聚丙烯酰胺对水泥浆性质影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工程建设中,自密实混凝土(SCC)的应用变得越来越广泛,它具有无振捣、噪音低、浇筑速度快、施工工期短等特点。增稠剂是自密实混凝土的重要组成部分之一,它可以起到减少泌水、提高黏聚性的作用。尽管有不同种类的增稠剂应用于混凝土工程,但增稠剂对水泥性质影响却缺乏系统研究,本文以增稠剂聚丙烯酰胺(PAM)为研究对象,研究了PAM对水泥的标准稠度用水量、凝结时间、电阻率、微观结构、黏度、收缩和强度等性质的影响。
     研究表明,掺入PAM时,水泥的标准稠度用水量随其掺量的增加而增大,水泥浆体的凝结时间也明显延长。当PAM掺量在0.1‰以下时,水泥浆体黏度显著增大,PAM掺量为0.1‰-0.8‰时,黏度的增长速度变缓。表明PAM水解形成的含羧基共聚物与金属离子形成含离子键的化合物,从而引起PAM分子间的交联。PAM对水泥浆体的早期电阻率值影响不大,而后期电阻率值则随着PAM掺量的增加而增大,同时PAM的掺入也提高了电阻率在水化后期的增长速度。掺入PAM的水泥浆中气孔孔隙率有所增大,同时水化产物钙矾石(AFt)的针状结构更细更密,浆体局部结构也更加密实,减小了浆体中水化产物间连通孔所占空间及其在全部孔隙中的比例。在PAM掺量不大于0.5‰时,可以减小收缩率;在PAM的掺量不大于0.8‰的情况下,试件强度未出现明显下降。
The application of self-compacting concrete (SCC) is becoming increasingly widespread?in construction. SCC’s properties include no vibration, low noise, casting speed, short construction period and so on. Viscosity modified agent is an important part of self-compacting concrete, and it can decrease the risk of bleeding and improve the role of cohesiveness. Although all kinds of thickening agent have been used in concrete works, the influence of the properties of cement is lack of systematic research. As a representative of the thickening agent, the influence of polyacrylamide (PAM) on the cement paste including the water consumption for normal consistency of cement, setting time, resistivity, microstructure, viscosity, shrinkage and strength properties has been studied in the paper.
     Studies have shown that the water consumption for normal consistency of cement increased with the increase of the content of PAM, and the setting time of cement paste was significantly prolonged. The viscosity of cement paste significantly increased when the PAM content is below 0.1‰, and the viscosity of the growth rate slowed while PAM dosage is between 0.1‰to 0.8‰. It indicated that the compounds containing ionic bonds, which are formed by the carboxyl-containing copolymer of hydrolyzed PAM and metal ions, caused the cross-linking of PAM molecules. PAM had little effect on the early resistivity of the cement paste, but the late electrical-resistivity increased with the increase of PAM content, so did the rate of the change of electrical-resistivity. The incorporation of PAM increased the closed pore in the cement paste, refined and compacted the needle structure of hydration products ettringite (AFt), local structure of paste was denser and more compact, and thus the space and ratio of inter-connected pores reduced. It could reduce the shrinkage rate when PAM content is not more than 0.5‰; in the cases of PAM content is not more than 0.8‰, the strength of specimen didn’t appear to decrease significantly.
引文
[1]施惠生,孙振平,邓恺.混凝土外加剂实用技术大全[M].北京:中国建材工业出版社, 2008
    [2]安雪晖,黄绵松,大内雅博等.自密实混凝土技术手册[M].北京:水利水电出版社, 2008
    [3]陈秋生,陈立明.水下不分散混凝土的研制与应用[J].混凝土, 2000,125(3): 39-41
    [4] Kamal Henri Khayat. Effects of Anti-washout Admixtures on Fresh Concrete Properties[J]. ACI Materials Journal. 1995, 92(2): 164-171
    [5]陈严.水下抗分散混凝土的研究与应用.混凝土与水泥制品. 1993, (5):13-15
    [6]冯士明,张长民,周伟,?等.水下不分散混凝土的研究与应用开发.混凝土[J]. 2000, 129(7): 36-38
    [7]宋作宝.混凝土增粘剂的研究[硕士学位论文].北京:北京工业大学, 2003
    [8]买淑芳,陈贻研,梅梅.水下不分散混凝土的研究和应用[J].水力发电学报, 1994, 45(2):45-56
    [9]宋作宝,王子明,朱连滨.增粘剂与减水剂的适应性方法的研究[A].混凝土外加剂及其应用技术.北京:机械工业出版社, 2004: 304-307
    [10]沙林浩.水下不分散混凝土的开发与利用.混凝土. 1991, 13(1): 31-34
    [11]沙林浩,王宗玉,?冯爱丽,?等.新一代高强水下不分散混凝土[J].施工技术. 1998, (5): 19-20
    [12]陈严.新一代混凝土——水下混凝土.混凝土, 1993, (2): 14-19
    [13]陈运根,?舒季钊.高分子量聚丙烯酰胺的制备.精细石油化工, 1990, (6): 25-30
    [14]王雨华,刘景凤.高分子量阴离子型聚丙烯酰胺的制备.石油化工高等学校学报, 1994, 7(4): 25-29
    [15]刘海滨.聚丙烯酰胺的性质及应用.国外油田工程, 2001, 17(9): 53-54
    [16]鞠耐霜,曾文江.阴离子型聚丙烯酰胺的合成及应用.广州化工, 1998, 26(4): 66-69
    [17]张帅,张英华.增稠剂对超高韧性纤维增强水泥基复合材料性能的影响.混凝土与水泥制品, 2008, (1): 34-36
    [18]王雨利,单俊鸿,周明凯,等. CMC和PAM对砂浆性能的影响[J].房材与应用, 2005, 33(4): 36-37, 84-85
    [19]王起才,赖远明,欧阳永金.增稠剂对钢纤维混凝土构件性能影响的试验研究.铁道学报, 1997, 19(4): 115-121
    [20]林鲜,阎培渝.掺增稠剂新拌胶凝材料浆体的结构.建筑材料学报, 2000, 3(4): 370-375
    [21] Kamal Henri Khayat. Frost Durability of Concrete Containing Viscosity-Modifying Admixtures. ACI Materials Journal. 1995, 92(6): 625-633
    [22] Sébastien Rols, Jean Ambroise, Jean Péra. Effect of different viscosity agents on the properties of self-leveling concrete. Cement and Concrete Research. 1999, 29(2): 261-266
    [23] Kamal Henri Khayat and Zubeir Guizani. Use of Viscosity-modifying Admixtures to Enhance Stability of Fluid Concrete. ACI Materials Journal. 1997, 94(4): 332-340
    [24] McCarter W J, Bronsseau R. The A.C. response of hardened cement paste[J]. Cement and Concrete Research, 1990, 20(6): 891-900
    [25] Hansson I L H, Hansson C M. Electrical resistivity measurements of Portland cement based materials[J]. Cement and Concrete Research, 1983, 13(5): 675-683
    [26]魏小胜,肖莲珍,李宗津,等.钢纤维水泥基材料的导电机理和水化特性[J].混凝土, 2006, 198(4): 11-13
    [27]魏小胜,肖莲珍,李宗津.采用电阻率法研究水泥水化过程[J].硅酸盐学报, 2004, 32(1): 34-38
    [28] Li Zongjin, Li Wenlai. Contactless transformer-based measurement of the resistivity of materials: US Patent. 6639401[P], 2003
    [29]魏小胜,廖宜顺,李国卫.电阻率法在水泥基材料研究中的应用进展[J].科技导报, 2009, 27(10): 92-97
    [30]隋同波,曾晓辉,谢友均,等.电阻率法研究水泥早期行为[J].硅酸盐学报, 2008, 36(4): 431-435
    [31] Wei Xiaosheng, Xiao Lianzhen, Li Zongjin. Hyperbolic method to analyze the electrical resistivity curve of Portland cements with super plasticizer[J]. Journal of Wuhan University of Technology, Materials Science Edition, 2008, 23(2): 245-248
    [32]乔龄山.水泥凝结时间的新检测方法——电导率测定[J].水泥, 2005, (1):65
    [33]曾晓辉,隋同波,宓振军,等.电阻率法测定水泥的凝结时间[J].水泥, 2009, (1): 43-45
    [34]曾晓辉.无电极电阻率仪在早龄期水泥水化行为的应用研究[硕士学位论文].北京:中国建筑材料科学研究总院, 2007
    [35] Wei Xiaosheng. Interpretation of hydration process of cement-based materials using electrical resistivity measurement [博士学位论文]. Hong Kong: Hong Kong University of Science and Technology, 2004
    [36]魏小胜,肖莲珍,李宗津.电阻率法快速测定水泥强度的原理[C].第四届全国高性能混凝土学术研讨会论文集.武汉, 2002: 183-186
    [37] Levita G, Marchetti A, Gallone G, et al, Electrical properties of fluidified Portland cement mixes in the early stage of hydration [J]. Cement and Concrete Research, 2000, 30(6): 923-930
    [38]曾晓辉,隋同波,谢友均,等.电阻率法研究减水剂与水泥的作用[J].硅酸盐学报, 2008, 36(10): 1390-1395
    [39] Xiao L Z, Li Z J, Wei X S. Selection of superplasticizer in concrete mix design by measuring the early electrical resistivities of pastes[J]. Cement and Concrete Composites, 2007, 29(5): 350-356
    [40]袁岚.全国混凝土外加剂及其应用技术新进展学术交流会在京召开[N].中国建材报, 2009-07-07[B04]
    [41]王立久,王文亮,曹明莉.混凝土结构模型研究综述[C],第五届全国高性能混凝土学术交流会论文集,沈阳, 2004: 261-271
    [42]张竞男,胡晓波.粉煤灰对水泥浆体流变性能影响的研究[J].浙江建筑, 2005, 22(S1): 88-90
    [43] Petin N, Gajsinovitch E. A study of the setting process of cement paste by electricalconductivity methods [J]. Journal of General Chemistry of the USSR, 1932(2): 614-629
    [44]孙增智,申爱琴,胡长顺.聚丙烯酰胺改性混凝土的微观分析[J].公路, 2005, 9: 143-149
    [45] Khalaf F M, Wilson J G. Electrical properties of freshly mixed concrete[J]. Journal of Materials in Civil Engineering, 1999, 11(3): 242-248
    [46]韩宝国,关新春,欧进萍.碳纤维水泥石电阻测试方法研究[J].玻璃钢/复合材料, 2003, 173(6): 6-8
    [47]金贤玉,李宗津.早龄期混凝土的电特性研究[J].硅酸盐学报,2000, 28(S):28-32
    [48]毛起炤,孙明清,陈品华. CFRC试块体积电阻和表面电阻的研究[J].武汉工业大学学报, 1997, 19(2): 65-67
    [49]丁华涛,胡曙光,丁庆军,等.无机矿物外加剂对水泥石电阻率影响规律的研究[J].国外建材科技, 2008, 29(2): 4-7
    [50]周明凯,周丽娜,魏小胜.电阻率法研究磷及石灰对水泥凝结硬化的影响[J].武汉理工大学学报, 2007, 29(8): 37-40
    [51] Li Zongjin, Xiao Lianzhen, Wei Xiaosheng. Determination of concrete setting time using electrical resistivity measurement [J]. Journal of Materials in Civil Engineering, 2007, 19(5): 423-427
    [52] Li Zongjin, Wei Xiaosheng. The electrical resistivity of cement paste incorporated with retarder [J]. Journal of Wuhan University of Technology: Materials Science Edition, 2003, 18(3): 76-78
    [53]张莉.化学外加剂对水泥水化历程的影响及作用机理研究[硕士学位论文].武汉:武汉理工大学, 2004
    [54]张丽君,何真,梁文泉.电阻率法研究矿物外加剂对水泥早期水化的影响[J].混凝土, 2004, 173(3): 32-35
    [55]肖莲珍,李宗津,魏小胜.用电阻率法研究新拌混凝土的早期凝结和硬化[J].硅酸盐学报, 2005, 33(10): 1271-1275
    [56]苏志忠,林明穗,张宗伟,等.聚羧酸系减水剂缓凝机理探讨[J], 2005, 22(4):401-405
    [57]马保国,谭洪波,董荣珍,等.聚羧酸减水剂缓凝机理的研究[J], 2008, 25(6): 93-95
    [58]游宝坤,李乃珍.膨胀剂及其补偿收缩混凝土[M],中国建材工业出版社. 2005
    [59]许华胜,蒋正武.高性能混凝土中自身相对湿度变化与自收缩的研究[J].重庆建筑大学学报, 2004, 26(2): 121-125
    [60] A?tcin P C. The durability characteristics of high performance concrete: a review [J]. Cement and Concrete Composites. 2003, 25(4-5): 409-420
    [61] Tazawa E, Miyazawa S. Influence of cement and admixture on autogenous shrinkage of cement paste [J]. Cement and Concrete Research. 1995, 25(2): 281-287
    [62] Sun D J, Sisomphon K, Zhang M H. Effect of superplasticisers on adsorption, rate of cement hydration, and pore structure of cement pastes [J]. Advances in Cement Research. 2009, 21(4): 159-167
    [63] Meddah M S, Tagnit-Hamou A. Pore structure of concrete with mineral admixtures and its effect on self-desiccation shrinkage [J]. ACI Materials Journal. 2009, 106(3): 241-250
    [64] Li Yue, Bao Junling, Guo Yilin. The relationship between autogenous shrinkage and pore structure of cement paste with mineral admixtures [J]. Construction and Building Materials. 2010, 24(10): 1855-1860
    [65] Gleize P J P, Cyr M, Escadeillas G. Effects of metakaolin on autogenous shrinkage of cement pastes [J]. Cement and Concrete Composites. 2007, 28(2): 80-87
    [66] Sensale G R D, Ribeiro A B, Gonclves A. Effects of RHA on autogenous shrinkage of Portland cement pastes [J]. Cement and Concrete Composites. 2008, 30(10): 892-897
    [67] Zhang M H, Tam C T, Leow M P. Effect of water-to-cementitious materials ratio and silica fume on the autogenous shrinkage of concrete [J]. Cement and Concrete Research. 2003, 33(10): 1687-1694 ?

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700