.环境科学.1998,19(3):46-49
    [16] 曹长春,张兆林,张力.聚硅酸铝盐絮凝剂絮凝性能与机理研究.广西科学,1998,5(2):116-118
    [17] 高宝玉,岳钦艳,王占生等.聚硅氯化铝混凝剂的混凝效果研究.中国给水排水,1999,15(12):14-15
    [18] 高宝玉,王占生,汤鸿霄.聚硅氯化铝(PASC)混凝剂的颗粒大小及分子量分布.中国环境科学,1999,19(4):207-300
    [19] 于惠,高宝玉,岳钦艳等.红外光谱法研究聚硅酸氯化铝混凝剂得结构特征.山东大学学报.1999,34(6):198-201
    
    
    [20] 高宝玉,岳钦艳,王占生等.聚硅氯化铝的混凝效果及在处理水中的残留铝研究.中国给水排水,1999,15(7):4
    [21] 常青,王武权,栾兆坤等.聚合硅酸硫酸铝的制备、结构及性能研究.环境化学,1999,18(2):168-171
    [22] 高宝玉,岳钦艳,王占生.聚硅氯化铝(PASC)的形态分布及转化规律1)Ⅲ.Al-Ferron 逐时络合比色法与Al-NMR法的比较.环境化学,2000,19(1):14-17
    [23] 高宝玉,岳钦艳,王占生.聚硅氯化铝(PASC)的形态分布及转化规律1)Ⅰ.Al-Ferron 逐时络合比色法研究PASC溶液中铝的形态分布及转化规律.环境化学,2000,19(1):1-4
    [24] 高宝玉,岳钦艳,王占生.聚硅氯化铝(PASC)的形态分布及转化规律1)ⅡAl-NMR法研究PASC溶液中铝的形态分布.环境化学,2000,19(1):5-13
    [25] 胡翔,周定.聚硅酸系列混凝剂混凝过程的动力学和机理研究.水处理技术,1999,25(2):114-116
    [26] 高宝玉,王占生,汤鸿霄.聚硅酸氯化铝混凝剂中Al(Ⅲ)水解-聚合历程及铝硅作用特性研究.环境科学学报,2000,20(2):151-155
    [27] 高宝玉,王占生,汤鸿霄.聚硅酸铝盐混凝剂的研究进展.环境科学进展,1998,6(2):45-49
    [28] 孙剑辉,徐毅.聚硅酸盐类絮凝剂的研究进展.工业水处理,2000,20(3)
    [29] 王士才,李宝霞.聚合硫酸铝絮凝剂的研究及其在水处理上的应用.工业水处理,1997,17(2):17-19
    [30] 蒋展鹏.混凝形态学的研究进展.给水排水,1998,24(10):70
    [31] 冯利,栾兆坤,汤鸿霄.铝的水解聚合形态分析方法的研究.环境化学,1993,12(5):373-378
    [32] 汤鸿霄.羟基聚合氯化铝的絮凝形态学.环境科学学报,1998,18(1):1-10
    [33] Hem J D, Roberson C E. In : Melchior D C, Basset R L, eds. Chemical modeling of aqueous systems Ⅱ, American Chemical Society,1990,33:430-446
    [34] Goldberg S et al. In: Sposito G, Lewis Publishers, (ed). The environmental chemistry of aluminum 2nd Ed,1995,7:271-331
    [35] Akitt JW,Farthing A. Aluminum-27 NMR Studies of the Hydrolysis Aluminum(Ⅲ), Part2-5[J], C S Dalton Trans.1981:1606
    [36] Bottero J Y et al. Hydrolysis and flocculation: a structure approach through small-angle X-ray scattering. J De Physique Ⅳ,1993,3:211-218
    [37] Bottero J Y et al. Mechanism of formation of aluminum toihydroxide from keggin Al polymers. J Colloid and Interf Sci.1987,117(1):47-57
    
    
    [38] 常青.聚合铁的形态特征和凝聚-絮凝机理[J].环境化学学报,1985,5(2):185
    [39] 田宝珍,汤鸿霄.聚合铁的红外光谱和电导特征[J].环境化学,1990,9(6):70-75
    [40] Barth H G. Particle size analysis[J]. Annal.Chem.,1995,67(12):257-272
    [41] 王东升,汤鸿霄.激光光散射在混凝研究中的应用评述.环境科学进展,1997,5(5):36-39
    [42] Bottero J YETAL. Partial Hydrolysis of Ferric Chloride Salt[J]. Langmuir.1991,7(5):1365
    [43] Hasse D, Spriatos N, Pol basic aluminum silicate-sulfate[P]. Europe Patent:0,372,715Al,1990-06-13
    [44] 栾兆坤,冯利,汤鸿霄.水解聚合铝溶液中形态分布的定量模拟研究.环境科学学报,1995,15(1):39-47
    [45] Smith R W, Hem J D, Effect of Ageing on Aluminum Hydroxide Complexes in Dilute Aqueous Solutions. U. S. G. S. Water Supply Paper. 1972,:1827
    [46] 汤鸿霄,栾兆坤.聚合氯化铝与传统混凝剂的凝聚-絮凝行为的差异.环境化学,1997,16(5)
    [47] 卢建杭,刘维屏.无机絮凝剂制备技术的进展.中国给水排水,1999,15(4)
    [48] 高宝玉,艾子萍,王淑仁.聚硅酸的絮凝性能及胶凝特性研究.山东大学学报,1993,28(4):482-487
    [49] 艾子萍,高宝玉,王淑仁.聚硅酸溶胶和凝胶的电镜观察.环境化学,1994,13(2):119-122
    [50] Allen L H and Matijelic E. Stability of Colloidal Silica;I Effect of Simple Electrolytes [J]. J.Colloid and Interface Science, 1996,31:287-296.
    [51] 戴安邦,江龙.硅酸及其盐的研究.I,硅酸聚合的速度和机制 [J].化学学报,1957,23:90-98
    [52] Yokoyama T, Takahashi Y, Tarutani T, Retarding and Accelerating Effects of Aluminum on the Growth of Polysilicic Acid Particle. J. Colloid and Interface Science. 1991,141(2):559-563
    [53] Buffle J, Parthasarty N, Haerdi W, Importance of Speciation Methods in Analytical Control of Water Treatment Processes with Application to Fluride Removal from Waste Waters. Water Research.1985,19(1):7-21
    [54] De Hek H Stol R J, De Bruyn P L. Hydrolysis-predipitation studies of aluminum(Ⅲ) solution[J].J. Colloidal Interface Sci.1978,64:72-89
    
    
    [55] 万鹰昕,程德鸿.无机高分子絮凝剂絮凝机制的研究进展.矿物岩石地球化学通报,2001,20(1):61-63
    [56] 栾兆坤.微絮凝-深床过滤理论与应用研究[J].环境化学,1997,16(6):590
    [57] Amirtharajah A,Asce M, Tuusler S L.Destabilization of particles by Turbulent Mixing[J].Envir Engeg Div-ASCE,1986,112:1085
    [58] AWWA Coagulation Committee Report: Coagulation as An Integrated Water Treatment Process [J]. Am Water Works Assoc, 1989,81(10): 72
    [59] Dentel SK, Gossett JM. Mechanisms of Coagulation. With Aluminum Salts [J].Am. Water Works Assoc. 1988,80(4):187
    [60] Katz LE, Hayes KF. Surface Complexation. Modeling [J], I Colloid Interface Sci, 1995:170,477
    [61] Dentel SK. Applieation of the Precipitation-Charge. Neutralization Model of Coation [J]. Envirn Sci Technol. 1988,22(7): 825
    [62] 胡万里.混凝.混凝剂.混凝设备.化学工业出版社,2001
    [63] 王宝贞.水污染控制工程.高等教育出版社,1996
    [64] 胡勇有,王占生,汤鸿霄.显微电泳技术研究聚磷氯化铝的混凝特性.中国环境科学,1995,15(8)289-293
    [65] 东北师范大学等校编.物理化学实验(第二版).高等教育出版社,1995
    [66] 栾兆坤,曲久辉,汤鸿霄.聚合铝的形态稳定性及其动电特性的研究.环境化学,1997,16(5):506-514
    [67] 崔福义.流动电流法混凝控制技术[J].中国给水排水,1991,7(6):36
    [68] 于水利,刘馨远,刘立.活化硅酸聚合机理探讨.哈尔滨建筑大学学报,1996,29(5):111-114

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700