番茄和水稻种子可培养内生细菌的多样性分析及促生菌功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物内生菌是生活在植物体内部、不引起植物病害的、并对植物生长、抗病、抗逆及植物修复等具有促进作用的一类微生物,多功能性内生菌与植物体的内共生关系成为近年来研究的热点。
     本文以番茄(Lycopersicum esculentum Mill.)和水稻(Oryza sativa L.)种子为材料,分析并比较了不同品种番茄和水稻种子中内生细菌的菌群结构。16S rRNA基因PCR-RFLP分析显示,从红樱桃、粉美人、黄天使和绿珍珠四个番茄品种种子中分离得到的84株内生细菌分别隶属于芽孢杆菌属(Bacillus)5个不同的种B. altitudinis、B. amyloliquefaciens、B. atrophaeus、B. pumilus和B. subtilis,其中,B. subtilis和B. amyloliquefaciens是共有的优势种;而分离自郑稻18号、徐稻6号、绥粳4号和上育397四个水稻品种种子的48株内生细菌则分别隶属于γ-变形菌门、β-变形菌门、放线菌门和厚壁菌门的10个属,γ-变形菌门(Enterobacter、Pantoea、Xanthomonas和Pseudomonas)的菌株为优势菌群,其中,泛菌属(Pantoeα)是共有的优势菌属。
     固氮、溶磷、分泌生长素(IAA)和嗜铁素以及具有ACC(1-氨基环丙烷-1-羧酸)脱氨酶活性等是植物促生菌所具备的一些特性。从番茄和水稻种子中分离得到的内生细菌几乎都具有潜在的固氮能力,近50%的菌株可以分泌IAA或具有溶磷作用,大多数种子内生菌株同时具备两种或两种以上的促生特性。其中,六株内生菌具有ACC脱氨酶活性,HYT-12-1和NA-397-SYM-1活性较高,ACC脱氨酶活性分别为112.02和131.88nmolα-酮丁酸/(mg·h)。HYT-15-1、LZZ-133和LB-Z-FJ-1菌株产IAA能力较强,分别为5.12、5.49和6.53μg/mL。通过鉴定,HYT-12-1、 HYT-151-1和LZZ-133属于枯草芽孢杆菌(Bacillus subtilis), LB-Z-FJ-1属于肠杆菌属(Enterobacter), NA-397-SYM-1属于藤黄短小杆菌(Curtobacterium luteum),这是首次发现短小杆菌属菌株(Curtobacterium)具有ACC脱氨酶活性,并且这五株菌都具有自生固氮能力。
     两株产ACC脱氨酶菌株HYT-12-1和NA-397-SYM-1以及三株产IAA菌株LB-Z-FJ-1、HYT-151-1和LZZ-133在番茄、油菜、萝卜和水稻等植株的根、茎、叶中都能较好的定殖,同时对植物幼苗的生长具有不同程度的促进作用,幼苗根和茎的长度、重量、叶绿素含量、根系活力及氮、磷等元素含量都有显著提高,在番茄植株中,属于种子内生优势菌属Bacillus的HYT-12-1和LZZ-133菌株的促生效果更为显著。
     同时,这五株促生内生菌浸种处理番茄种子,可有效提高番茄幼苗对番茄灰霉病原菌Botrytis cinerea Pers的抗病防御能力,引起植株产生诱导系统抗性反应(induced systemic resistance, ISR)。不同菌株诱导植物ISR反应时参与的信号转导途径可能不同,内生促生枯草芽孢杆菌(B. subtilis)菌株HYT-12-1、HYT-151-1和LZZ-133可能通过激活JA信号转导途径引起番茄幼苗的ISR反应,C. lutuem NA-397-SYM-1和Enterobacter sp. LB-Z-FJ-1诱导番茄幼苗ISR反应则可能同时与SA和JA信号转导途径有关。
     综上所述,本研究表明,植物种子内生细菌菌群结构具有丰富的多样性,种子内生菌株对番茄等植株表现出明显的促生功能,并可增强番茄幼苗的抗病性。
Endophytic bacteria are the microorganisms that colonize the interior of plants and do no harm to the plant tissues, and they may show beneficial effects on plant growth, disease-resistant, stress-resistant and phytoremediation. The symbiotic relationship between plant and versatile endophytes becomes a hot research topic recently.
     In this study, seeds of different tomato (Lycopersicum esculent.um Mill.) and rice (Oiyza sativa L.) cultivars were used to analyze and compare the bacterial community compositions of endophytic bacteria. On basis of the16S rRNA PCR-RFLP analysis,84strains isolated from seeds of four tomato cultivars (Red cherry, Pink lady, Yellow angel and Green pearl) showed similarity to five Bacillus species: B. altitudinis, B. amyloliquefaciens, B. atrophaeus, B. pumilus and B. subtilis. B. subtilis and B. amyloliquefaciens were the mutual dominant speices. And48strains isolated from seeds of four rice cultivars (Zhengdao18, Xudao16, Suijing4and Shangyu397) were grouped into10genera, which were closely matched to y-Proteobacteria, α-Proteobacteria, Actinobacteria and Firmicutes. y-Proteobacteria (Enterobacter, Pantoea, Xanthomonas and Pseudomonas) was predominant in the community, and Pantoea was the mutual dominant genus.
     Nitrogen fixation, phosphate solubilization, production of IAA, siderophore and ACC (1-aminocyclopropane-l-carboxylic acid) deaminase are the characteristics of plant growth-promoting bacteria. Most of strains obtained from tomato and rice seeds were able to grow in nitrogen-free culture medium. Almost50%of the isolates showed the capability of IAA production or phosphate solubilization. Majority of strains exhibited two or more plant growth-promoting traits. Among six ACC deaminase producing bacteria, the enzyme activities of HYT-12-1and NA-397-SYM-1were higher than others, and their ACC deaminase activities were quantified as112.02and131.88nmol a-ketobutyrate mg-1protein h-1. HYT-151-1, LZZ-133and LB-Z-FJ-1had better ability of IAA production, and the IAA contents were5.12,5.49and6.53μg/mL. HYT-12-1, HYT-151-1and LZZ-133were identified as Bacillus subtilis, LB-Z-FJ-1was belonged to Enterobacter, and NA-397-SYM-1was affiliated to Curtobacterium luteum. This is the first report that Curtobacterium bacterium could produce ACC deaminase. These five isolates had self-generated nitrogen-fixing ability.
     ACC deaminase producing strains (HYT-12-1and NA-397-SYM-1) and IAA producing strains (LB-Z-FJ-1, HYT-151-1and LZZ-133) could colonize in roots, stems and leaves of tomato, rape, radish and rice seedlings, and promoted the growth of seedlings. Treatments with strains significantly improved the length and weight of roots and stems, chlorophyll content, root activity and element content. The plant growth promoting effects were more conspicuous, when treated with HYT-12-1and LZZ-133on tomato seedlings.
     Besides, these five strains could enhance the disease-resistance and defense function against Botrytis cinerea Pers. and cause the induced systemic resistance (ISR) response by soaking seeds treatments. The elicitation of ISR response by different strains may involve different signal transduction pathway. In Bacillus (HYT-12-1, HYT-151-1and LZZ-133) strains-treated tomato seedlings, resistance was likely to associate with JA signalling, but C. lutuem NA-397-SYM-1and Enterobacter sp. LB-Z-FJ-1treatments maybe induced both SA-and JA-dependent pathways.
     In conclusion, this study indicated the diversity of endophytic bacterial community compositions of plant seeds, and demonstrated the plant growth-promoting effects of endophytic bacteria on several plants and enhancement of disease resistance on tomato seedlings.
引文
Adam A, Ongena M, Duby F, et al. Systemic resistance and lipoxygenase-related defense response induced in tomato by Pseudomonas putida strain BTP1. BMC Plant Biology,2008,8:113
    Ahmad F, Ahmad I, Khan MS. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiological Research,2008,163(2):173-181
    Ahn IP, Park K, Kim CH. Rhizobacteria-induced resistance perturbs viral disease progress and triggers defense-related gene expression. Molecules and Cells,2002,13:302-308
    Aizawa T, Ve NB, Kimoto K, et al. Curtobacterium ammoniigenes sp. nov., an ammonia-producing bacterium isolated from plants inhabiting acidic swamps in actual acid sulfate soil areas of Vietnam. International Journal of Systematic and Evolutionary Microbiology,2007,57(7):1447-1452
    Amaresan N, Jayakumar V, Kumar K, et al. Isolation and characterization of plant growth promoting endophytic bacteria and their effect on tomato(Lycopersicon esculentum) and chilli(Capsicum annuum) seedling growth. Annals of Microbiology,2012,62(2):805-810
    Araujo WL, Maccheroni WJ, Aguilar-Vildoso CI, et al. Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Canadian Journal of Microbiology, 2001,47(3):229-236
    Araujo WL, Marcon J, Maccheroni Jr W, et al. Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants. Applied and Environmental Microbiology,2002, 68(10):4906-4914
    Asis CA, Adachi K. Isolation of endophytic diazotroph Pantoea agglomerans and nondiazotroph Enterobacter asburiae from sweet potato stem in Japan. Letters in Applied Microbiology,2004, 38(1):19-23
    Azevedo JL, Maccheroni Jr W, Jose Odair P, et al. Endophytic microorganisms:s review on insect control and recent advances on tropical plants. Electronic Journal of Biotechnology,2000,3(1): 40-65
    Babu AG, Kim JD, Oh BT. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. Journal of Hazardous Materials,2013,250-251: 477-483
    Baker AJM, Brooks RR. Terrestrial higher plants which hyperaccumulate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery,1989,1:81-126
    Baldani JI, Baldani VLD, Seldin L, et al. Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen fixing bacterium. International Journal of Systematic Bacteriology, 1986,36(1):86-93
    Baldani JI, Caruso L, Baldani VLD, et al. Recent advances in BFN with non-legume plants. Soil Biology and Biochemistry,1997,29:911-922
    Barac T, Taghavi S, Borremans B, et al. Engineered endophytic bacteria improve phytoremediation of water-soluble, volatile, organic pollutants. Nature Biotechnology,2004,22(5):583-588
    Barka EA, Nowak J, Clement C. Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Applied and Environmental Microbiology,2006,72(11):7246-7252
    Bashan Y, Holguin G, Lifshitz R. Isolation and characterization of plant growth-promoting rhizobacteria. In:Glick BR, Thompson JE, eds. Methods in plant molecular biology and biotechnology. US:CRC Press,1993, pp.331-345
    Bashan Y, Holguin G. Azospirillum-plant relationships:environmental and physiological advance (1990-1996). Canadian Journal of Microbiology,1997,43(2):103-121
    Bell CR, Dickie GA, Harvey WLG, et al. Endophytic bacteria in grapevine. Canadian Journal of Microbiology,1995,41:46-53
    Benhamou N, Kloepper J W, Quadt-Hallman A, et al. Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiology,1996, 112(3):919-929
    Berg G, Hallmann J. Control of plant pathogenic fungi with bacterial endophytes. In:Schulz BJE, Boyle CJC, Sieber TN, eds. Microbial Root Endophytes. Berlin:Springer-Verlag,2006, pp.53-69
    Berg G, Krechel A, Ditz M, et al. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiology Ecology,2005,51:215-229
    Bhattacharjee RB, Singh A, Mukhopadhyay SN. Use of nitrogen-fixing bacteria as biofertiliser for non-legumes:prospects and challenges. Applied Microbiology and Biotechnology,2008,80: 199-209
    Bleecker AB, Kende H. Ethylene:a gaseous signal molecule in plant. Annual Review of Cell and Developmental Biology,2000,16:1-18
    Boddey RM, de Oliveira OC, Urquiaga S, et al. Biological nitrogen fixation associated with sugarcane and rice:contributions and prospects for improment. Plant and Soil,1995,174:195-209
    Bordiec S, Paquis S, Lacroix H, et al. Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. Journal of Experimental Botany,2011,62:595-603
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry,1976,72:248-254
    Bulens I, Van de Poel B, Hertog MLATM, et al. Protocol:an updated integrated methodology for analysis of metabolites and enzyme activities of ethylene biosynthesis. Plant Methods,2011,7:17
    Cankar K, Kraigher H, Ravnikar M, et al. Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst). FEMS Microbiology Letters,2005,244(2):341-345
    Carroll GC. The biology of endophytism in plants with particular reference to woody perennials. In: Fokkema NJ, van den Heuvel J, eds. Microbiology of phyllospbere. London:Cambridge University Press.1986, pp.205-222
    Cavalcante JJ, Vargas C, Nogueira EM, et al. Members of the ethylene signalling pathway are regulated in sugarcane during the association with nitrogen-fixing endophytic bacteria. Journal of Experimental Botany,2007,58(3):673-686
    Cavalcante VA, Dobereiner J. A new acid-tolerant nitrogen fixing bacterium associated with sugarcane. Plant and Soil,1988,108(1):23-31
    Chaintreuil C, Giraud E, Prin Y, et al. Photosynthetic bradyrhizobia are natural endophytes of the African wild rice Oryza breviligulata. Applied and Environmental Microbiology,2000,66: 5437.5447
    Chen C, Bauske EM, Musson G, et al. Biological control of Fusarium wilt on cotton by use of endophytic bacteria. Biological Control,1995,5(1):83-91
    ChenChen VM, Tang YQ, Mori K, et al. Distribution of culturable endophytic bacteria in aquatic plants and their potential for bioremediation in polluted waters. Aquatic Biology,2012,15(2):99-110
    Compant S, Clement C, Sessitsch A. Plant growth-promoting bacteria in the rhizo-and endosphere of plants:their role, colonization, mechanisms involved and prospects for utilization. Soil Biology and Biochemistry,2010,42(5):669-678
    Compant S, Duffy B, Nowak J, et al. Use of plant growth-promoting bacteria for biocontrol of plant diseases:principles, mechanisms of action, and future prospects. Applied and Environmental Microbiology,2005a,71:4951-4959
    Compant S, Kaplan H, Sessitsch A, et al. Endophytic colonization of Vitis vinifera L. by Burkholderia phytphytofirmans strain PsJN:from the rhizosphere to inflorescence tissues. FEMS Microbiology Ecology,2008,63(1):84-93
    Compant S, Reiter B, Sessitsch A, et al. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Applied and Environmental Microbiology,2005b,71:1685-1693
    Conn VM, Franco CMM. Analysis of the endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA clones. Applied and Environmental Microbiology,2004,70(3):1787-1794
    Conn VM, Walker AR, Franco CM. Endophytic actinobacteria induce defense pathways in Arabidopsis thaliana. Molecular Plant-Microbe Interactions,2008,21(2):208-218
    Cooley MB, Miller WG, Mandrell RE. Colonization of Arabidopsis thaliana with Salmonella enterica and enterohemorrhagic Escherichia coli O157:H7 and competition by Enterobacter asburiae. Applied and Environmental Microbiology,2003,69(8):4915-4926
    Coombs JT, Franco CMM. Visualization of an endophytic Streptomyces species in wheat seed. Applied and Environmental Microbiology,2003,69(7):4260-4262
    Cottyn B, Debode J, Regalado E, et al. Phenotypic and genetic diversity of rice seed-associated bacteria and their role in pathogenicity and biological control. Journal of Applied Microbiology,2009, 107(3):885-897
    Dalton DA, Kramer S, Azios N, et al. Endophytic nitrogen fixation in dune grasses(Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiology Ecology,2004,49(3):469-479
    Darbyshire JF, Greaves MP. Bacteria and protozoa in the rhizosphere. Pesticide Science,1973,4(3): 349-360
    De Boer SH, Copeman RJ. Endophytic bacterial flora in Solanum tuberosum and its significance in bacterial ring rot diagnosis. Canadian Journal of Plant Science,1974,54:115-122
    de Melo Pereira GV, Magalhaes KT, Lorenzetii ER., et al. A multiphasic approach for the identification of endophytic bacterial in strawberry fruit and their potential for plant growth promotion. Microbial Ecology,2012,63:405-417
    Egener T, Hurek T, Reinhold-Hurek B. Endophytic expression of nif gene of Azoarcus sp. strain BH72 in rice roots. Molecular Plant-Microbe Interactions,1999,12:813-819
    Elbeltagy A, Nishioka K, Sato T, et al. Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Applied and Environmental Microbiology,2001, 67(11):5285-5293
    Elvira-Recuenco M, van Vuurde JW. Natural incidence of endophytic bacteria in pea cultivars under field condition. Canadian Journal of Microbiology,2000,46(11):1036-1041
    Engelhard M, Hurek T, Reinhold-Hurek B. Preferential occurrence of diazotrophic endophytes, Azoarcus spp., in wild rice species and land races of Oryza sativa in comparison with modern races. Environmental Microbiology,2000,2(2):131-141
    Faria DC, Dias ACF, Melo IS, et al. Endophytic bacteria isolated from orchid and their potential to promote plant growth. World Journal of Microbiology and Biotechnology,2013,29(2):217-221
    Feng H. Li YC, Liu QG. Endophytic bacterial communities in tomato plants with differential resistance to Ralstonia solanacearum. African Journal of Microbiology Research,2013,7(15):1311-1318
    Feng Y, Shen D, Dong X, et al. In vitro symplasmata formation in the rice diazotrophic endophyte Pantoea agglomerans YS19. Plant and Soil,2003,255:435-444
    Freitas H, Prasad MNV, Pratas J, et al. Analysis of serpentinophytes from north-east of Portugal for trace metal accumulation-relevance to the management of mine environment. Chemosphere,2004, 54(11):1625-1642
    Gagne S, Richard C, Rousseau H, et al. Xylem-residing bacteria in alfalfa roots. Canadian Journal of Microbiology,1987,33(11):996-1000
    Garbeva P, van Overbeek LS, van Vuurde JWL, et al. Analysis of endophytic bacterial communities of potato by plating and denaturing gradient gel electrophoresis (DGGE) of 16S rDNA based PCR fragments. Microbial Ecology,2001,41(4):369-383
    Glazebrook J. Genes controlling expression of defense responses in Arabidopsis-2001 status. Current Opinion in Plant Biology,2001,4:301-308
    Glick BR, Penrose DM, Li JP. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. Journal of Theoretical Biology,1998,190(1):63-68
    Glick BR, Todorovic B, Czarny J, et al. Promotion of plant growth by bacterial ACC deaminase. Critical Reviews in Plant Sciences,2007,26(5-6):227-242
    Glick BR. Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiology Letters,2005,25(1):1-7
    Gray EJ, Smith DL. Intracellular and extracellular PGPR:commonalities and distinctions in the plant-bacterium signaling processes. Soil Biology and Biochemistry,2005,37(3):395-412
    Guo X, van Iersel MW, Chen J, et al. Evidence of association of salmonellae with tomato plants grown hydroponically in inoculated nutrient solution. Applied and Environmental Microbiology,2002, 68(7):3639-3643
    Gyaneshwar P, James EK, Mathan N, et al. Endophytic colonization of rice by a diazotrophic strain of Serratia marcescens. Journal of Bacteriology,2001,183(8):2634-2645
    Hallmann J, Quadt-Hallmann A, Mahaffee WF, et al. Bacterial endophytes in agricultural crops. Canadian Journal of Microbiology,1997,43(10):895-914
    Hallmann J. Plant interactions with endophytic bacteria. In:Jeger MJ, Spence NJ, eds. Biotic Interactions in Plant-Pathogen Associations. Wallingford, United Kingdom:CABI Publishing, 2001, pp.87-119
    Hardoim PR, Hardoim CCP, van Overbeek LS, et al. Dynamics of seed-borne rice endophytes on early plant growth stages. PLOS ONE,2012,7:e30438
    Hardoim PR, van Overbeek LS, Elsas JD. Properties of bacterial endophytes and their proposed role in plant growth. Trends in Microbiology,2008,16(10):463-471
    Harish S, Kavino M, Kumar N, et al. Differential expression of pathogenesis-related proteins and defense enzymes in banana:interaction between endophytic bacteria, Banana bunchy top virus and Pentalonia nigronervosa. Biocontrol Science and Technology,2009a,19(8):843-857
    Harish S, Kavino M, Kumar N, et al. Induction of defense-related proteins by mixtures of plant growth promoting endophytic bacteria against Banana bunchy top virus. Biological Control,2009b,51(1): 16-25
    Herman MAB, Davidson JK, Smart CD. Induction of plant defense gene expression by plant activators and Pseudomonas syringae pv. tomato in greenhouse-grown tomatoes. Phytopathology,2008, 98(11):1226-1232
    Hinton DM, Bacon CW. Enterobacter cloacae is an endophytic symbiont of corn. Mycopathologia, 1995,129(2):117-125
    Ho YN, Hsieh JL, Huang CC. Construction of a plant-microbe phytoremediation system:combination of vetiver grass with a functional endophytic bacterium, Achromobacter xylosoxidans F3B, for aromatic pollutants removal. Bioresource Technology,2013,145:43-47
    Hoffland E, Hakulinen J, van Pelt JA. Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology,1996,86(7):757-762
    Hoffland E, Pieterse CMJ, Bik L, et al. Induced systemic resistance in radish is not associated with accumulation of pathogenesis-related proteins. Physiological and molecular plant pathology.1995, 46(4):309-320
    Hollants J, Leroux O, Leliaert F, et al. Who is in there? Exploration of endophytic bacteria within the siphonous green seaweed Bryopsis (Bryopsidales, Chlorophyta). PLOS ONE,2011,6(10):e26458
    Holt JG. Bergey's Manual of Determinative Bacteriology 9th ed. Holt JG, Kreig NR, Sneath PHA, Staley JT, Williams ST, eds. Williams and Wilkins, Baltimore, MD. USA.1994.
    Hung PQ, Kumar SM, Govindsamy V, et al. Isolation and characterization of endophytic bacteria from wild and cultivated soybean varieties. Biology and Fertility of Soils,2007,44(1):155-162
    Hurek T, Reinhold-Hurek B, van Montagu M, et al. Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses. Journal of Bacteriology,1994,176(7):1913-1923
    Hurek T, Reinhold-Hurek B. Azoarcus sp. strain BH72 as a model for nitrogen-fixing grass endophytes. Journal of Biotechnology,2003,106(2-3):169-178
    Iniguez AL, Dong Y, Triplett EW. Nitrogen fixation in wheat provided by Klebsiella pneumonia 342. Molecular Plant-Microbe Interactions,2004,17(10):1078-1085
    Islam M, Morgan J, Doyle M, et al. Fate of Salmonella enterica serovar Typhimurium on carrots and radishes grown in fields treated with contaminated manure composts or irrigation water. Applied and Environmental Microbiology,2004,70(4):2497-2502
    Jacobs MJ, Bugbee WM, Gabrielson DA. Enumeration, location, and characterization of endophytic bacteria within sugar beet roots. Canadian Journal of Botany,1985,63(7):1262-1265
    Jacobson CB, Pasternak JJ, Glick BR. Partial purification and characterization of 1-aminocyclopropane-l-carboxylate deaminase from the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Canadian Journal of Microbiology,1994,40(12):1019-1025
    James EK, Gyaneshwar P, Mathan N, et al. Infection and colonization of rice seedlings by the plant growth-promoting bacterium Herbaspirillum seropedicae Z61. Molecular Plant-Microbe Interactions,2002,15(9):894-906
    Jimenez-Salgado T, Fuentes-Ramirez LE, Tapia-Hernandez A, et al. Coffea Arabica L., a new host plant for Acetobacter diazotrophicus, and isolation of other nitrogen-fixing acetobacteria. Applied and Environmental Microbiology,1997,63(9):3676-3683
    Jones, D.L., and Darrah, P.R. Role of root derived organic acids in the mobilization of nutrients from the rhizosphere. Plant and Soil,1994,166:247-257
    Kaga, H., Mano, H., Tanaka, F., et al. Rice seeds as sources of endophytic bacteria. Microbes and Environments,2009,24(2):154-162
    Kamei I, Yoshida T, Enami D, et al. Coexisting Curtobacterium bacterium promotes growth of white-rot fungus Stereum sp. Current Microbiology,2012,64(2):173-178
    Khan, MR, Khan, MW. Effects of ammonia and root-knot nematode on tomato. Agriculture, Ecosystems and Environment,1995,53(1):71-81
    Kim CH, Han SH, Kim KY, et al. Cloning and expression of pyrroloquinoline quinone (PQQ) genes from a phosphate-solubilizing bacterium Enterobacter intermedium. Current Microbiology,2003, 47(6):457-461
    Kloepper JW, Rodriguez-Kabana R, Zehnder GW, et al. Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australasian Plant Pathology,1999,28(1):21-26
    Kloepper JW, Ryu CM, Zhang S. Induced systematic resistance and promotion of plant growth by Bacillus spp. Phytopathology,2004,94(11):1259-1266
    Kloepper JW, Schipper B, Bakker PAHM. Proposed elimination of the term endorhizosphere. Phytopathology,1992a,82(7):726-727
    Kloepper JW, Tuzun S, Kuc JA. Proposed definitions related to induced disease resistance. Biocontrol Science and Technology,1992b,2(4):349-351
    Kuklinsky-Sobral J, Araujo WL, Mendes R, et al. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environmental Microbiology,2004,6(12): 1244-1251
    Kuklinsky-Sobral J, Araujo WL, Mendes R, et al. Isolation and characterization of endophytic bacteria from soybean (Glycine max) grown in soil treated with glyphosate herbicide. Plant and Soil,2005, 273:91-99
    Lamb TG, Tonkyn DW, Kluepfel DA. Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Canadian Journal of Botany,1996,42(11):1112-1120
    Lambrecht, M., Okon, Y., Vande Broek, A., et al. Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends in Microbiology,2000,8:298-300
    Lanna-Filho R, Souza RM, Magalhaes MM, et al. Induced defense responses in tomato against bacterial spot bj proteins synthesized by endophytic bacteria. Tropical Plant Pathology,2013,38(4): 295-302
    Leifert C, Morris CE, Waites WM. Ecology of microbial saprophytes and pathogens in tissue culture and field-grown plants:reasons for contamination problems in vitro. Critical Reviews in Plant Sciences,1994,13(2):139-183
    Li J, Ovakim DH, Charles TC, et al. An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Current Microbiology,2000,41(2):101-105
    Lima E, Boddey RM, Dobereiner J. Quantification of biological nitrogen fixation associated with sugar cane using a 15N aided nitrogen balance, Soil Biology and Biochemistry,1987,19:165-170
    Loaces I, Ferrando L, Scavino AF. Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microbial Ecology,2011,61(3):606-618
    Lodewyckx C, Vangronsveld J, Porteous F, et al. Endophytic bacteria and their potential applications. Critical Reviews in Plant Sciences,2002,21:583-606
    Logan NA, Berkeley R.CW. Identification of Bacillus strains using the API system. Journal of General Microbiology,1984,130:1871-1882
    Lopez-Lopez A, Rogel MA, Ormeno-Orrillo E, et al. Phaseolus vulgaris seed-brone endophytic community with novel bacterial species such as Rhizobium endophyticum sp. nov. Systematic and Applied Microbiology,2010,33(6):322-327
    Madhaiyan M, Poonguzhali S, Lee JS, et al. Enterobacter arachidis sp. nov., a plant-growth-promoting diazotrophic bacterium isolated from rhizosphere soil of groundnut. International Journal of Systematic and Evolutionary Microbiology,2010,60(7):1559-1564
    Mahaffee WF, Kloepper JW. Temporal changes in the bacterial communities of soil, rhizosphere, and endorhiza associated with field-grown cucumber (Cucumis sativus L.). Microbial Ecology,1997, 34(3):210-223
    Mano H, Tanaka F, Watanabe A, et al. Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microbes and Environments,2006, 21(2):86-100
    Mano, H., Tanaka, F., Nakamura, C. Culturable endophytic bacterial flora of the maturing leaves and roots of rice plants(Oryza sativa) cultivated in a paddy field. Microbes and Environments,2007, 22(2):175-185
    Mari M, Gulzzardi M, Pratella GC. Biological control of gray mold in pears by antagonistic bacteria. Biological Control,1996,7(1):30-37
    Martinez L, Caballero J, Orozco J, et al. Diazotrophic bacteria associated with banana(Musa spp.). Plant and Soil,2003,257(1):35-47
    Mariutto M, Duby F, Adam A, et al. The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms. BMC Plant Biology,2011, 11:29
    Mastretta C, Taghavi S, van der Lelie D, et al. Endophytic bacteria from seeds of Nicotiana tabacum can reduce cadmium phytotoxicity. International Journal of Phytoremediation,2009,11(3): 251-267
    Maurhofer M, Hase C, Meuwly P, et al. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0:influence of the gacA gene and of gyoverdine production. Phytopathology,1994,84(2):139-146
    Mclnroy JA, Kloepper JW. Population dynamics of endophytic bacteria in field-grown sweet corn and cotton. Canadian Journal of Microbiology,1995a,41(10):895-901
    Mclnroy JA, Kloepper JW. Studies on indigenous endophytic bacteria of sweet corn and cotton. In: O'Gara F, Dowling DN, Boesten B, eds. Molecular Ecology of Rhizosphere Microorganisms. Biotechnology and the Release of GMOs. VCH, Verlagesellshaft MBH, Germany,1994, pp.19-28
    Mclnroy JA, Kloepper JW. Survey of indigenous bacterial endophytes from cotton and sweet corn. Plant and Soil,1995b,173(2):337-342
    Miche L, Balandreau J. Effects of rice seed surface sterilization with hypochlorite on inoculated Burkholderia vietnamiensis. Applied and Environmental Microbiology,2001,67(7):3046-3052
    Misaghi IJ, Donndelinger CR. Endophytic bacteria in symptom-free cotton plants. Phytopathology, 1990,80(9):808-811
    Miyamoto T, Kawahara M, Minamisawa K. Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Applied and Environmental Microbiology,2004,70(11):6580-6586
    Montanez A, Blanco AR, Barlocco C, et al. Characterization of cultivable putative endophytic plant growth promoting bacteria associated with maize cultivars (Zea mays L.) and their inoculation effects in vitro. Applied Soil Ecology,2012,58:21-28
    Monteiro RA, Balsanelli E, Wassem R, et al. Herbaspirillum-plant interactions:microscopical, histological and molecular aspects. Plant and Soil,2012,356(1-2):175-196
    Moore FP, Barac T, Borrernans B, et al. Endophytic bacterial diversity in poplar trees growing on a BTEX-contaminated site:the characterization of isolates with potential to enhance phytoremediation. Systematic and Applied Microbiology,2006,29(7):539-556
    Mundt JO, Hinkle NF. Bacteria within ovules and seeds. Applied and Environmental Microbiology, 1976,32(5):694-698
    Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Analytic Chimica Acta,1962,27:31-36
    Nautiyal CS. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters,1999,170(1):265-270
    Nejad P, Johnson F. Endophytic bacteria induce growth promotion and wilt disease suppression in oilseed rape and tomato. Biological Control,2000,18(3):208-215
    Nguyen MT, Ranamukhaarachchi SL, Hannaway DB. Efficacy of antagonist strains of Bacillus megaterium, Enterobacter cloacae, Pichia guilliermondii and Candida ethanolica against bacterial wilt disease of tomato. Journal of Phytology,2011,3(2):01-10
    Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews,2000,64(3):548-572
    Niu DD, Liu HX, Jiang CH. et al. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces systemic resistance in Arabidopsis thaliana by simultaneously activating salicylate-and jasmonate/ethylene-dependent signaling pathways. Moulecular Plant-Microbe Interanctions,2011, 24:533-542
    Niu DD, Wang CJ, Guo YH, et al. The plant growth-promoting rhizobacterium Bacillus cereus AR156 induces resistance in tomato with induction and priming of defence response. Biocontrol Science and Technology,2012,22(9):991-1004
    Okunishi S, Sako K, Mano H, et al. Bacterial flora of endophytes in the maturing seed of cultivated rice (Oryza sativa). Microbes and Environments,2005,20(3):168-177
    Old KM, and Nicolson TH. The root cortex as part of a microbial continuum. In:Loutit MV, and Miles JAR, eds. Microbial Ecology. Berlin, Germany:Springer-Verlag,1978, pp.291-294
    Olivares FL, Baldani VLD, Reis VM, et al. Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biology and Fertility of Soils,1996, 21(3):197-200
    Oliveira MNV, Santos TMA, Vale HMM, et al. Endophytic microbial diversity in coffee cherries of Coffea arabica from southeastern Brazil. Canadian Journal of Microbiology,2013,59(4):221-230
    Ongena M, Daayf F, Jacques P, et al. Systemic induction of phytoalexins in cucumber in response to treatments with fluorescent pseudomonads. Plant Pathology,2000,49:523-530
    Ongena M, Duby F, Jourdan E, et al. Bacillus subtilis M4 decreases plant susceptibility towards fungal pathogens by increasing host resistance associated with differential gene expression. Applied Microbiology and Biotechnology,2005,67:692-698
    Ongena M, Duby F, Rossignol F, et al. Stimulation of the lipoxygenase pathway is associated with systemic resistance induced in bean by a nonpathogenic Pseudomonas strain. Molecular Plant-Microbe Interactions,2004,17:1009-1018
    Onofre-Lemus J, Hernandez-Lucas I, Girard L, et al. ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Applied and Environmental Microbiology,2009,75(20):6581-6590
    Park KS, Kloepper JW. Activation of PR-1a promoter by rhizobacteria that induce systemic resistance in tobacco against Pseudomonas syringae pv. tabaci. Biological Control,2000,18:2-9
    Patten CL, Glick BR. Regulation of indoleacetic acid production in Pseudomonas putida GR12-2 by tryptophan and the stationary-phase sigma factor RpoS. Canadian Journal of Microbiology,2002, 48:635-642
    Peiffer M, Tooker JF, Luthe DS, et al. Plants on early alert:glandular trichomes as sensors for insect herbivores. New Phytologist,2009,184(3):644-656
    Penrose DM, Glick BR. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum,2003,118(1):10-15
    Perez E, Sulbaran M, Ball MM, et al. Isolation and characterization of mineral phosphate-solubilizing bacteria naturally colonizing a limonitic crust in the south-eastern Venezuelan region. Soil Biology and Biochemistry,2007,39(11):2905-2914
    Petrini O. Fungal endophytes of tree leaves. In:Andrews JH, Hirano SS, eds. Microbial Ecology of Leaves. New York:Springer-Verlag.1991, pp.179-197
    Phillips DA, Martinez-Romero E, Yang GP, et al. Release of nitrogen:a key trait in selecting bacterial endophytes for agronomically useful nitrogen fixation. In:Ladha JK, Reddy PM, eds. The quest for nitrogen fixation in rice. Manila, The Philippines:International Rice Research Institute,2000, pp. 205-217
    Pieterse CMJ, Van Wees SCM, Hoffland E, et al. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell,1996,8(8):1225-1237
    Pieterse CMJ, van Wees SCM, van Pelt JA, et al. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. The Plant Cell,1998,10(9):1571-1580
    Pimentel JP, Olivares F, Pitard RM, et al. Dinitrogen fixation and infection of grass leaves by Pseudomonas rubrisubalbicans and Herbaspirillum seropedicae. Plant and Soil,1991,137(1): 61-65
    Pirttila AM, Joensuu P, Pospiech H, et al. Bud endophytes of Scots pine produce adenine derivatives and other compounds that affect morphology and mitigate browning of callus cultures. Physiologia Plantarum,2004,121(2):305-312
    Prakamhang J, Minamisawa K, Teamtaisong K, et al. The communities of endophytic diazotrophic bacteria in cultivated rice (Oryza sativa L.). Applied Soil Ecology,2009,42(2):141-149
    Prinsen E, Costacurta A, Michiels K, et al. Azospirillum brasilense indole-3-acetic acid biosynthesis: evidence for a non-tryptophan dependent pathway. Molecular Plant-Microbe Interactions,1993, 6(5):609-615
    Rai R, Dash PK, Prasanna BM, et al. Endophytic bacterial flora in the stem tissue of a tropical maize (Zea mays L.) genotype:isolation, identification and enumeration. Would Journal of Microbiology and Biotechnology,2007,23(6):853-858
    Rajkumar M, Ae N, Freitas H. Endophytic bacteria and their potential to enhance heavy metal phytoextraction. Chemosphere,2009,77(2):153-160
    Ramesh R, Joshi AA, Ghanekar, MP. Pseudomonads:major antagonistic endophytic bacteria to suppress bacterial wilt pathogen, Ralstonia solanacearum in the eggplant(Solanum melongena L.). World Journal of Microbiology and Biotechnology,2009,25(1):47-55
    Ramesh R, Phadke GS. Rhizosphere and endophytic bacteria for the suppression of eggplant wilt caused by Ralstonia solanacearum. Crop Protection,2012,37:35-41
    Ramond JB, Tshabuse F, Bopda CW, et al. Evidence of variability in the structure and recruitment of rhizospheric and endophytic bacterial communities associated with arable sweet sorghum (Sorghum bicolor (L.) Moench). Plant and Soil,2013,372(1-2):265-278
    Rangjaroen C, Rerkasem B, Teaumroong N, et al. Comparative study of endophytic and endophytic diazotrophic bacteria communities across rice landraces grown in the highlands of northern Thailand. Archives of Microbiology,2014,196:35-49
    Rashid S, Charles TC, Glick BR. Isolation and characterization of new plant growth-promoting bacterial endophytes. Applied Soil Ecology,2012,61:217-224
    Reinhold-Hurek B, Hurek T, Gillis M, et al. Azoarcus gen. nov., nitrogen-fixing proteobacteria associated with roots of Kallar grass (Leptochloa fusca (L.) Kunth), and description of two species, Azoarcus indigens sp. nov. and Azoarcus communis sp. nov. International Journal of Systematic and Evolutionary Mircobiology,1993,43(3):574-584
    Reinhold-Hurek B, Hurek T. Life in grasses:diazotrophic endophytes. Trends in Microbiology,1998, 6(4):139-144
    Reinhold-Hurek B, Hurek T. Living inside plants:bacterial endophytes. Current Opinion in Plant Biology,2011,14(4):435-443
    Reiter B, Biirgmann H, Burg K, et al. Endophytic nifH gene diversity in African sweet potato. Canadian Journal of Microbiology,2003,49(9):549-555
    Ren JH, Li H, Wang YF, et al. Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. Biological Control,2013,67(3):421-430
    Ribeiro CM, Cardoso EJBN. Isolation, selection and characterization of root-associated growth promoting bacteria in Brazil Pine(Araucaria angustifolia). Microbiological Research,2012, 167(2):69-78
    Roger PA, Ladha JK. Biological N2 fixation in wetland rice fields:estimation and contribution to nitrogen balance. Plant Soil,1992,141:41-55
    Roncato-Maccari LDB, Ramos HJO, Pedrosa FO, et al. Endophytic Herbaspirillum seropedicae expresses nif genes in gramineous plants. FEMS Microgiology Ecology,2003,45(1):39-47
    Rosenblueth M, Martinez L, Silva J, et al. Klebsiella variicola, a novel species with clinical and plant-associated isolates. Systematic Applied Microbiology,2004,27(1):27-35
    Rosenblueth M, Martinez-Rometo E. Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions,2006,19(8):827-837
    Ruiza D, Agaras B, de Werrab P, et al. Characterization and screening of plant probiotic traits of bacteria isolated from rice seeds cultivated in Argentina. The Journal of Microbiology,2011,49(6): 902-912
    Ryan RP, Germaine K, Franks A, et al. Bacterial endophytes:recent developments and applications. FEMS Microbiology Letters,2008,278:1-9
    Ryu CM, Farag MA, Hu CH, et al. Bacterial volatiles promote growth in Arabidopsis. Proceedings of the Natinal Academy of Science USA,2003,100:4927-2932
    Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution,1987,4:406-425
    Samish Z, Etinger-Tulczynska R, Bick M. The microflora within the tissue of fruits and vegetables. Journal of Food Science,1963,28(3):259-266
    Sandhiya GS, Sugitha TCK, Balachandar D, et al. Endophytic colonization and in planta nitrogen fixation by a diazotrophic Serratia sp. in rice. Indian Journal of Experimental Biology,2005,43: 802-807
    Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Analytical Biochemistry,1987,160(1):47-56
    Selvakumar G, Kundu S, Joshi P, et al. Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World Journal of Microbiology and Biotechnology,2008,24:955-960
    Seo DJ, Nguyen DMC, Song YS, et al. Induction of defense response against Rhizoctonia solani in cucumber plants by endophytic bacterium Bacillus thuringiensis GS1. Journal of Microbiology and Biotechnology,2012,22(3):407-415
    Sessitsch A, Coenye T, Sturz AV, et al. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant beneficial properties. International Journal of Systematic and Evolutionary Microbiology,2005,55(3):1187-1192
    Sessitsch A, Hardoim P, Doring J, et al. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Molecular Plant-Microbe Interactions, 2012,25(1):28-36
    Sessitsch A, Reiter B, Berg G. Endophytic bacterial communities of field-grown potato plants and their plant-growth-promoting and anatagonistic abilities. Canadian Journal of Microbiology,2004,50(4): 239-249
    Shah S, Li J, Moffatt BA, et al. ACC deaminase genes from plant growth promoting bacteria. In:Ogoshi A, Kobayashi K, Homma Y, et al, eds. Plant growth-promoting rhizobacteria:present status and future prospects. Paris:OECD,1997, pp.320-324
    Shah S, Li J, Moffatt BA, et al. Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Canadian Journal of Microbiology,1998,44(9): 833-843
    Sheng XF, Xia JJ, Jiang CY, et al. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environmental Pollution,2008,156(3):1164-1170
    Singh RK, Mishra RPN, Jaiswal HK, et al. Isolation and identification of natural endophytic rhizobia from rice (Oryza sativa L.) through rDNA PCR-RFLP and sequence analysis. Current Microbiology,2006,52(5):345-349
    Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews,2007,31(4):425-448
    Stein T, Hayen-Schneg N, Ferdrink I. Contribution of BNF by Azoarcus spp. BH 72 in Sorghum vulgare. Soil Biology and Biochemistry,1997,29(5):969-971
    Stierle A, Strobel G, StierleD. Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science,1993,260(5105):214-216
    Stoltzfus JR, So R, Malarvithi PP, et al. Isolation of endophytic bacteria from rice and assessment of their potential for supplying rice with biologically fixed nitrogen. Plant and Soil,1997,194(1-2): 25-36
    Stone JK, Bacon CW, While JF Jr. An overview of endophytic microbes:endophytism defined. In: Bacon CW, White JF Jr. eds. Microbial Endophytes. New York:Marcel Dekker,2000, pp.3-29
    Sturz AV, Christie BR, Matheson BG, et al. Biodiversity of endophytic bacteria which colonize red clover nodules, roots, stems and foliage and their influence on host growth. Biology and Fertility of Soils,1997,25(1):13-19
    Sturz AV, Christie BR, Matheson BG. Associations of bacterial endophyte populations from red clover and potato crops with potential for beneficial allelopathy. Canadian Journal of Microbiology,1998, 44(2):162-167
    Sturz AV, Christie BR, Nowak J. Bacterial endophytes:protentail role in developing sustainable systems of crop production. Critical Reviews in Plant Sciences,2000,19(1):1-30
    Sturz AV, Kimpinski J. Endoroot bacteria derived from marigolds (Tagetes spp.) can decrease soil population densities of root-lesion nematodes in the potato root zone. Plant and Soil,2004, 262(1-2):241-249
    Surette MA, Sturz AV, Lada RR, et al. Bacterial endophytes in processing carrots (Daucus carota L. var. sativus):their localization, population density, biodiversity and their effects on plant growth. Plant and Soil,2003,253(2):381-390
    Sziderics AH, Rasche F, Trognitz F, et al. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants(Capsicum annuum L.). Canadian Journal of Microbiology,2007,53(11):1195-1202
    Takahashi H, Sekiguchi H, Ito T, et al. Microbial community profiles in intercellular fluid of rice. Journal of General Plant Pathology,2011,77(2):121-131
    Tan SY, Jiang Y, Song S, et al. Two Bacillus amyloliquefaciens strains isolated using the competitive tomato root enrichment method and their effects on suppressing Ralstonia solanaceatum and promoting tomato plant growth. Crop Protection,2013,43:134-140
    Tan ZQ, Men R, Zhang RY, et al. First report of Herbaspirillum rubrisubalbicans causing mottled stripe disease on sugarcane in China. Plant Disease,2010,94(3):379
    Tanprasert P, Reed BM. Detection and identification of bacterial contaminants from strawberry runner explants. In Vitro Cellular and Developmental Biology-Plant,1997,33(3):221-226
    Triplett EW. Diazotrophic endophytes:progress and prospects for nitrogen fixation in monocots. Plant and Soil,1996,186(1):29-38
    Trotel-Aziz P, Couderchet M, Biagianti S, et al. Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environmental and Experimental Botany,2008,64:21-32
    Tsuda K, Kosaka Y, Tsuge S, et al. Evaluation of the endophyte Enterobacter cloacae SM10 isolated from spinach roots for biological control against Fusarium wilt of spinach. Journal of Gerneral Plant Pathology,2001,67(1):78-84
    Ulrich K, Ulrich A, Ewald D. Diversity of endophytic bacterial communities in poplar grown under field conditions. FEMS Microbiology Ecology,2008,63(2):169-180
    Van Aken B, Peres C, Doty S, et al. Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-ultilising bacterium isolated from poplar trees(Populus deltoids X nigra DN34). International Journal of Systematic and Evolutionary Microbiology,2004, 54:1191-1196
    Van Buren AM, Andre C, Ishimru CA. Biological control of bacterial ring rot pathogen by endophytic bacteria isolated from potato. Phytopathology,1993,83:1406
    van Oevelen S, de Wachter R, Robbrecht E, et al. Induction of a crippled phenotype in Psychotria (Rubiaceae) upon loss of the bacterial endophyte. Bulgarian Journal of Plant Physiology (special issue),2003,242-247.
    Van Peer R, Punte HLM, de Weger LA, et al. Characterization of root surface and endorhizosphere pseudomonads in relation to their colonization of roots. Applied Environmental Microbiology, 1990,56(8):2462-2470
    Vanitha SC, Umesha S. Pseudomonas fluorescens mediated systemic resistance in tomato is driven through an elevated synthesis of defense enzymes. Biologia Plantarum,2011,55(2):317-322
    Vauterin L, Vauterin P. Computer-aided objective comparison of electrophoresis patterns for grouping and identification of microorganisms. European Microbiology,1992,1:37-41
    Verma SC, Ladha JK, Tripathi AK. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. Journal of Biotechnology,2001,91(2-3):127-141
    Vidhyasekaran P. Fungal pathogenesis in plants and crops. New York:Marcel Dekker,1997, pp. 380-381
    Wang H, Wen K, Zhao X, et al. The inhibitory activity of endophytic Bacillus sp. strain CHM1 against plant pathogenic fungi and its plant growth-promoting effect. Crop Protection,2009,28:634-639
    Wang L, Yang L, Yang F, et al. Involvements of H2O2 and metallothionein in NO-mediated tomato tolerance to copper toxicity. Journal of Plant Physiology,2010,167(15):1298-1306
    Wang SL, Wang WT, Jin ZG, et al. Screening and diversity of plant growth promoting endophytic bacteria from peanut. African Journal of Microbiology Research,2013,7(10):875-884
    Weber OB, Baldani VLD, Teixeira KRS, et al. Isolation and characterization of diazotrophic bacteria from banana and pineapple plants. Plant and Soil,1999,210(1):103-113
    Weisburg WG, Barns SM, Pelletier DA, et al.16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology,1991,173(2):697-703
    West ER, Cother EJ, Steel CC, et al. The characterization and diversity of bacterial endophytes of grapevine. Canadian Journal of Microbiology,2010,56(3):209-216
    Wilson D. Endophyte-the evolution of a term, and clarification of its use and definition. Oikos,1995, 73:274-276
    Xu ZG. Plant pathology experiment guidance. Beijing:China Agricultural Press,1999, pp.126-134
    Yanni YG, Rizk RY, Corich V, et al. Natural endophytic association between Rhizobium leguminosarum bv. Trifolii and rice roots and assessment of its potential to promote rice growth. Plant and Soil, 1997,194(1-2):99-114
    Yasuda M, Isawa T, Shinozaki S, et al. Effects of colonization of a bacterial endophyte, Azospirillum sp. B510, on disease resistance in rice, Bioscience Biotechnology and Biochemistry,2009,73(12): 2595-2599
    Zhang Y, He L, Chen Z, et al. Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. Journal of Hazardous Materials,2011,186(2-3):1720-1725
    Zhu B, Lou MM, Xie GL, et al. Enterobacter mori sp. nov., associated with bacterial wilt on Morus alba L. International Journal of Systematic and Evolutionary Microbiology,2011,61(11): 2769-2774
    Zinniel DK, Lambrecht P, Harris NB, et al. Isolation and characterization of endophytic colonizing bacteria from agronomic crops and prairie plants. Applied and Environmental Microbiology,2002, 68(5):2198-2208
    Zucker M. Induction of phenylalanine deaminase by light and its relation to chlorogenic acid synthesis in potato tuber tissue. Plant Physiology,1965,40:779-784
    曹建康,姜微波,赵玉梅.果蔬采后生理生化实验指导.北京:中国轻工业出版社,2007,pp.105-107
    车建美,刘波,张彦,等.几种禾本科牧草内生细菌的分布特性.草业学报,2010,19(3):124-131
    陈兰,张小平,Lindstrom K药用植物内生芽孢杆菌的多样性和系统发育研究.微生物学报,2008,48(4):432-438
    陈磊,汪峰,张祥志,等.转基因抗虫棉对茎部内生细菌多样性的影响.土壤,2011,43(6):961-967
    陈卫良,徐平,龚鸿飞,等.(?)nterobacter cloacae B8x在水稻叶部定殖及防治水稻白叶枯病的研究.农业生物技术学报,1994,2(2):61-66
    傅晓方,韩红江,郝勇锋,等.玉米内生固氮菌的分离鉴定及对小麦幼苗的促生效应.西北农业学报,2012,21(1):66-71
    何红,蔡学清,洪永聪,等.辣椒内生细菌的分离及拮抗菌的筛选.中国生物防治,2002,18(4):171-175
    何红.辣椒内生枯草芽孢杆菌(Bacillus subtilis)防病促生作用的研究:[博士学位论文].福州:福建农林大学,2003年.
    江木兰.油菜内生枯草芽孢杆菌BY-2的定殖生态、抗菌机制和防治菌核病的研究:[博士学位论文].武汉:华中农业大学,2007年.
    孔庆科,丁爱云.内生细菌作为生防因子的研究进展.山东农业大学学报(自然科学版),2001,32(2):256-260
    蓝江林,刘波,朱育菁,等.水葫芦内生细菌脂肪酸生物标记特性研究.生态毒理学报,2010,5(2):242-254
    李翠丹.一氧化氮和乙烯在水杨酸诱导采后番茄果实抗病反应中的作用:[硕士毕业论文].北京:中国农业大学,2012年
    李佳,王中康,谢攀,等.长春花内生细菌多样性与柑橘黄龙病菌的相关性.微生物学报,2012,52:489-497
    李振东,东祁连山高寒草地优势植物内生细菌多样性研究:[博士学位论文].兰州:甘肃农业大学,2010年
    廖春雨.内生固氮菌HMLR8和HMLR13对水稻的促生效应的研究:[硕十学位论文].武汉:华中农业大学,2010年
    刘菲菲,李赤,刘勇勤,等.香蕉植株内生细菌群落的PCR-DGGE分析.果树学报,2012,29(2):81-86
    慕立义.植物化学保护研究方法.北京:中国农业出版社,1994,pp.56-58
    秦宝军,罗琼,高淼,等.小麦内生固氮菌分离及其ACC脱氨酶测定.中国农业科学,2012,45(6):1066-1073
    丘元盛,周淑萍,莫小真,等.稻根联合固氮细菌的研究Ⅰ菌种的分离和鉴定.微生物学报,1981,21(4):468-472
    邱晓,裴炎,王瑜宁,等.棉花体内的假单胞菌及其对棉苗根病的防效.植物保护学报,1990,17(4):303-306
    邱思鑫.防病、促生植物内生芽孢杆菌的研究:[博士学位论文].福州:福建农林大学,2004年
    沈德龙,冯永君,宋未.内生成团泛菌YS19对水稻乳熟期光合产物在旗叶、穗分配中的影响.自然科学进展,2002,12(8):863-865
    石晶盈,陈维信,刘爱媛.植物内生菌及其防治植物病害的研究进展.生态学报,2006,26(7):2395-2401
    石晶盈,刘爱媛,冯淑杰,等.番木瓜内生细菌MG-Y2的鉴定及其生防作用.果树学报,2007,24(6):810-814
    史应武,娄凯,李春.植物内生菌在生物防治中的应用.微生物学杂志,2009,29(6):61-64
    孙磊.非培养方法和培养方法对水稻内生细菌和根结合细菌的研究:[博士学位论文].北京:首都师范大学,2006年
    孙力军,王超男,孙德坤,等.植物内生菌Bacillus amyloliquefaciens ES-2菌株对苹果青霉病的抑制效果.安徽科技学院学报,2008,22(1):16-20
    覃丽萍,黄思良,李杨瑞.植物内生固氮菌的研究进展.中国农学通报,2005,21(2):150-152,159
    王瑾.小叶满江红内生菌多样性的T-RFLP分析:[硕士学位论文].福州:福建农林大学,2009年
    吴丽娟.中国野生大豆根瘤菌遗传多样性和费氏中华根瘤菌胞外多糖合成相关基因mucR的功能分析:[博士学位论文].北京:中国农业大学,2011年
    吴士云,孙力军,周声,等.植物内生多粘类芽孢菌对油桃采后青霉病抑制效果的研究.食品科学,2007,28(11):579-583
    夏正俊,顾本康,吴蔼民.植物内生及根际士壤细菌诱导棉花对大丽轮枝菌抗性的研究.中国生物防治,1996,12(1):7-10
    徐玲玲,单庆红,郭斌.植物内生菌研究进展及应用展望.安徽农业科学,2013,41(13):5641-5643,5709
    杨海莲,孙晓璐,宋未.植物根际促生细菌和内生细菌的诱导抗病性的研究进展.植物病理学报,2000,30(2):106-110
    杨瑞先,孙广宇,张荣,等.油菜内生菌16S核糖体DNA的RFLP分析.微生物学报,2005,45(4):606-609
    郑雪芳,刘波,孙大光,等.柑橘黄龙病植株内生菌PLFAs多态性研究.中国生态农业学报,2012,20(7):932-944
    邹文欣,谭仁祥.植物内生菌研究新进展.植物学报,2001,43(9):881-892
    邹媛媛,刘琳,刘洋,等.不同水稻品种种子固有细菌群落的多样性.植物生态学报,2012,36(8):880-890

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700