自燃煤矸石在水泥、混凝土及路基中应用的试验研究及机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是一个以煤炭为主要能源的发展中国家,在一次性能源消耗中,煤炭占70%以上,并且在今后相当长的一段时期内,中国的能源结构仍将不会改变。人民在享受着煤炭作为能源所带来的利益的同时,也正遭受着煤矸石自燃、堆放以及煤矸石山溃塌等所带来的空气污染、水体污染、占用耕地,甚至导致人民生命财产损失等问题的困扰。
     本着“物尽其用、就地取材”的原则,论文以自燃煤矸石具有活性及岩性为主线,从基于煤矸石物化性能、自燃煤矸石活化机理、自燃煤矸石水泥活性混合材料、自燃煤矸石轻集料混凝土、自燃煤矸石地质聚合材料、自燃煤矸石固土材料几个方面阐述煤矸石在建材领域综合利用的理论问题与应用技术问题,力求全方位、立体化应用煤矸石。论文主要研究以下几方面内容:
     (1)通过对自燃煤矸石基本性质的试验,了解辽宁省阜新矿区自燃煤矸石的物理化学特性、矿物组成及力学特性,从而确定自燃煤矸石在水泥、混凝土及路基中资源化利用的可能性。
     (2)采用机械激活、化学激活相结合的复合方法对自燃煤矸石进行活性激发。基于正交试验设计方法,探讨利用阜新矿区自燃煤矸石制备自燃煤矸石硅酸盐水泥的可行性并给出最佳配合比范围及具体制备方法。
     (3)利用自燃煤矸石为主要原材料生产21世纪的绿色胶凝材料—地质聚合物,为煤矸石的综合利用提供新的应用领域。主要研究碱激发剂配体对地质聚合物性能的激发作用,通过试验及数理分析优化自燃煤矸石-矿渣-粉煤灰地质聚合物配合比,并验证其胶砂强度等水泥的主要技术性质指标的可靠性。
     (4)采用人工级配自燃煤矸砂及煤矸石,以自燃煤矸石硅酸盐水泥作为胶凝材料,基于轻集料混凝土配合比设计方法,分别配制不同强度等级的自燃煤矸石粗-细集料的混凝土。并与普通硅酸盐水泥配制的自燃煤矸石集料混凝土进行工作性、强度等对比,探讨并分析煤矸石集料配制的混凝土工作特性和力学性能,研究了大掺量煤矸石在混凝土中应用的可行性。
     (5)通过石灰-粉煤灰-水泥改良自燃煤矸石混合料作为路基材料,使其成为规模化消纳煤矸石的有效技术途径。首先通过对石灰-粉煤灰改良自燃煤矸石混合料的配合比设计、饱水无侧限抗压强度、击实特性等研究,分析了二灰稳定自燃煤矸石混合料作为路基材料的可能性及强度形成机理。考虑二灰稳定的煤矸石混合料不能很好满足北方地区的抗冻要求。通过不同掺量水泥的对比试验,研究“三灰”稳定自燃煤矸石混合料耐久性性最佳配合比,为工程应用提供了参考,并进行机理分析。
     (6)利用有限元分析计算方法,在FLAC3D软件平台上,模拟研究不同车载作用下,煤矸石路基沉降变形、塑性区分布、应力分布等特征的变化规律,以此综合分析煤矸石路基的可靠性。
     得出以下几点主要结论:
     (1)自燃煤矸石的“质”—富含氧化硅和氧化铝以及“量”—大宗性,使自燃煤矸石与建筑材料在“质”和“量”具有双重近似性,从而决定了自燃煤矸石在水泥、混凝土及固土材料中资源化是实现煤矸石规模化高附加值利用最为有效的技术途径。
     (2)自燃煤矸石在混凝土和路基材料中应用是可行的。但由于材质特性,存在级配缺陷,需要破碎筛选后才能满足颗粒级配要求;煤矸石与一般的碎石相比,其水稳性较差;通过探讨自燃煤矸石CBR值的试验结果可知红矸石和灰矸石均能满足路用材料的强度要求。
     (3)对比试验表明煤矸石的活性远高于普通的人工砂,细度对试块强度的影响最大。阜新矿区自燃煤矸石通过机械和化学的激活,可以作为活性混合材料制备煤矸石硅酸盐水泥,当自燃煤矸石:矿渣:石膏:普通硅酸盐水泥为25:10:3:62时,自燃煤矸石硅酸盐水泥的强度达到最大。
     (4)自燃煤矸石-矿渣-粉煤灰地质聚合物最佳配体:种类为水玻璃和氢氧化钾,比例为1:1。通过二次响应曲面试验及回归分析,确定了水玻璃模数和激发剂掺量与胶砂强度之间的定量关系。水玻璃模数中最优为1.0;激发剂掺量最优为22.6%(占胶凝材料)。
     (5)将自燃煤矸石硅酸盐水泥、颗粒级配良好的自燃煤矸石粗细集料制备自燃煤矸全集料混凝土,证明了大掺量自燃煤矸石制备混凝土的可行性;通过对比试验及分析得到集料的配比存在“契合效应”,使混凝土的强度得以提高。
     (6)煤矸石路基混合料的无侧限保水抗压强度满足规范要求,但强度较低不稳定;当水泥掺量达到3%时,水泥改良二灰煤矸石混合料试件的抗冻效果最好。
     (7)基于FLAC3D数值模拟,通过对沉降变形、应力分布、塑性区分布的变化规律的分析,证明了水泥改良二灰煤矸石路基的优越性。
China is a developing country with coal as the main energy, in the primary energy consumption, coal accounts for more than70%, and for a long period of time in the future, the energy structure will not change. With the enjoyment of coal for industrial innovation energy,at the same time, it also suffers from spontaneous combustion of coal gangue, coal gangue dumps and collapse, air pollution, water pollution, the occupation of cultivated land and leads to loss of life and property and other problems.
     The spirit of "turn material resources to good account, obtain raw material locally" principle, the spontaneous combustion of coal gangue in cement, concrete and subgrade materials used as the main line. Based on the physicochemical properties of coal gangue comprehensive utilization principle, spontaneous combustion of coal gangue activation mechanism, spontaneous combustion of coal gangue cement admixture, spontaneous combustion of coal gangue geological polymer material, spontaneous combustion of Coal Gangue light aggregate concrete, spontaneous combustion of coal gangue soil material aspects of coal gangue comprehensive utilization of building materials in the field of the theory and application of technical problems, to all-round, three-dimensional application of coal gangue. This thesis studies the following aspects:
     (1) Through the test of basic properties of spontaneous combustion of coal gangue,I get the physical and chemical characteristics of Liaoning Province, Fuxin mining area of spontaneous combustion gangue mineral composition and mechanical properties, then I can determine the possible utilization of spontaneous combustion of coal gangue cement and concrete.
     (2) The compound method which combines mechanical activation and chemical activation is adopted to carrying out on the spontaneous combustion gangue activity. Based on the orthogonal test design method, I study the using of Fuxin coal mine spontaneous combustion coal gangue preparation feasibility of spontaneous combustion of coal gangue cement and the best mixture ratio and the concrete preparation method.
     (3) Using coal gangue as the main raw material to produce Green cementitious materials, geological polymer,in21th Century and provide a new application field for the comprehensive utilization of coal gangue. Researching ligand alkali excitation agent on the properties of geopolymer excitation function, through experiments and mathematical analysis optimization of the mix proportioning of the spontaneous combustion coal gangue, slag, fly ash geopolymer, verify the reliability of the indices such as its strength.
     (4) Using artificial grading of spontaneous combustion gangue sand and coal gangue, with the coal gangue spontaneous combustion Portland cement as the cementing material. Based on lightweight aggregate concrete mix design method, respectively with different strength grade of coal gangue coarse and fine aggregate concrete. And compare Strength and Working performance with common cement of Coal gangue concrete, discussion on the characteristics and mechanical properties of coal gangue concrete, study feasibility of a large amount of coal gangue and its application in concrete.
     (5) Through lime fly ash cement modified spontaneous combustion coal gangue mixture as roadbed material, make it become effective way to scale consumption of coal gangue. First, by using the lime-fly ash to improve the spontaneous combustion of coal gangue mixture ratio design, full of water and no side limit compression strength, compaction characteristics. Analysis of two ash stabilized combustion coal gangue mixture probability as roadbed materials, and the mechanism of strength. Results show that coal gangue mixture of two ash stability cannot meet the requirements of northern antifreeze. Through the comparative test of different cement content, I give the "three ash" stable spontaneous combustion coal gangue mixture durability of optimum mix, provide reference for engineering application, and analyse its mechanism.
     (6) As the test data for a sample, according to the result of the test data, the use of finite element analysis and calculation method, the FLAC3D platform, simulation studies under the action of different cars, the gangue subgrade settlement deformation, plastic zone distribution, stress distribution and other characteristics, to the reliability of the comprehensive analysis of coal gangue subgrade.
     Draw the following main conclusions
     (1) Spontaneous combustion of coal gangue is rich in silica and alumina and the content of great, the spontaneous combustion of coal gangue and building materials dual approximation in the "quality" and "quantity". So as to determine the spontaneous combustion of coal gangue in cement, concrete and soil materials in the scale of use is the most effective approach.
     (2) Application of spontaneous combustion of coal gangue in concrete and subgrade materials is feasible:due to the presence of grading defects, need crushing screening can meet the requirements of coal gangue particle gradation; compared with the crushed stone soil, the water stability is poor; through the study of the spontaneous combustion of coal gangue CBR value test result shows red gangue and ash gangue can to meet the strength requirements of road material.
     (3) Test and analysis shows that:gangue activity is much higher than ordinary artificial sand, the effect of fineness on the strength of test block maximum. Fuxin mine spontaneous combustion gangue can be used as the active preparation of hybrid materials gangue portland cement through the mechanical and chemical activation, when the spontaneous combustion gangue:slag:gypsum:ordinary portland cement=25:10:3:62ordinary portland cement, spontaneous combustion of coal gangue cement strength reached the maximum.
     (4) Spontaneous combustion of coal gangue and slag-Fly Ash Geopolymer best ligand: types of sodium silicate and potassium hydroxide, ratio of1:1. By quadratic response surface test regression analysis showed that there is a clear quantitative relationship between Sodium silicate modulus and strength inspire agent dosage and mortar. The optimal sodium silicate modulus was1; activator dosage was22.6%(the optimal total cementitious material).
     (5) The spontaneous combustion of coal gangue thickness of Portland cement, particle size distribution and good spontaneous combustion of coal gangue aggregate preparation of spontaneous combustion gangue concrete, proved the feasibility of large amount of spontaneous combustion of coal gangue concrete; Through the contrast test to get aggregate ratio exists "fit effect", the strength of concrete is significantly improved.
     (6) The gangue roadbed mixture unconfined water compressive strength to meet the regulatory requirements, but lower strength instability; When the cement content of3%, the best of flyash cement modified gangue mixture specimen.
     (7) Based on FLAC3D numerical simulation, the variation analysis of subsidence deformation, stress distribution, the distribution of plastic zone, proved in the the flyash cement modified gangue roadbed material is feasible.
引文
[1]王彦峰.论煤矸石综合利用现状[J].北方环境,2011(11):5-8.
    [2]段志鹏等.矸石山自燃的防治[J].山西焦煤科技,2009:35-39.
    [3]张长森等.自燃煤矸石作为活性掺合料配制高强混凝土的试验研究[J].混凝士与水泥制品,2004(6):1-5.
    [4]闵凡飞等.煤矸石山自燃火源形成原因及其预测预防[J].煤炭科技,2003(1):6-9.
    [5]黄亨志.煤矸石对环境的危害与综合治理[J].煤炭科技,2010(6):1-3.
    [6]陈飞虎.自然煤矸石国内外研究与应用情况[J].硅酸盐建筑制品,1996(1):9-16.
    [7]马成理.浅谈自燃煤矸石砂及轻骨料在工程中的应用[J].山西建筑,2002(10):35-40.
    [8]潘荣锟等.矸石山的危害及自燃原因关联分析[J].安全与环境工程,2006(2):3-6.
    [9]徐希刚.煤矿矸石山自燃与防治技术[J].山东煤炭科技,2009(2):45-49.
    [10]毕银丽等.煤矸石堆放的环境问题及其生物综合治理对策[J].金属矿山,2005(12):18-25.
    [11]陈贵荣等.煤矸石自燃的机理,污染及防治技术[J].西山科技,2000(4):33-37.
    [12]马鸿文,杨静,任玉峰等.矿物聚合物材料研究现状与发展前景[J].地学前沿,2002,9(4):398-407.
    [13]吕江波.粉煤灰地质聚合物的制备与性能分析[D].西安:西北大学,2009.
    [14]倪文等.地质聚合物-21世纪的绿色胶凝材料[J].新材料产业,2003(6):1-5.
    [15]李珍等.地质聚合物在材料领域的应用及其发展方向[J].长江科学院院报,2008(4):1-2.
    [16]Foden A J, Balaguru P, Lyon R E.Mechanical Properties and Fire Response of Geopolymer Structural Composites[J].Int sampe Symp Exhib,1996(41):58-68.
    [17]Foden A J, Balaguru P, Lyon R E, et al. Flexural Fatigue Properties of An Inorganic Matrix-carbon Fiber Composite[J].Int Sample Symp Exhib,1997(42):134-137
    [18]吴静.新型地聚合物基建筑材料的研究[D].武汉:武汉理工大学,2007.
    [19]张启伟等.浅谈原材料及配合比对混凝土耐久性的影响[J].科技信息,2006:17-20.
    [20]王恩等.工业固体废弃物制备地质聚合物技术的原理与发展[J].矿产综合利用,2005(5):35-38.
    [21]潘荣锟,余明高,徐俊,黄照.矸石山的危害及自燃原因关联分析[J].安全与环境工程,2006,13(2):67-69.
    [22]杨南如.机械力化学活化过程及效应(Ⅰ)-机械力化学效应[J].建筑材料学报,2000,3(1):19-26.
    [23]胡曙光,陆红兵.煤矸石颗粒分布对煤矸石-水泥体系水化及性能的影响[J].水泥,2006,10:5-8.
    [24]芋艳梅,方莹,张少明.机械力化学效应对煤矸石水泥性能的影响[J].硅酸盐通报,2006,25(4):59-61.
    [25]赵鸿胜,张雄,曹俊.煤研石粒径分布对活性影响的灰色关联分析[J].水泥工程,2004,21(2):23-2.
    [26]张永娟,张雄.煤研石颗粒群分布与其水泥性能的关系[J].新世纪水泥导报,2004,9(3):16-19.
    [27]李晓,唐明,肖鹤.煅烧高铝煤矸石-矿渣-水玻璃系地聚合物材料的研究[J].水泥,2006,7(18):8-10.
    [28]王聪.碱激发胶凝材料的性能研究[D].哈尔滨:哈尔滨工业大学,2006.
    [29]周梅,汪振双.煤矸石生产绿色建材的性能研究分析[J].科学技术与工程,2007,4(1):1443-1445.
    [30]周梅,李塑忠,霍宝荣.自燃煤矸石-粉煤灰生产混凝土空心砌块研究[J].混凝士与水泥制品,2007,12(6):53-55.
    [31]张长森,薛建平,房利梅.碱激发烧煤矸石胶凝材料的力学性能和微观结构[J].硅酸盐学报,2004,32(10):1276-1280.
    [32]陈红霞,孙恒虎,李化建.自燃煤矸石胶凝材料中钙矾石形成研究[J].材料导报,2005,19(10):124-125.
    [33]赵鸿胜.影响煤矸石热激活的因素分析[J].四川水泥,2003,2(6):10-12.
    [34]宋旭艳.煤矸石活化过程中结构特性和力学性能的研究[J].硅酸盐学报,2004,32(3):358-363.
    [35]顾炳伟,王培铭,熊少波.煤矸石的机械-热力复合活化研究[J].新型建筑材料,2006,3(6):43-46.
    [36]芋艳梅,方莹,张少明.机械力化学效应对煤矸石水泥性能的影响[J].硅酸盐通报,2006,25(4):59-61.
    [37]朱明秀,闫小梅,潘志华.煤矸石热力化学复合活化研究[J].南京工业大学学报,2006,28(3):15-19.
    [38]王聪.碱激发胶凝材料的性能研究[D].哈尔滨工业大学,2006:12-48.
    [39]赵鸿胜,张熊.煤矸石作水泥混合材的活化方法[J].新世纪水泥导报,2004,20(4):23-29.
    [40]王坚.煤矸石胶结料的研究[J].建筑石膏与胶凝材料,2004,15(3):28-30.
    [41]王景贤,王立久.煤矸石少熟料水泥的研究[N].新世纪水泥导报.2004.
    [42]张长森,薛建平,房利梅.激发烧煤矸石胶凝材料的力学性能和微观结构[J].硅酸盐学报,2004,32(10):1276-1277.
    [43]刘升阳.筑坝煤矸石的物理力学特性研究[J].辽宁工程技术大学,2007,2(5):34-36.
    [44]中华人民共和国国家标准.水泥胶砂强度检验方法(ISO法) (GB/T17671-1999)
    [45]中华人民共和国行业标准.小负荷材料试验机检定规程(JJG157-83)
    [46]张长森,薛建平,房利梅.激发烧煤矸石胶凝材料的力学性能和微观结构[J].硅酸盐学报,2004,32(10):1276-1277.
    [47]袁鸿昌,江尧忠.地质聚合物材料的发展及其在我国的应用前景[J].硅酸盐通报,1998,(2):46-51
    [48]曹启坤,江兴伟,马小满.HPC中矿物掺料叠合效应的试验研究[J]科学技术与工程2007,3(6):1267-1269.
    [49]周梅,刘海卿,曹启坤,刘书贤.短碳纤维增强高性能混凝土的性能和机理研究[J].应用基础与工程科学学报,2004,3(1):41-43
    [50]周梅,曹启坤,宋琨.短碳纤维增强高性能混凝土的均匀试验研究[J].混凝土,2004,10(10):35-37+62.
    [51]中华人民共和国国家标准.建筑用砂(GB/T14684-2001)
    [52]冷发光.煤矸石综合利用的研究与应用现状[J].四川建筑科学研究,2000,26(2):44-46.
    [53]陈红霞,孙恒虎,李化建.砂质自燃煤矸石胶凝材料的研究[J].建筑石膏与胶凝材料,2005,31(1):1-4.
    [54]张长森,薛建平,房利梅.激发烧煤矸石胶凝材料的力学性能和微观结构[J].硅酸盐学报,2004,32(10):1276-1277.
    [55]井巍,刘剑虹,林枫.粉煤灰地质聚合材料的制备研究[J].高师理科刊,2006,26(4):40-42.
    [56]吕江波,胡晓云.粉煤灰地质聚合材料的最优强度研究[J].滨州学院学报,2008,24(6):45-50.
    [57]范飞林,徐金余,李为民.矿渣-粉煤灰基地质聚合材料的基本性能研究[J].混凝土,2008,23-27.
    [58]聂轶苗,马鸿文,苏玉柱.地质聚合材料固化过程中的聚合反应机理研究[J].现代地质,2006,20(2):340-346.
    [59]Xu Hua,Van Deventer JSJ.The geopolymerisation of aluminosilicate minerals[J].Internation Journal of Mineral Processing,2000,59:247-266.
    [60]李化建,孙恒虎,铁旭初.煤矸石热活化和胶凝化过程中硅铝的配位[J].清华大学学报,2006,46(12):2015-2018
    [61]苏玉柱,杨静,马鸿文.利用粉煤灰制备高强地质聚合材料的实验研究[J].现代地质,2006,20(2):359-362.
    [62]李俊,尹健,周士琼,李益进.基于正交试验的再生骨料混凝土强度研究[J].土木工程学报,2006,39(9):43-46.
    [63]沈卫国,胡金强,周明凯,马威,蔡智.二次正交回归在水泥三组分最优设计中的应用[J].武汉理工大学学生报,2008,30(10):43-46.
    [64]Rees, C.A., J.L.Provis, G.C.Lukey, et al., In Situ ATR-FTIR Study of the Early Stages of Fly Ash Geopolymer Gel Formation. Langmiru,2007.23:9076-9082.
    [65]Panias, D., I.P.Gianno Poulou, T.Perraki, Effeet of synthesis Parameters on the meehanieal ProPerties of fly ash-based geoPolers. Colloids and SurfacesA:Physieoehem.Eng.AsPects, 2007.301(2):246 - 254.
    [66]杨再富.粗集料对混凝土强度影响的试验研究与数值模拟[D].重庆:重庆大学,2005.
    [67]王国平.辽宁阜新煤矸石资源化研究[D].成都:成都理工大学地球科学学院,2005.
    [68]马成理.自燃煤矸石的材料性能试验研究[J].太原理工大学学报,2003,34(2):154-147.
    [69]杨再富.粗集料对混凝土强度影响的试验研究与数值模拟[D].重庆:重庆大学,2005.
    [70]黄爱悦,郭爱民.煤矸石混凝土的研制及应用[J].建井技术,2002,12(6):28-30.
    [71]刘数华,冷发光,罗季英主编.建筑材料试验研究的数学方法[M].北京:中国建材工业出版社,2006:138-174.
    [72]王坚.煤矸石胶结料的研究[J].建筑石膏与胶凝材料,2004,14(2):28-30.
    [73]李其江.地质胶凝聚合材料的制备及其性能究[D].景德镇:景德镇陶瓷学院,2007.
    [74]张海鸿,刘开平,和立新,赵秀峰,郭琳,李波.活化煤矸石在水泥砂浆中的应用研究[J].非金属矿,2009,32(1):45-47.
    [75]陈红霞,孙恒虎,李化建.砂质自燃煤矸石胶凝材料的研究[J].建筑石膏与胶凝材料,2005,4(2):1-4.
    [76]吴秀峰,周梅,崔正龙.自燃煤矸石粗集料对混凝土强度影响的试验研究[J].工业建筑,2009,39(3):81-85.
    [77]李志成,孙莉,赵银萍.人工神经网络在人工砂粉煤灰混凝土配合比设计中的应用[J].华北水利水电学院学报,2005,7(4):21-23.
    [78]张向东,贾宝新,辛爽,周梅.聚合物排矸石水泥混凝土的力学性能研究[J].全国高强与高性能混凝士及其应用专题研讨会,2005:194-198.
    [79]周梅,殷志祥,刘海卿,汪振双,杨力辉.基于均匀设计的固体废弃物制备的树脂混凝土研究[J].《硅酸盐学报》创刊50周年暨中国硅酸盐学会2007年学术年会,2007:74-75.
    [80]周梅,巩玉发,汪振双.基于均匀设计的氯氧镁水泥制品试验研究[J].科学技术与工程,2006,2(11):492-495.
    [81]周梅;朱涵;王美丽;李志国固体废弃物制备树脂混凝土的试验研究及应用[J].硅酸盐通报,2008,6(3):438-443+450.
    [82]周梅,王强,牟爽.自燃煤矸石粗集料特性对混凝士拌合物工作性影响研究[J].非金属矿2013,1(10):8-11.
    [83]高速公路从书编委会.高速公路设计与施工[M].北京:人民交通出版社,1997.
    [84]邓学钧,张登良.路基路面工程[M].北京:人民交通出版社,2000.
    [85]谢定义.土动力学[M].西安:西安交通大学出版社,1988.
    [86]Theirs G R, et al. Cyclic stress-strain characteristics of clay. Journal of Soil and Foundation Division, ASCE,1968,94(SM6):555-569.
    [87]Theirs G R. Strength and stress-strain characteristics of clays subjected to seismic loading conditions. Vibration effects of earthquakes on soils and foundations; STP450,, Philadelphia, Pa.1969,3-56.
    [88]Sangrey D A,Henkel D J,Esirig M I.Effective stress response of a saturated clay soil to repeated loading. Canadian Geotechnical Journal,1994,31(5):714-727.
    [89]France J W, Sangrey D A. Effects of drainage in repeated loading. Jr. Geotech. Engrg. Div. ASCE.1977,103(7):769-785.
    [90]Luo W K. The characteristics of soils subjected to repeated loads and their applications to engineering practice. Soils and Foundations,1973,13(1):13-25.
    [91]Yamanouchi T deformation of soils under repeated loading.24th Annual meeting JSCE,1969.
    [92]Fuijiwara H et al. Consolidation of alluvial clay under repeated loading. Soils Foundations, 1985,25(3):19-30.
    [93]Fuijiwara H et al. Secondary compression of clay under repeated loading. Soils Foundations, 1987,27(2):21-30.
    [94]阎澎旺.往复荷载作用下重塑软粘士的变形特性[J].南京:岩土工程学报,1991.13(1):48-53.
    [95]王建华.软粘土弱化动力特性的归一化关系[J].天津:天津大学学报,1995,1(1):54-58.
    [96]周健等.动力荷载作用下软粘土的残余变形计算模式[J].武汉:岩土力学,1996,17(1):55-60.
    [97]自冰.冲击荷载作用下饱和软粘士孔压增长与消散规律[J].岩土力学,1998,19(2):33-38.
    [98]蒋军.循环荷载作用下粘土及砂芯复合试件性状试验研究[D].杭州:浙江大学,2000.
    [99]陈锦剑,吴刚等.基于扰动状态概念模型的饱和软粘土力学特性[J].上海交通大学学报,2004,38(6):952-955.
    [100]Toyotoshi Yamanouchi应用生石灰和纺织物滤层改良土质.王秉勇译《Journal of the GeotechnicalEngineering Division》,1982.
    [101]刘林芽,雷晓燕,练松良.高速铁路路基质量检测方法及注意事项.铁道标准设计,2004,(10):64-66.
    [102]郑炳厚.石灰粉煤灰稳定士强度初探[J].河北交通(工程版),1991:10-11.
    [103]赵继志.石灰粉煤灰类材料的配比和应用[J].北京公路,1989(2):14-20.
    [104)董显译,王凯校.细粒土中二灰的稳定性[J].国外公路,1991,11(6):43-48.
    [105]丁庭,李晓力.二灰土技术及填料优化设计研究[J].西部探矿工程,2003,5,5-7.
    [106]邱国锋.高速公路二灰土底基层配合比的确定与施工[J].广州大学学报(自然科学版2004)
    [107]中华人民共和国交通标准.(JTJ 051-93)公路士工试验规程[s].北京:人民交通出版社,1993.
    [108]沙爱民.半刚性路面材料结构与性能[M].北京:人民交通出版社,1998:15-19.
    [109]张登良.加固土机理[M].北京:人民交通出版社,1990:58-64.
    [110]高速铁路路基改良土工程性质试验及施工技术研究[D].西南交通大学2002.
    [111]叶书麟,叶观宝.地基处理[M].北京:中国建筑工业出版社,1997,82-89.
    [112]邓学钧,张登良.路基路面工程[M].北京:人民交通出版社,2001,27-82.
    [113]钱家欢,殷宗泽.士工原理与计算[M].北京:中国水利水电出版社,1996.491-537.
    [114]彭社琴,赵其华,黄润秋.成都粘土动三轴试验研究[J].成都:地质灾害与环境保护,2002,
    [115]Hardin B 0, Drnevich V P. Shear modulus and damping in soils:measurement and,parameter effectsjournal of the Soil Mechanics and Foundations Division, ASCE,1972,98(SM6):603-624.
    [116]王杰贤.动力地基与基础[M].北京.科学出版社.2001.
    [117]Hardin B O, Drenevich V P. Shear modulus damping in soils:design equation and curves. Journal of Soil Mechanics and Foundations Division, ASCE,1972,98(SM7):667-692.
    [118]Bobby O. Hardin and Vincent P Drnevich. Shear Modules and Damping in Soils:Equation and Curves. Journal of the Soil Mechanics and Foundation Division, ASCE,1972,98(SM6): 603-624.
    [119]梅英宝,朱向荣.交通荷载作用下道路与软土地基弹塑性变形分析[J].浙江大学学报:工学版,2005,39(7):997-1002.
    [120]邓卫东,张兴强.路基不均匀沉降对沥青路面受力变形影响的有限元分析[J].中国公路学报,2004,17(1):12-15.
    [121]章东强.交通荷载引起的环境振动实测与分析[J].武汉理工学报,2004,26(9):57-59.
    [122]SubeiN,Saxena S K,MohammadiJ.A BEM-FEM approach for analysisof distresses in pavements [J]. International Journal of Numerical Analysis Methods in Geomechanics, 1991,15:103-119.
    [123]贺建清.石灰改良土路基填料的动力特性及应用研究[D].湖南:中南大学.2005.
    [124]邓学均,车辆一地面结构系统动力学[M].北京:人民交通出版社,2000.
    [125]HyodoM,Yasuhara K. Analytical procedure for evaluating waterpressure and deformation of saturated clay ground subjected to traffic loads [C]//Proceedings of the 6th International Conference on Numerical Methods in Geomechanics. Innsbruck:[s. n.],1987:653-658.
    [126]刘保健,谢定义.随机荷载下土动力特性测试分析法.[M]北京:人民交通出版社,2001.
    [127]杨桂通.士动力学.[M]北京:中国建材工业出版社.2000.
    [128]张树光.辽西地区风积土的强度冻融特性及其分形性质的研究[D].阜新:辽宁工程技术大学2004:46-112.
    [129]张向东,孙国志.辽西地区季节性冻风积土研究现状[J].昆明理工大学学报,2007,32(4A)46-51.
    [130]宋春霞.冻融作用对土物理力学性质影响的试验研究[D].西安:西安理工大学,2007.
    [131]李化建.煤矸石的综合利用[M].北京:化学工业出版社,2007
    [132]周梅;汪振双;崔正龙阜新煤矸石用作路基材料的研究分析[J].建筑节能2007,2(25)34-36.
    [133]纪成君,周梅.阜新地区煤矸石、粉煤灰路用性能的可行性研究[J].中国资源综合利用,2006,3(5):28-31.
    [134]张向东;朱光宇;林增华无机结合料稳定士层防治道路冻害的试验研究[J]辽宁工程技术大学学报(自然科学版),2008,5(4):59-61.
    [135]张向东,贾宝新.锰铁废渣作为道路基层填料的试验研究[J]中国地质灾害与防治学报,2005,3(1):108-111
    [136]张向东;张树光;易富西地区风积土冻融特征的试验研究[J].岩土力学,2005,10(S2)79-82+87
    [137]Zhang Xiangdong,Cao Qikun. Experimental study on application of Composite Soil Binding Agent Stabilized Soil[C]. New development in rock mechanics and engineering.2009.5
    [138]Zhang Xiangdong,Cao Qikun. Application of BP neural network in the predication of compressive strength of road base-coarse materials[C]. New development in rock mechanicsand engineering.2009.5
    [139]沈洋,许仲梓,吴承祯等.界面区结构对水泥砂浆抗硫酸盐侵蚀性能的影响[J].硅酸盐学报.1996,24(2):119-125
    [140]王培铭,刘贤萍,胡曙光.硅酸盐熟料-煤矸石/粉煤灰混合水泥水化模型研究[J].硅酸盐学报.2007,35(S1):180-186
    [141]孙增智,申爱琴,胡长顺.聚丙烯酰胺改性混凝土的微观分析.公路.2005,(9):143-149
    [142]刘贤萍,王培铭.硅酸盐水泥熟料-煤矸石混合水泥的界面结构[J].硅酸盐学报.2008,36(1):105-112
    [143]陈美祝,周明凯.水泥水化产物对混凝土收缩开裂的影响[J].中国水泥2007,(1):56-58

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700