新型硅系阻燃剂改性高性能热固性树脂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能热固性树脂(High Performance Thermosetting Resin, HPTRs)是一类具有网状结构的交联高分子材料,它独特的结构赋予其优异的综合性能,表现出突出的耐热性和热氧化稳定性、优良的综合力学性能及良好的耐湿热、耐辐射及耐腐蚀等特点,因而在航空航天、电子信息、电气绝缘等尖端工业领域占据不可或缺的重要地位。然而,与一般热固性树脂一样,它们同样存在固化物阻燃性差的缺点,对于许多尖端领域的应用场合来说,易燃性已经成为制约HPTR应用的“瓶颈”,所以对它们进行阻燃改性是近年来HPTR研究领域的重点。然而,现有改性方法虽然有效地增加了HPTR的阻燃性能,但往往会牺牲它们原有的一些优异性能,不能满足飞速发展的现代工业对HPTR的更多更高的性能要求。因此,如何在保持HPTR原有突出性能的基础上,实现HPTR的阻燃改性是当今高分子材料领域的重要研究课题,它兼具重要的科学意义和巨大的应用前景。本文即是围绕这个主题而展开。
     首先,我们制备了具有高长径比的中空管状SiO2(HST),以其作为无机硅系阻燃剂应用到氰酸酯(CE)树脂中,探讨了HST对CE树脂固化反应性及固化物综合性能的影响。研究结果表明,复合材料的性能与HST的含量密切相关,究其本质是因为HST的含量对复合材料的化学结构和聚集态结构产生显著影响。与CE树脂相比,具有合适HST含量的HST/CE复合材料的力学、阻燃、耐吸湿、介电以及耐热等性能显著提高。
     其次,从分子结构设计的角度出发,通过苯基三甲氧基硅烷的受控水解,合成了一种含大量苯基与硅羟基的新型超支化苯基硅树脂(HBPSi),将其应用于CE树脂、双马来酰亚胺-三嗪(BCE)树脂和环氧(EP)树脂的改性。研究结果表明,大量柔性的线性硅氧链节与刚性苯环、大的自由空腔、苯环间π-π共轭作用及低的交联密度使改性热固性树脂能够在基本保持或提高树脂原有的突出性能的基础上,同时赋予三种热固性树脂优异的韧性、强度与刚性,尤其以HBPSi/EP体系力学性能的改善效果最为明显。此外,HBPSi还能够显著地提高热固性树脂的阻燃性能,表现为改性树脂的热释放速率(HRR)大幅度地降低,且LOI值显著地提高。究其原因,是因为燃烧过程中热固性树脂的裂解产物不仅能够攻击有机硅树脂结构中的Si-C形成交联结构,而且能够与HBPSi中的硅羟基反应,进而起到成炭剂的作用,从而在树脂表面形成一层炭层,最终通过屏蔽作用有效地提高了树脂的阻燃性能。
     第三,针对CE与烯丙基双酚A改性双马来酰亚胺(BDM/DBA)树脂的结构特点,设计并合成了分别带有硅羟基与-NH2基的两种新型梯形聚苯基倍半硅氧烷(PLS与N-PLS)。在此基础上,设计并制备了PLS/CE和N-PLS/BDM/DBA杂化树脂。研究结果表明,两种杂化树脂的阻燃性能均明显优于原树脂。就BDM/DBA树脂而言,10 wt% N-PLS的加入使树脂的LOI值由26.1 %增大到41.3 %,而其峰值热释放速率(PHRR)与总热释放量(THR)只有BDM/DBA树脂相应值的68 %和58 %。此外,与原树脂相比,两种杂化树脂具有突出的热尺寸稳定性。当N-PLS的含量为15 wt%时,N-PLS/BDM/DBA杂化树脂在玻璃态和橡胶态下的线性热膨胀系数(CTE)分别仅为BDM/DBA树脂的51 %和58 %。杂化树脂所具有的优异性能可归结为PLS和N-PLS自身优异的耐热与阻燃性能,以及其与原树脂的良好反应性。
     第四,通过不同水解速率的硅烷偶联剂(苯基三甲氧基硅烷与γ-氨丙基三乙氧基硅烷)的受控水解(A2B3C3D)合成了一系列完全封端、含苯基与-NH2基摩尔比率及支化度可控的新型超支化聚倍半硅氧烷(Am-HPab,a和b为苯基三甲氧基硅烷和γ-氨丙基三乙氧基硅烷的摩尔比率),并设计制备了改性CE和BDM/DBA树脂体系。研究结果表明,热固性树脂的性质、Am-HPab的结构与含量均对改性树脂的性能有显著影响。通过调节a和b的比率实现对Am-HPab结构的控制,从而可以获得具有不同性能特色的改性树脂。其中,Am-HP82能够在保持BDM/DBA树脂原有刚性的基础上,全面提高BDM/DBA树脂的综合性能(包括介电性能、韧性、耐吸湿及阻燃性能)。当Am-HP82的含量为10 wt%时,改性树脂的PHRR和THR分别仅为BDM/DBA树脂的20 %和17 %,显示出优异的阻燃性能。阻燃性能的提高主要归因于Am-HPab达到了多效协同阻燃机制的效果,即成功融合了产生气源、凝聚相阻燃机制、屏蔽作用及提高耐热性能等四种阻燃效应。
     最后,针对现有有机硅树脂存在的固化工艺性和韧性差等不足,通过γ-环氧丙氧基丙基三甲氧基硅烷的受控水解(A2B3C)合成一种完全封端且含大量环氧基的新型超支化聚倍半硅氧烷(B-HBPSi),将其应用于有机硅树脂(SLER)的改性。研究结果表明,B-HBPSi/SLER体系不仅具有较高的固化反应活性和优良的成型工艺性,而且所有B-HBPSi/SLER树脂的介电性能、冲击强度、耐湿热性及高温下的残炭率(Yc)均明显优于一般热固性树脂的相应值。B-HBPSi/SLER树脂的突出综合性能使之在电子封装材料、先进复合材料树脂基体、高性能胶黏剂及绝缘漆等领域具有广阔的应用前景。
High performance thermosetting resins (HPTRs) are a class of polymers with cross-linked network structure, and has received great attentions owing to their outstanding integrated properties including high mechanical properties, outstanding thermal, thermal-oxidative and hot-wet resistance, excellent dielectric properties as well as corrosion and radiation resistance, showing great potential in many cutting-edge fields, especially aerospace, electric and electronic industries. However, being polymers, HPTRs generally have poor flammability which is also one major disadvantage to restrict further prosperity of HPTRs for applications in cutting-edge fields. In fact, improving flame retardancy has been the main subject associated with the investigations of HPTRs for many years. To date, many approaches have been developed to effectively improve the flame retardancy of HPTRs, however they tend to sacrifice the original outstanding properties of HPTRs, and thus can not meet the harsh requirements on HPTRs proposed by the rapid development of modern industries. Therefore, developing new flame retardants for HPTRs, which can not only significantly improve the flame retardancy, but also simultaneously endow modified resins with other key properties is an interesting subject to be addressed, this is the subject of this thesis.
     First, hollow silica tubes (HSTs) with uniform size and high aspect ratio were prepared by hydrolyzing tetraethyl orthosilicate using template self-assembly from D, L-tartaric acid. The effect of the incorporation of HST to the cyanate ester (CE) resin on the curing behavior and integrated properties were systematically evaluated. Results disclose that properties of HST/CE composites are dependant on the content of HST. Essentially, the content of HST has significant influence on the structure of polymer chain and that of aggregation state for the crosslinked networks. Compared with CE resin, the composites with suitable content of HST have not only obviously catalyzed curing reactivity, but also significantly improved integrated properties including mechanical, thermal and dielectric properties as well as water absorption and flame retardancy.
     Second, based on the molecular design, a novel hyperbranched phenyl silicone resin (HBPSi) containing a large amount of phenyl and silanol groups derived from the hydrolysis of phenyltrimethoxysilane was designed and synthesized, which is then employed to modify CE, bismaleimide-cyanate (BCE), and epoxy (EP) resins. It is found that modified thermosetting resins with suitable contents of HBPSi have effectively improved toughness, strength and stiffness, especially for the modified EP system. These attractive results can be attributed to the synergistic effect resulting from changes of both polymer chain and aggregation state structures including a large amount of flexible linear siloxane segments, rigid benzene rings, many unoccupied spaces,π-πconjugation interaction among benzene rings, and low cross-linking density. In addition, HBPSi modified thermosetting resins have significantly improved flame retardancy, showing decreased heat release rate (HRR), and improved limited oxygen index (LOI). Investigations on thermal-oxidative stability and residual char demonstrate that HBPSi can induce cross-linking reactions, and promote to form a char on the surface of the modified resin during combustion. The char acts as a good insulating barrier, which not only prevents the mass transport, but also protects the underlying polymer from flaming, ultimately improving the flame retardancy of the thermosetting resin.
     Third, according to the structural features of CE and 4,4'-bismaleimidodi-phenyl methane/2,2'-diallyl bisphenol A (BDM/DBA) resin, a novel organically functionalized ladderlike polyphenylsilsesquioxane with Si-OH groups (coded as PLS), and that with–NH2 groups (coded as N-PLS) were synthesized, and then used to develop new high performance hybrids based on CE or BDM/DBA resin. Compared with neat thermosetting resin, the hybrids show significantly improved flame retardancy. In the case of N-PLS10/BDM/DBA hybrid (with 10wt% N-PLS), its LOI increases from about 26.1 to 42.1 %, while its peak heat release rate (PHRR) and total heat release (THR) are only about 68 % and 58 % of that of BDM/DBA resin, respectively. In addition, all hybrids have outstanding dimensional stability. Specifically, its coefficient of thermal expansion (CTE) in glassy state and rubbery state of N-PLS10/BDM/DBA hybrid are only about 51 % and 58 % of that of BDM/DBA resin, respectively. These attractive improved properties are attributed to the outstanding thermal stability and flame retardancy of PLS and N-PLS, and their good dispersion with resin.
     Subsequently, a novel fully end-capped hyperbranched polysiloxane (Am-HPab, a and b represent the molar ratio of phenyltrimethoxysilane andγ-aminopropyl triethoxysilane, respectively) with controlled branching degree and amine-groups was successfully synthesized by a controlled hydrolysis of phenyltrimethoxysilane andγ-aminopropyl triethoxysilane, and then used to develop new modified CE and BDM/DBA resins. Results show that the nature of thermosetting resin as well as the structure and content of Am-HPab have significant influences on the integrated properties of modified resins. Through controlling the molar ratio of a and b, we can prepare modified resin with different characteristics of performance. It is found that Am-HP82 can successfully endow BDM/DBA resin with improved overall properties (including flame retardancy, mechanical, dielectric and thermal properties, etc.). Specifically, the cone calorimeter measurements clearly indicate that the average heat release rate (AHRR) and THR of modified BDM/DBA resin with 10 wt% Am-HP82 are only 20 % and 17 % of that of neat BDM/DBA resin, respectively, exhibiting outstanding flame retardancy. A synergistic flame retarding mechanism is believed to be attributed to these results, which includes improved thermal stability, producing non-combustible gas, acting in the condensed phase, and providing a barrier for heat and mass transfer owing to the introduction of Am-HPab to BDM/DBA.
     Finally, in order to overcome the poor curing processing and toughness of silicone resin, a reactive hyperbranched polysiloxane (B-HBPSi) with a large amount of epoxy groups was designed and synthesized through the hydrolyzation ofγ-aminopropyl triethoxysilane, and hexamethyldisiloxane, and then used to prepare a new silicone resin system with a commercial silicone resin (SLER). Results show that cured B-HBPSi/SLER resin possesses outstanding dielectric properties, toughness, water resistance, and high char yield at high temperature, these properties are better than most thermosetting resins, exhibiting great potential to be used as high performance electronic packaging materials, resin matrices of advanced composites, adhesives, and insulating varnish, etc.
引文
[1]徐应麟,王元宏,夏国梁.高聚物材料的实用阻燃技术[M].化学工业出版社,北京, 1987.
    [2]王永强.阻燃材料及应用技术[M].化学工业出版社,北京, 2003.
    [3] Batehelor J, Birley A, Hawthorn B. Physics of Plastics [M], Hanser, NY, 1992.
    [4]于永忠,吴启鸿,葛世成.阻燃材料手册[M],群众出版社, 1991.
    [5] Xie RC, Qu BJ. Synergistic effeets of expandable graphite with some halogen-free flame retardants in polyolefin blends [J]. Polym Degrad Stab, 2001, 71(3): 375-350.
    [6] Cammo G, Costa L, Luda di Cortemiglia MP. Overview of fire retardant mechanism [J]. Polym Degrad Stab, 1991, 33(2): 131-154.
    [7] Davis J, Huggard M. The technology of halogen-free flame retardant phosphorus additives for polymeric systems [J]. J Vinyl Addit Technol, 1996, 2(1): 69-75.
    [8] Braun U, Balabanovich AI, Schartel B, Knoll U, Artner J, Ciesielski M, Doring M, etal. Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites [J]. Polymer, 2006, 47(26): 8495-8508.
    [9] Jimenez M, Duquesne S, Bourbigot S. Characterization of the performance of an intumescent fire protective coating [J]. Surf Coat Technol, 2006, 201(3-4): 979-987.
    [10] Wang ZY, Han EH, Ke W. Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating [J]. Prog Org Coat, 2005, 53(1): 29-37.
    [11] Martín C, Hunt BJ, Ebdon JR, Ronda JC, Cádiz V. Synthesis, crosslinking and fame retardance of polymers of boron-containing difunctional styrenic monomers [J]. React Funct Polym, 2006, 66(10): 1047-1054.
    [12] Balabanovich AI. The effect of melamine on the combustion and thermal decomposition behaviour of poly(butylene terephthalate) [J]. Polym Degrad Stab, 2004, 84(3): 451-458.
    [13] Du LC, Qu BJ, Xu ZJ. Flammability characteristics and synergistic effect of hydrotalcite with microencapsulated red phosphorus in halogen-free flame retardant EVA composite [J]. Polym Degrad Stab, 2006, 91(5): 995-1001.
    [14] Yeh JT, Yang HM, Huang SS. Combustion of polyethylene filled with metallic hydroxides and crosslinkable polyethylene [J]. Polym Degrad Stab, 1995, 50(2): 229-234.
    [15] Sain M, Park SH, Suhara F, Law S. Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide [J]. Polym Degrad Stab, 2004, 83(2): 363-367.
    [16] Gui H, Zhang XH, Liu YQ, Dong WF, Wang QG, Gao JM, Song ZH, Lai JM, Qiao JL. Effect of dispersion of nano-magnesium hydroxide on the flammability of flame retardant ternary composites [J]. Compos Sci Technol, 2007, 67(6): 974-980.
    [17] Liu Y, Wang Q. Synthesis of in situ encapsulated intumescent flame retardant and the flame retardancy in polypropylene [J]. Polym Compos, 2007, 28(2): 163-167.
    [18] Gao F, Tong LF, Fang ZP. Effect of a novel phosphorous–nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate) [J]. Polym Degrad Stab, 2006, 91(6): 1295-1299.
    [19] Modesti M, Lorenzetti A, Simioni F, Camino G. Expandable graphite as an intumescent flame retardant in polyisocyanurate–polyurethane foams [J]. Polym Degrad Stab, 2002, 77(2): 195-202.
    [20] Liu Y, Wang Q. Catalytic action of phospho-tungstic acid in the synthesis of melamine salts of pentaerythritol phosphate and their synergistic effects in flame retarded polypropylene [J]. Polym Degrad Stab, 2006, 91 (10): 2513-2519.
    [21] Camino G, Grassic N. Influence of the fire retardant and ammonium polyphosphate on the thermal degradation of poly (ethylene glycol) [J]. Polym Sci Polym Chem Ed, 1978, 16: 95-106.
    [22] Hu X P, Li MY, Wang Y Z. Synthesis and characterization of a novel nitrogen-containing flame retardant [J]. Appl Polym Sci, 2004, 94: 1556-1561.
    [23]汪令顺.新型阻燃环氧树脂[J].消防技术与产品信息, 2003, (3): 63-66.
    [24]李昕,欧育湘.双环笼状磷酸酯阻燃环氧树脂的燃烧行为研究[J].北京理工大学学报, 2001, 21(3): 388-391.
    [25]周少林,张丽萍,杨兴钰等. 1, 3, 2-二氧磷杂环己烷衍生物的合成[J].华中师范大学学报, 2004, 38(2): 197-200.
    [26]杨兴钰,周少林,张丽萍.双环笼状磷酸酯衍生物的合成及其在环氧树脂中的初步阻燃试验[J].化学通报, 2003, 66(4): 277-280.
    [27]杨兴钰,周少林,张丽萍. N-(5, 5-二甲基-1, 3, 2-二氧杂己内磷酰基)取代苯甲醛腙的合成及其阻燃性能[J].应用化学, 2004, 21(8): 793-796.
    [28]杨兴钰,张丽萍,万石官. 5, 5-二甲基-1, 3, 2-二氧磷杂环己酰胺衍生物的合成及其应用研究[J].化学试剂, 2005, 27(3): 158-160.
    [29]杨兴钰,徐平勇,宦双燕. 5, 5-二甲基-2-氧代-2-(N, N-对苯二胺基-二苄基)-二-1, 3, 2-氧磷杂环己烷的合成及表征[J].合成化学, 2001, 9(6): 503-506.
    [30]杜晓莹,袁陈.含氮笼状磷酸酯阻燃剂合成工艺研究[J].湖北化工, 2003, (4): 22-23.
    [31]孙承凡.塑料用无机阻燃剂技术进展与方向[J].化工技术与开发, 2006, 35(9): 28-30.
    [32]钱军民,李旭祥.聚乙烯改性研究进展[J].塑料, 2001, 30(2): 38-41.
    [33]王丽丽,邱桂学,潘炯玺,王洪武.氢氧化物阻燃剂在聚乙烯中的应用技术和研究进展[J].塑料助剂, 2005, (1): 12-16.
    [34] Liu Y, Wang Q. Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66 [J]. Polym Degrad Stab, 2006, 91(12): 3103-3109.
    [35] Harashina H, Tajima Y, Itoh T. Synergistic effect of red phosphorus, novolac and melamine ternary combination on flame retardancy of poly(oxymethylene) [J]. Polym Degrad Stab, 2006, 91(9): 1996-2002.
    [36] Braun U, Schartel B. Flame retardant mechanisms of red phosphorus and magnesium hydroxide in high impact polystyrene [J]. Macromol Chem Phys, 2004, 205(16): 2185-2196.
    [37]马晓燕,梁国正.膨胀石墨改性双马来酰亚胺树脂体系的固化工艺及热稳定性研究[J].化工新型材料, 2001, 29(8): 26-28.
    [38]孟凡端.钛酸酯偶联剂在LDPE填充体系中的应用[J].黑龙江石油化工, 1998, 9(4): 13-15.
    [39]李少康.无机镁铝阻燃剂及其应用发展趋势浅析[J].无机盐工业, 2003, 35(3): 11-12.
    [40]贾修伟.纳米阻燃材料[M].化学工业出版社,北京, 2005.
    [41] Gilman JM. Flammability and thermal stability studies of polymer layered-silicate(clay) nanocomposites [J]. Appl Clay Sci, 1999, 15(1-2): 31-49.
    [42] Zhu J, Wilkie CA. Thermal and fire studies on polystyrene-clay nano-composites [J]. Polym Int, 2000, 49(10): 1158-1163.
    [43] Bourbigot S, Devaux E, Flambard X. Flammability of polyamide-6/clay hybrid nanocomposite textiles [J]. Polym Degrad Stab, 2002, 75(2): 397-402.
    [44] Kashiwagi T, Harris RH. Flame retardant mechanism of polyamide 6-clay nanocomposites [J]. Polymer, 2004, 45(3): 881-891.
    [45] Zhu J, Start P, Mauritz KA, Wilkie CA. Thermal stability and flame retardancy of poly(methyl methacrylate)-clay nanocomposites [J]. Polym Degrad Stab, 2002, 77(2): 253-258.
    [46] Chiang CL, Ma CCM. Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites [J]. Polym Degrad Stab, 2004, 83(2): 207-214.
    [47] Lewin M. Some comments on the modes of action of nanocomposites in the flame retardancy of polymers [J]. Fire Mater, 2003, 27(1): 1-7.
    [48]王彪,孙广平,孙国恩,何晓峰,刘景江.聚丙烯/多壁碳纳米管复合材料的热性能和流变性能[J].高分子学报, 2006, (3): 408-413.
    [49] Hong CE, Lee JH, Kalappa P, Advani SG. Effects of oxidative conditions on properties of multi-walled carbon nanotubes in polymer nanocomposites [J]. Compos Sci Technol, 2007, 67(6): 1027-1034.
    [50] Satapathy BK, Weidisch R, Ptschke P, Janke A. Tough-to-brittle transition in multiwalled carbon nanotube(MWNT)/polycarbonate nanocomposites [J]. Compos Sci Technol, 2007, 67(5): 867-879.
    [51] Ogasawara T, Ishida Y, Ishikawa T, Yokota R. Characterization of multi-walled carbon nanotube/phenylethynyl terminated polyimde composites [J]. Compos Part A-appl S, 2004, 35(1): 67-74.
    [52] Yudin VE, Svetlichnyi VM, etal. The nucleating effect of carbon nanotubes on crystallinity in R-BAPB-type thermoplastic polyimide [J]. Macromol Rapid Comm, 2005, 26(11): 885-888.
    [53] Fan ZH, Advani SG. Characterization of orientation state of carbon nanotubes in shear flow [J]. Polymer, 2005, 46(14): 5232-5240.
    [54] Gryshchuk O, Karger-Kocsis J, etal. Multiwall carbon nanotube modified vinylester and vinylester-based hybrid resins [J]. Compos Part A-appl S, 2006, 37(9): 1252-1259.
    [55] Wu Q, Zhu W, Zhang C, Liang Z, Wang B. Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxycomposites [J]. Carbon, 2010, 48(6): 1799-1806.
    [56] Wladyka-Przybylak M, Wesolek D, Gieparda W, Boczkowska A, Ciecierska E. Functionalization effect on physico-mechanical properties of multi-walled carbon nanotubes/ epoxy composites [J]. Polym Advan Technol, 2011, 22(1): 48-59.
    [57] Wu Q, Bao JW, Zhang C, Liang R, Wang B. The effect of thermal stability of carbon nanotubes on the flame retardancy of epoxy and bismaleimide/carbon fiber/buckypapaer composites [J]. J Therm Anal Calorim, 2011, 103: 237-242.
    [58] Ma CC, Chiang CL , Wu DL, etal. Preparation, characterization and properties of novolac type phenolic/SiO2 hybrid organic/inorganic nanocomposite materials by sol-gel method [J]. J Polym Sci Pol Chem, 2003, 41(7): 905-913.
    [59] Liu YL, Chou CI. The effect of silicon sources on the mechanism of phosphorus-silicon synergism of flame retardation of epoxy resins [J]. Polym Degrad Stab, 2005, 90: 515-22.
    [60]钟柳,欧育湘.阻燃环氧树脂/有机蒙脱土纳米复合材料制备及阻燃性能[J].塑料, 2006, 35(1): 34-38.
    [61] Sudhakara P, Kannan P, Obireddy K, Varada RA. Organ-phosphorus and DGEBA resins containing clay nanocomposites: Flame retardant, thermal, and mechanical properties [J]. J Mater Sci, 2011, 46(8): 2778-2788.
    [62] Camino G, Tartaglione G, Frache A, Manferti C, Costa G. Thermal and combustion behavior of layed silicate-epoxy nanocomposites [J]. Polym Degrad Stab, 2005, 90(2): 354-362.
    [63] Schatel B, Knoll U, Hartwig A, Putz D. Phosphonium-modified layered silicate epoxy resins nanocomposites and their combinations with ATH and organo-phosphorus fire retardants [J]. Polym Advan Techol, 2006, 17(4): 281-293.
    [64] Deka H, Karak N. Influence of highly branched poly(amido amine) on the properties of hyperbranched polyurethane/clay nanocomposites [J]. Mater Chem Phy, 2010, 124(1): 120-128.
    [65] Dai CF, Li PR, Yeh JM. Comparative studies for the effect of intercalating agent on the physical properties of epoxy resin-clay based nanocomposite materials [J]. Eur Polym J, 2008, 44(8): 2439-2447.
    [66] Hartwig A, Putz D, Schartel B, Bartholmai M, Wendschuh-Josties M. Combustion behaviour of epoxide based nanocomposites with ammonium and phosphonium bentonites[J]. Macromol Chem Phys, 2003, 204: 2247-57.
    [67] Kickelbick G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale [J]. Prog Polym Sci, 2003, 28(1): 83-114.
    [68]林谦,陈超,孙争光,等.多面体低聚倍半硅氧烷改性聚合物材料研究进[J].有机硅材料, 2009, 3: 194-198.
    [69] Wu K, Song L, Hu Y, Lu HD, Kandola BK, Kandare E. Synthesis and characterization of a functional polyhedral oligomeric silsesquioxane and its flame retardancy in epoxy resin [J]. Prog Org Coat, 2009, 65: 490-497.
    [70] Wu Q, Zhang C, Liang R, Wang B. Combustion and thermal properties of epoxy/phenyltrisilanol polyhedral oligomeric silsesquioxane nanocomposites [J]. J Therm Anal Calorim, 2010, 100(3): 1009-1015.
    [71] Montero B, Ramirez C, Rico M, Barral L, Diez J, Lopez J. Effect of an epoxy octasilsesquioxane on the thermodegradation of an epoxy/amine system [J]. Polym Int, 2010, 59: 112-118.
    [72] Kambour RP, Klopfer HJ, Smith SA. Limiting oxygen indices of silicone block polymer [J]. J Appl Polym Sci, 1981, 26: 847-859.
    [73] Kambour RP. Flammability resistance synergism in BPA polycarbonate–silicone block polymers [J]. J Appl Polym Sci, 1981, 26: 861-877.
    [74] Iji M, Serizawa S. Silicone derivatives as new flame retardants for aromatic thermoplastics used in electronic devices [J]. Polym Adv Technol, 1998, 9: 593-598.
    [75] Wang WJ, Perng LH, Hsiue GH, Chang FC. Characterization and properties of new silicone-containing epoxy resin [J]. Polymer, 2000, 41: 6113-6122.
    [76] Hsiue GH, Wang WJ, Chang FC. Synthesis, characterization, thermal and flame-retardant properties of silicon-based epoxyresins [J]. J Appl Polym Sci, 1999, 73: 1231-1238.
    [77] Mercado LA, Galia M, Reina JA. Silicon-containing flame retardant epoxy resins: Synthesis, characterization and properties [J]. Polym Degrad Stab, 2006, 91: 2588-2594.
    [78] Hsiue GH, Wei HF, Shiao SJ. Chemical modification of dicyclopentadiene-based epoxy resins to improve compatibility and thermal properties [J]. Polym Degrad Stab, 2001, 73: 309-318.
    [79] Belva F, Bourbigot S, etal. Heat and fire resistance of polyurethane-polydimethylsiloxane hybrid material [J]. Polym Advan Technol, 2006, 17:304-311.
    [80]奥戈凯威斯编,何平笙译.热塑性塑料的性能与设计[M].科学出版社, 1986.
    [81] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354: 56-58.
    [82] Zhang YH, Lu SG, etal. Novel silica tube/polymide composite films with variable low dielectric constant [J]. Adv Mater, 2005, 17(8): 1056-1059.
    [83] Yudin VE, Otaigbe JU, etal. New polyimide nanocomposites based on silicate type nanotubes: Dispersion, processing and properties [J]. Polymer, 2007, 48: 1306-1315.
    [84] Li YQ, Pan QY, Li M, Fu SY. Preparation and mechanical properties of novel polyimide/T-silica hybrid films [J]. Compos Sci Technol, 2007, 67: 54-60.
    [85] Fu SY, Zheng B. Templated silica tubes with high aspect ratios as effective fillers for enhancing the overall performance of polyimide films [J]. Chem Mater, 2008, 20: 1090-1098.
    [86] Miyaji F, Watanabe Y, Suyama Y. Morphology of silica derived from various ammonium carboxylate templates [J]. Mater Res Bull, 2003, 38: 1669-1680.
    [87] Simon S L, Gillham J K.Cure kinetics of a thermosetting liquid dicyanate ester monomer/high-Tg polycyanurate material [J]. J Appl Polym Sci, 1993, 47(3): 461-485.
    [88] Barton JM, Hamerton I, Jones JR. A study of the thermal and dynamic mechanical properties of functionalized aryl cyanate esters and their polymers [J]. Polym Int, 1993, 31:95.
    [89] Pan YZ, Xu Y, An L, Lu HB, Yang YL, Chen W, Nutt S. Hybrid network structure and mechanical properties of rod-like silicate/cyanate ester nanocomposites [J]. Macromolecular, 2008, 41: 9245-9258.
    [90] Lin RH, Lu WH, Lin CW. Cure reactions in the blend of cyanate ester with maleimide [J]. Polymer, 2004, 45(13): 4423-4435.
    [91] Pascual-lzarra C, Dong AW, Pas SJ, Boyd BJ, Drummond CJ, Hill AJ. Advanced algorithms for PALS analysis of self-assembled amphiphiles [J]. Mater Sci Forum, 2009, 607: 257-259.
    [92] Prooijen M, Jorch HH, Stevens JR, etal. Positron annihilation behavior in poly(ethylene) [J]. Polymer, 1999, 40: 5111-5117.
    [93] Peng ZL, Olson BG, McGervey JD, etal. Temperature and time dependence of orthopositronium formation in polystyrene [J]. Polymer, 1999, 40: 3033-3040.
    [94]张明,方鹏飞,刘黎明,等. HDPE/CaCO_3纳米复合材料的自由体积及其界面特性[J].武汉大学学报(理学版), 2003, 49: 601-604.
    [95] Garboczi EJ, Snyder KA, Douglas JF. Geometrical percolation threshold of overlapping ellipsoids [J]. Phys Rev E, 1995, 52: 819-830.
    [96] Peng FB, Lu LY, Sun HL, Jiang ZY. Analysis of annealing effect on pervaporation properties of PVA-GPTMS hybrid membranes through PALS [J]. J Membrane Sci, 2006, 281(1-2): 600-608.
    [97] McDonald RC, Gidley DW, Sanderson T, Vallery RS. Evidence for depth-dependent structural changes in freeze/thaw-cycled dry Nafion using positron annihilation lifetime spectroscopy(PALS) [J]. J Membrane Sci, 2009, 332(1-2): 89-92.
    [98] Wang B, Wang ZF, Zhang M, Liu WH, Wang SJ. Effect of temperature on the free volume in glassy poly(ethylene terephthalate) [J]. Macromolecules, 2002, 35: 3993-3996.
    [99] Merkel TC, Freeman BD, Spontak RJ, He Z, Pinnau I, Meakin P, Hill AJ. Ultrapermeable, reverse-selective nanocomposite membranes [J]. Science, 2002, 296: 519-522.
    [100] Zeng MF, Sun XD, Yao XD, Wang Y, Zhang MZ, Wang BY, Qi CZ. Modification of cyanate ester resin by hydroxyl-terminated liquid butadiene-acrylonitrile rubber and free volume properties of their composites [J]. J Appl Polym Sci, 2010, 115: 338-345.
    [101] Shukla A, Peter M, Hoffmann L. Analysis of positron lifetime spectra using quantified maximum entropy and a general linear filter [J]. Nucl Instrum Methods A, 1993, 335: 310-317.
    [102] Wang CL, Frans HJM. New approach to determines: A comparison between maximum entropy and the numerical laplace inversion methods [J]. Macromolecules, 1996, 29: 8249-8253.
    [103] Stlund CW, Berndtsson H, Maurer FHJ. Miscibility of styrene-maleic anhydride and styrene-acrylonitrile blends studied by positron annihilation lifetime spectroscopy [J]. Macromolecules, 1998, 31: 3322-3327.
    [104] Liu J, Jean YC, Yang H. Free-volume hole properties of polymer blends probed by positron annihilation spectroscopy: miscibility [J]. Macromolecules, 1995, 28: 5774-5779.
    [105] Song HC. Polymer Composites, (1st edn). Beijing University of Aeronautics & Astronautics Press, Beijing, 1985.
    [106] An L, Pan YZ, Shen XW, Lu HB, Yang YL. Rod-like attapulgite/polyimide nanocomposites with simultaneously improved strength, toughness, thermal stability andrelated mechanisms [J]. J Mater Chem, 2008, 18: 4928-4941.
    [107] Gu AJ. High performance bismaleimide/cyanate ester hybrid polymer networks with excellent dielectric properties [J]. Compos Sci Technol, 2006, 66(11-12): 1749-1755.
    [108] Mallarino S, Chailan JF, Vernet JL. Sizing effects on main relaxation process of cyanate ester glass fiber composites using dynamic mechanical and microthermal analyses [J]. J Polym Sci Pol Phy, 2006, 44: 205-214.
    [109] Hwang JW, Park SD, Cho K, Kim JK, Park CE. Toughening of cyanate ester resins with cyanated polysulfones [J]. Polymer, 1997, 38(8): 1835-1843.
    [110] Liang GZ, Zhang MX. Enhancement of processability of cyanate ester resin via copolymerization with epoxy resin [J]. J Appl Polym Sci, 2002, 85(11): 2377-2381.
    [111] Arthur WS, Leonard JB. Cyanate ester resins with low dielectric properties and applications [M]. New York: Elsevier Inc, 1999.
    [112] Sato T, Tsujii Y, Kita Y, Fukuda T, Miyamoto T. Dielectric relaxation of liquid crystalline cyanoethylated o-(2, 3-dihydroxypropyl) cellulose [J]. Macromoles, 1991, 24: 4691-4697.
    [113]王德生,杨士勇,刘斌,陈维,陈寿田.橡胶增韧环氧树脂的界面极化研[J].复合材料学报, 2002, 19(4): 7-10.
    [114] Prabakar S, Assink R A, Raman N K, Myers S A, Brinker C J. Identification of self-and cross-condensation products in organically modified silica sols by 29Si and 17O NMR spectroscopy [J]. J Non-Cryst Solids, 1996, 202(1-2): 53-60.
    [115]罗运军,桂红星[M].有机硅树脂及其应用,化学工业出版社, 2002.
    [116]沈新春,王大喜,栗秀刚.聚倍半硅氧烷的研究现状和发展趋势[J].有机硅材料, 2004, 18(1): 22-26.
    [117] Yang CZ, Gu AJ, Song HW, Xu ZH, Fang ZH, Tong LF. Novel modification of cyanate ester by epoxidized polysiloxane [J]. J Appl Polym Sci, 2007, 105: 2020-2026.
    [118]朱超,林丽娟.超支化聚合物增韧环氧树脂的研究进展[J].工程塑料应用, 2006, 35(1): 78-83.
    [119] Ji LF, Gu AJ, Liang GZ, Yuan L. Novel modification of bismaleimide-triazine resin by reactive hyperbranched polysiloxane [J]. J Mater Sci, 2010, 45: 1859-1865.
    [120] Guan QB, Gu AJ, Liang GZ, Zhou C, Yuan L. Preparation and properties of new high performance maleimide-triazine resins for resin transfer molding [J]. Polym Adv Technol, Doi: 10.1002/pat.1643.
    [121] Zhou C, Gu AJ, Liang GZ, Yuan L. Novel toughened cyanate ester resin with good dielectric properties and thermal stability by copolymerizing with hyperbranched polysiloxane and epoxy resin [J]. Polym Adv Technol, Doi: 10.1002/pat.1570.
    [122] Baney RH, Itoh M, Sakakibara A, Suzuki T. Silsesquioxanes [J]. Chem Rev, 1995, 95: 1409-1430.
    [123] Abe Y, Gunji T. Oligo- and polysiloxanes [J]. Prog Polym Sci, 2004, 29: 149-182.
    [124] Sakka S, Tanaka Y, Kokubo T. Hydrolysis and polycondensation of dimethyldiethoxysilane and methyltriethoxysilane as materials for the sol-gel process [J]. J Non-Cryst Solids, 1986, 82(1): 24-30.
    [125] Zhu B, Katsoulis DE, Keryk JR, McGarry FJ. Toughening of a polysilsesquioxane network by homogeneous incorporation of polydimethylsiloxane segments [J]. Polymer, 2000, 41: 7559-7573.
    [126] Anderson DR. Analysis of Silicones [M]. Wiley, New York, 1974.
    [127] Feng HQ, Feng ZL, Ruan HZ and Shen LF. High-resolution solid-state NMR study of the miscibility, morphology, and toughening mechanism of polystyrene with poly(2, 6-dimethyl-1, 4-phenylene oxide) blends [J]. Macromolecules, 1992, 25: 5981-5985.
    [128] Kambour RP, Gundlach PE, Wang ICW, White DM, Yeager GW. Crack tip damage analysis in fatigue fracture of epoxy resin [J]. Polym Commun, 1988, 29: 171-176.
    [129] Mitchell GR, Windle AH. The local structure of blends of polystyrene and poly(2,6-dimethylphenylene oxide) [J]. J Polym Sci Pol Phys, 1985, 23: 1967-1974.
    [130] Johnsen BB, Kinloch AJ, Taylor AC, Toughness of syndiotactic polystyrene/epoxy polymer blends: microstructure and toughening mechanisms [J]. Polymer, 2005, 46: 7352-7369.
    [131] Boogh L, Pettersson B, Manson JAE. Dendritic hyperbranched polymers as tougheners for epoxy resins [J]. Polymer, 1999, 40(9): 2249-2261.
    [132] Meares P. Polymers: Structure and Bulk Properties [M]. Princeton, Van Nostrand, 1965.
    [133] Meijer HEH and Govaert LE. Mechanical performance of polymer systems: The relation between structure and properties [J]. Prog Polym Sci, 2005, 30: 915-938.
    [134]周文君,杨辉.甲基苯基硅树脂的制备工艺优化及阻燃性能[J].化工学报, 2006, 57(9): 2218-2222.
    [135] Cheng XB. High-Performance Base Body Resin [M]. Beijing: Chemical IndustryPress,1999.
    [136] Aijuan Gu, Guozheng Liang. Thermal degradation behaviour and kinetic analysis of epoxy/montmorillonite nanocomposites [J]. Polym Degrad Stab, 2003, 80: 383-391.
    [137] Song ML, Cui H, Yan LS, Wang T. J Solid Rock Techn, 2006, 29, 364.
    [138]杨春壮.高频印制电路板用树脂基体-氰酸酯树脂改性的研究.浙江大学硕士论文.浙江:浙江大学, 2007.
    [139] Lu SY, Hamerton I. Recent developments in thechemistry of halogen free flame retardant polymers [J]. Prog Polym Sci, 2002, 27: 1661-1712.
    [140] Zhou WJ, Yang H. Flame retarding mechanism of polycarbonate containing methylphenyl-silicone [J]. Thermochim Acta, 2007, 452: 43-48.
    [141] Fan J, Hu X, Yue CY. Dielectric properties of self-catalytic interpenetrating polymer network based on modified bismaleimide and cyanate ester resins [J]. J Polym Sci Polym Phys, 2003, 41: 1123-34.
    [142] Lin RH, Lee AC, Lu WH, Lin CW. Catalyst effect on cure reactions in the blend of aromatic dicyanate ester and bismaleimide [J]. J Appl Polym Sci, 2004, 94: 345-54.
    [143] Liang KW, Li GZ, Toghiani H, Koo JH, Pittman CU. Cyanate ester/polyhedral oligomeric silsesquioxane nanocomposites: synthesis and characterization [J]. Chem Mater, 2006, 18: 301-12.
    [144] Akio T, Masao S, Masahiro S, Motoyo W. Thermal behavior and reactivities of prepolymers prepared from aromatic biscyanamides and bismaleimide [J]. J Appl Polym Sci, 1991, 43: 943-9.
    [145] Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data [J]. Nature, 1964, 201: 68-69.
    [146] Zhang JJ, Ji Q, Zhang P, Xia YZ, Kong QS. Thermal stability and flame-retardancy mechanism of poly(ethylene terephthalate)/boehmite nanocomposites [J]. Polym Degrad Stab, 2010, 95: 1211-1218.
    [147] Hamdani S, Longuet C, Perrin D, Lopez-cuesta JM, Ganachaud F. Flame retardancy of silicone-based materials [J]. Polym Degrad Stab, 2009, 94: 465-495.
    [148] Majoni S, Su SP, M.Hossenlopp J. The effect of boron-containing layered hydroxy salt (LHS) on the thermal stability and degradation kinetics of poly (methyl methacrylate) [J]. Polym Degrad Stab, 2010, 95: 1593-1604.
    [149] Chigwada G, Kandare E, Wang D, Majoni S, Mlambo D, Wilkie CA, Hossenlopp JM.Thermal stability and degradation kinetics of polystyrene/organically-modified montmorillonite nanocomposites [J]. J Nanosci Nanotechnol, 2008, 8: 1927-1936.
    [150] Abate L, Blanco I, Cicala G, Recca G, Scamporrino A. The influence of chain rigidity on the thermal properties of some novel random copolyethersulfones [J]. Polym Degrad Stab, 2010, 95: 798-802.
    [151] Han YM, Zhang JY, Shi L, Qi SC, Cheng J, Jin RG. Improvement of thermal resistance of polydimethylsiloxanes with polymethylmethoxysiloxane as crosslinker [J]. Polym Degrad Stab, 2008, 93: 242-251.
    [152] Wu HH, Chu PP. Degradation kinetics of functionalized novolac resins [J]. Polym Degrad Stab, 2010, 95: 1849-1855.
    [153] Gilma JW, Jackson CL, Morgan AB, Harris JR, Manias E, Giannelis EP. Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites [J]. Chem Mater, 2000, 12: 1866-1873.
    [154] Vlad S, Vlad A, Oprea S. Interpenetrating polymer networks based on polyurethane and polysiloxane [J]. Eur Polym J, 2002, 38: 829-835.
    [155]谢择民,王金亭,李其山.硅氮化合物在改进聚硅氧烷热稳定性中的作[J].高分子学报, 1989, 1: 46-51.
    [156]杨荣杰,蒋云芸,李向梅.高规整梯形聚苯基硅倍半氧烷在阻燃聚碳酸酯中的应用[J], CN101891944.
    [157] Li GZ, Ye ML, Shi LH. Study on mechanical properties of polystyrene/ polyphenylsilsesquioxane in situ blend [J]. J Appl Polym Sci, 1996, 60: 1163-1168.
    [158] Li GZ, Wang LC, etal. Viscoelastic and mechanical properties of epoxy/multifunctional polyhedral oligomeric silsesquioxane nanocomposites and epoxy/ladderlike polyphenylsilsesquioxane blends [J]. Macromolecules, 2001, 34: 8686-8693.
    [159] Ni Y, Zheng SX. Epoxy resin containing polyphenylsilsesquioxane: preparation, morphology, and thermomechanical properties [J]. J Polym Sci Pol Chem, 2006, 44: 1093-1105.
    [160] Feng YZ, Qi SL, etal. Preparation and characterization of polyimide/ladder like polysiloxane hybrid films [J]. Mater Lett, 2010, 64: 2710-2713.
    [161] Brown JF, Vogt LH, Katchman A, Eustance JW, Kiser KM, Krantz KW. Double chain polymers of phenylsilsesquioxane [J]. J Am Chem Soc, 1960, 82: 6194-6195.
    [162] Prado LA, Radovanovic E, Pastore HO, Yoshida IVP, Torriani IL. poly(phenylsilsesquioxane)s: structural and morphological characterization [J]. J Polym Sci Pol Chem, 2000, 38: 1580-1589.
    [163] Matsubara Y, Konishi W, Sugizaki T, Moriya O. Synthesis of poly(phenylsilsesquioxane) having organostannyl groups [J]. J Polym Sci Pol Chem, 2001, 39: 2125-2137.
    [164] Kim KM, Ogoshi T, Chujo Y. Controlled polymer hybrids with ladderlike polyphenylsilsesquioxane as a template via the sol-gel reaction of phenyltrimethoxysilane [J]. J Polym Sci Pol Chem, 2005, 43: 473-478.
    [165] Li GZ, Jin Y, Shi LH, Ye ML, Bai F. Miscibility of polystyrene (PS)/polyphenylsilsesquioxane (PPSQ) blends [J]. J Polym Sci Pol Phys, 1996, 34: 1079-1084.
    [166] Rashid ESA, Ariffin K, Kooi CC, Akil HM. Preparation and properties of POSS/epoxy composites for electronic packaging applications [J]. Mater Design, 2009, 30: 1-8.
    [167] Wippl J, Schmidt HW, Giesa R. High Temperature Thermosets With a Low Coefficient of Thermal Expansion [J]. Macromol Mater Eng, 2005, 290: 657-668.
    [168] Yung KC, Zhu BL, Wu J, Yue TM, Xie CS. Effect of AlN content on the performance of brominated epoxy resin for printed circuit board substrate [J]. J Polym Sci Pol Phy, 2007, 45: 1662-1674.
    [169] Yung KC, Zhu BL, Yue TM, Xie CS. Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites [J]. Compos Sci Technol, 2009, 69: 260-264.
    [170] Sonje PU, Subramanian KN, Lee AJ. J Adv Mater, 2004, 36: 22-30.
    [171] Sulaiman S, Brick CM, De SCM, Katzenstein JM, Laine RM, Basheer RA. Tailoring the global properties of nanocomposites. Epoxy resins with very low coefficients of thermal expansion [J]. Macromolecules, 2006, 39: 5167-5183.
    [172] Lu HB, Shen HB, Song ZL, Shing KS, Tao W, Nutt S. Rod-like silicate-epoxy nanocomposites [J]. Macromol Rapid Commun, 2005, 26: 1445-1450.
    [173] Dvornic PR, Gerov VV, Govedarica MN. Polymerization by hydrosilation. 2. Preparation and characterization of high molecular weight poly[(1,1,3,3-tetramethyl- disiloxanyl)ethylene] from 1,3-dihydridotetramethyldisiloxane and 1,3-divinyltetra- methyldisiloxane [J]. Macromolecules, 1994, 27: 7575-7580.
    [174] Prado SLA, Torriani IL, Yoshida IVP. Poly(n-alkylsilsesquioxane)s: Synthesis, characterization, and modification with poly(dimethylsiloxane) [J]. J Polym Sci Polym Chem, 2010, 48: 1220-1229.
    [175] Kissinger HE. Anal Chem, 1957, 291, 1702.
    [176] Sheng X, Akinc M, Kessler MR. Cure kinetics of thermosetting bisphenol E cyanate ester [J]. J Therm Anal Calorim, 2008, 93: 77-85.
    [177] Crane LW. J Polym Sci, 1972, 12, 120-125.
    [178] J?rg Bauer. Cyanate ester based resin systems for snap-cure applications [J]. Microsyst Techno, 2002, 8(1): 58-62.
    [179] Liang GZ, Hu XL. Aluminum-borate-whiskers-reinforced bismaleimide composites. 1: preparation and properties [J]. Polym Int, 2004, 53: 670-677.
    [180] Donnellan TM. Polym Eng Sci, 1992, 32, 409-416.
    [181] Buch RR. Rates of heat release and related fire parameters for silicones [J]. Fire Safety J, 1991, 17: 1-12.
    [182] Zhong HF, Wu D, Wei P, Jiang PK, Li Q, Hao JW. Synthesis, characteristic of a novel additive-type flame retardant containing silicon and its application in PC/ABS alloy [J]. J Mater Sci, 2007, 42: 10106-10112.
    [183] Dong WF, Zhang XH, Liu YQ, Wang QG, Gui H, Gao JM, Song ZH, Lai JM, Huang F, Qiao JL. Flame retardant nanocomposites of polyamide 6/clay/silicone rubber with high toughness and good flowability [J]. Polymer, 2006, 47: 6874-6879.
    [184] Kramer RH, Blomqvist P, Hees PV, Gedde UW. On the intumescence of ethylene-acrylate copolymers blended with chalk and silicone [J]. Polym Degrad Stab, 2007, 92: 1899-1910.
    [185] Schartel B, Hull TR. Development of fire-retarded materials-Interpretation of cone calorimeter data [J]. Fire Mater, 2007, 31: 327-354.
    [186] Regnier N, Mortaigne B. Thermal behavior of bismaleimide resin [J]. Polym Adv Technol, 1994, 5: 513-520.
    [187] Duquesne S, Lefebvre J, Seeley G, Camino G, Delobel R, Bras ML. Vinyl acetate/butyl acrylate copolymers: Part 2: Fire retardancy using phosphorus- containing additives and monomers [J]. Polym Degrad Stabil, 2004, 85: 883-892.
    [188] Park OK, Kang YS. Preparation and characterization of silica-coated TiO_2 nanoparticle [J]. Colloids Surf A, 2005, 257: 261-265.
    [189] Chiang CL, Chiu SL. Synthesis, characterization and properties of halogen-free flame retardant PMMA nanocomposites containing nitrogen/ silicon prepared from the Sol-Gel method [J]. J Polym Res, 2009, 16: 637-646.
    [190] Chiang CL, Ma CCM, Wang FY, Kuan HC. Thermo-oxidative degradation of novel epoxy containing silicon and phosphorous nanocomposites [J]. Eur Polym J, 2003, 39: 825-830.
    [191] Zhong H, Wei P, Jiang P, Wu D, Wang G. Synthesis and characteristics of a novel silicon-containing flame retardant and its application in poly[2,2-propane- (bisphenol)carbonate]/acrylonitrile butadiene styrene [J]. J Polym Sci Polym Phys, 2007, 45: 1542-1550.
    [192]季立福.基于超支化技术的新型氰酸酯树脂体系的研究. 2010,硕士论文.
    [193]陆方,严宝珍,胡高飞,郭灿雄,许锦华.笼形倍半硅氧烷NMR的研究[J].波谱学杂志, 2004, 21(1):57.
    [194] Liu YL, Hsiue GH, Chiu YS, Jeng RJ, Perng LH. Phosphorus-containing epoxy for flame retardant. synthesis, thermal, and flame-retardant properties [J]. J Appl Polym Sci, 1996, 61: 613-621.
    [195] Lu HD, Wilkie CA. Study on intumescent flame retarded polystyrene composites with improved flame retardancy [J]. Polym Degrad Stabil, 2010, doi:10.1016/j.polym degradstab.2010.08.022
    [196] Sun JT, Huang YD, Gong GF, Cao HL. Thermal degradation kinetics of poly(methylphenylsiloxane) containing methacryloyl groups [J]. Polym Degrad Stabil, 2006, 91: 339-346.
    [198] Deshpande G, Rezac ME. The effect of phenyl content on the degradation of poly(dimethyl diphenyl) siloxane copolymers [J]. Polym Degrad Stabil, 2001, 74: 363-370.
    [199] Hameed N, Sreekumar PA, Francis B, Yang WM, Thomas SB. Morphology, dynamic mechanical and thermal studies on poly(styrene-co-acrylonitrile)modified epoxy resin/glass fibre composites [J]. Compos Part A-Appl S, 2007, 38(12): 2422-2432.
    [200] Dipa R, Sengupta SP, Rana AK, Bose NR. Static and dynamic mechanical properties of vinylester resin matrix composites reinforced with shellac-treated jute yarns [J]. Ind Eng Chem Res, 2006, 45(8): 2722-2727.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700