大庆油田气体钻井井斜机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气体钻井在解决低压漏失、提高钻速方面优势而被广泛应用,但井斜控制技术已成为限制气体钻井发展的瓶颈。现场资料表明,气体钻井比常规钻井液钻井更易井斜,井斜程度更大。由于气体钻井循环介质的改变使底部钻具组合的受力和变形发生变化且存在负压差,气体钻井条件下的井斜机理必然不同于常规过平衡钻井条件下的情形。因此,从理论上研究气体钻井的井斜机理、制定防斜措施并指导现场作业显得尤为重要。
     首先,本文根据实钻资料统计结果,得到气体钻井井斜规律:气体钻井产生的井斜较大且井斜增长速度快,井斜不易控制;总结了影响气体钻井井斜的不可控因素、可控因素。
     其次,基于气体钻井井底岩石受力状况,分析了破岩机理、井底温度场、地层各向异性、地层倾角等不可控因素对气体钻井井斜机理的影响,分析认为:气体钻井改变了井周井底岩石的应力状态,使得地层应力差值变大,放大了地层各向异性,这是造成气体钻井易井斜,且井斜后难控制的主要原因;气体钻井新的破岩方式是导致井斜不断增加的一个原因;气体钻井条件下地层倾角和性质对井斜的影响更加显著。
     再次,分析了上返岩屑、井径扩大、钻具组合、钻压、井斜角、地层出水等可控因素对气体钻井井斜的影响,认为:钻井液和岩屑颗粒对井壁的冲蚀、井底应力集中是气体钻井井径扩大的原因,井径扩大造成控制井眼轨迹的难度增加,引起井斜;地层出水会导致岩屑变湿粘结成团,在近钻头附近粘附在下井壁,形成垫层,垫层形成另外的增斜力,导致井斜。
     最后,从地层造斜力、岩屑垫层、钻具组合三方面对井斜控制进行分析,建议研究使用空气锤技术。
In recent years, gas drilling is used widely due to the advantages of high penetration rate and low leakage. But well deviation control has become a bottleneck restraining the development of gas drilling technology. Field data show that well deviation is more serious in gas drilling than conventional drilling. The circulation medium change which results in the change of force and deformation on bottom-hole assembly (BHA) and the existence of negative pressure differential, the mechanism of well deviation in gas drilling is different from conventional drilling. So, theoretically studies on well deviation mechanism, formulate prevent measures become pretty important.
     First, the rule of well deviation in gas drilling is summarized according to the statistical results of field data, i.e. well deviation is serious and the growth rate is fast, the control is difficult. And the influential factors including uncontrollable factors and controllable factors are analyzed.
     Second, the effects of uncontrollable factors including rock-breaking mechanism, bottom temperature field, the anisotropy of stratum, formation dip on well deviation are studied based on the stress condition of bottom hole rock in gas drilling. It is indicated that the stress strain field distribution of hole and bottom rock changes which lead to the stress difference is large, the anisotropy is magnified. This is the main reason of gas drilling tend to deviate and the difficult control. New breaking modes for rock are another cause of serious deviation. The effect of formation dip and properties in gas drilling are more remarkable.
     Third, the effects of controllable factors including cuttings, well bore enlargement, drilling assembly, WOB, deviation angle and water export on well deviation are discussed. Well bore erosion by cutting particles and bottom stress concentration result in well bore enlargement. The difficulty of well trajectory control is increased, thus causes the well deviation. Cushion is formed by cutting bed after formation water out. And it plays a very important role in well deviation.
     Finally, well deviation control technologies are researched from the aspects of formation deflecting force, cushion and drilling assembly. Air hammer drilling technology is suggested.
引文
[1]马光长,杜良民.空气钻井技术及其应用[J].钻采工艺,2004,27(3):4~8.
    [2]许期聪,刘奇林.四川油气田气体钻井技术[J].天然气工业,2007,27(3):60~62.
    [3]周英操,翟洪军.欠平衡钻井技术与应用[M].北京:石油工业出版社,2003,l~10.
    [4] SurewardK. Approach to Underbalanced Well Operation in Petroleum Development. IADC/SPE35069.
    [5]张军,孟英峰,叶何茜等.欠平衡钻井技术研究现状[J].南方油气,2005,18(4):54~56
    [6]张迎进,刘刚.实施欠平衡钻井的优越性[J].国外油田工程,2003,19(9):23~25
    [7] CunhaJ.C. Underbalanced Drilling Technique ImProves Drilling Performance-A Field Case History. IADC/ SPE 47802.
    [8]陈志学.气体钻井工艺技术理论及应用研究[D].西南石油大学硕士学位论文,2006.
    [9]魏武,许期聪.气体钻井技术在七北101井的应用与研究[J].天然气工业,2005,25(9):48~50.
    [10]李玉飞,孟英峰.气体钻井提高钻速机理研究[J].石油钻探技术, 2006,34(4):9~11.
    [11]高宝奎,高德利.直井防斜原理综述[J].石油钻采工艺,1996,18(2):8~12.
    [12]李敬元,李子丰.气体钻井轨道易斜原因及对策[J].石油钻采工艺,2008,30(1):33~34.
    [13]白家祉,苏义脑.井斜控制理论与实践[M].北京:北京石油工业出版社,1990, 199~204.
    [14] Rollins H M. Straight-Hole Drilling [J]. World Oil, 1963,156(4): 71-77.
    [15] Rollins H M. Are 3o and 5o Straight Holes Worth Their Cost[J]. OGJ,1959,11(9): 163-171.
    [16] Brown E T., Green S J., and Sinha K P. The Influence of Rock Anisotropy on Hole Deviation In Rotary Drilling[J]. Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1981,18: 387-401.
    [17] Knapp S R. New Bit Concept Helps Control Hole Deviation [J]. World Oil,1965,158(1): 113-116.
    [18] Mclamore R T. The Role of Rock Strength Anisotropy in Natural Hole Deviation[R]. SPE 3229, 1971.
    [19] Bradley W B. Factors Affecting the Control of Borehole Angle in Straight and Directional Wells [R].SPE 5070.
    [20] Parisean W G.. Wedge Indentation of Anisotropic Geologic Media [A].Dynamic Rock Mechanics. Proc. The 12th U.S. Symp. On Rock Mechanics [C]. New York, 1971, 529-546.
    [21] Lubinski A, Woods H B. Factors Affecting the Angle of Inclination and Dog-legging in Rotary Bore Holes[J]. DPP,1953,165(1):222-242.
    [22] Wilson G E., Sii Drilco. A General Overview of Air Drilling and Deviation Control[R]. SPE 9529, 1981: 2307-2315.
    [23]吴仕荣,孟英峰.七里北101井气体钻井提高钻速试验研究[J].钻采工艺,2007,30(2):3~6.
    [24]狄勤丰,彭国荣.井眼轨迹参数对钻头侧向力的影响规律研究[J].西安石油学院学报,2000,24(6):25~30.
    [25]吕金钢,张克明等.气体钻井技术及现场应用[C].第五届全国钻井院所长论文集, 2005.
    [26]李敬元,李子丰.气体钻井轨道易斜原因及对策[C].第六届全国钻井院所长论文集,2006:70~72.
    [27]项德贵,葛云华.空气钻井井斜控制问题的探讨[J].钻采工艺,2005,28(5):1~3.
    [28]林铁军.空气钻井岩石力学及钻井过程仿真模拟[D].西南石油大学硕士学位论文.2006:33~70.
    [29]孟凡生.定向钻井BHA力学分析及井斜控制技术研究[D].大庆石油学院硕士学位论文,2003.
    [30]唐俊才.对霍奇公式的初步意见[J].西南石油学院学报,1979,2:49-58.
    [31]白家祉.应用纵横弯曲连续梁理论求解钻具组合的受力与变形[C].北京:国际石油工程会议论文集,1982,3.
    [32]杨勋尧.地层造斜力的计算与应用[J].石油学报,1985,6(1):81~90.
    [33]符跃春,刘常旭.井斜控制技术现场应用综述[J].内蒙古石油化工,2007,1.
    [34] L. Shale. Development of Air Drilling Motor Holds Promise for Specialized Directional Drilling Application[R]. SPE 22564, 1991.
    [35]晁文学,林勇.国外气体钻井钻头的研究与应用[J].石油钻探技术,2001,29(1): 39~42.
    [36]肖洲,练章华.气体钻井井斜控制的发展与新技术探讨[J].钻采工艺,2008,31(6): 8~10.
    [37]李志刚,杨决算.徐家围子气田空气钻井的实践与认识[C].第七届石油钻井院所长会议论文集,2007:91~95.
    [38]杨谋,孟英峰.不同钻井方式下的井底岩石可钻性研究[J].石油钻探技术,2010,38(2):19~22.
    [39]王延民,孟英峰.从井底岩石受力分析研究气体钻井队机械钻速的影响[J].钻采工艺,2008,31(2):1~2.
    [40]刘永贵,杨智光.徐深气田气体钻井破岩机理的初步探讨[C].中国石油学会第五届青年学术年会论文集,2008:192~199.
    [40]魏武,许期聪.气体钻井井斜控制技术与应用[J].天然气工业,2009,29(7):42~44.
    [41]陈庭根,管志川.钻井工程理论与技术[M].山东:石油大学出版社,2000.
    [42]杨虎,鄢捷年.欠平衡钻井井壁失稳和储层损害的最大负压差确定[J].天然气工业,2005,25(5):53~55.
    [43]刘书杰,周建良.欠平衡钻井条件下井径扩大率预测技术[J].中国海上油气,2007,19(5):335~337.
    [44]郭建华,佘朝毅.气体钻井井筒冲蚀作用定量分析及控制方法[J].石油学报,2007,28(6):129~132.
    [45]罗勇,陈平.王树平等.井眼冲蚀模型的建立与影响因素分析[J].天然气工业,2004,24(11):61~63.
    [46]杨振杰.泥页岩构成及泥页岩井壁表面和岩屑表面特征对井壁稳定性的影响[J].油田化学,2000,17(1):73~77.
    [47]高如军,何世明.气体钻井环空岩屑颗粒碰撞对井壁稳定性的影响[J].钻井液与完井液,2007,24(增):69~71.
    [48]高如军,何世明.气体钻井井斜机理与控制初探[J].石油钻采工艺,2008,30(2):42~45.
    [49]蔡美峰,何满潮.岩石力学与工程[M].北京:科学出版社,2006.
    [50] Lubinskin A, McDcdonald G E. Straight Hole Drilling in Crooked Hole Country[J].OGJ, May3, 1951.
    [51]柳贡慧,刘伟.计算空气-氮气钻井最小气体体积流量的新方法[J].石油学报,2008,29(4):629~632.
    [52]许文波,孟英峰.气体钻井井内动力学分析[J].内蒙古石油化工,2005(11):102~105.
    [53] M.A. Adewumi, Shifeng Tian, R.W. Watson, Pennsylvania StateU. Fundamental Study Makes Improved Air Drilling Technology Possible. SPE 26893, 1993.
    [54]陈勉,邓金银.岩石力学在石油工程中的应用.北京:石油工业出版社,2006.
    [55]李忠慧,楼一珊.钻井过程中井径扩大的预测分析[J].钻采工艺,2004(4):14~15.
    [56]刘刚,朱忠喜.空气钻井中的压力及注气量问题研究[J].钻采工艺,2005,28(2):4~6.
    [57] Upon S B, Adewumi M A. An Experimental Study of the Annulus Pressure Drop in a Simulated Air Driliing Operation[R]. SPE Drill. Eng. 1991.
    [58]郭建华,李黔.气体钻井岩屑运移机理研究[J].天然气工艺,2006,26(6):66~67.
    [59]孟英峰,练章华.气体钻水平井的携岩研究及在北浅111H井的应用[J].天然气工业,2005,25(8):50~53.
    [60]庞东豪,袁骐骥.气体钻井携带液体最小注气量计算[J].天然气技术,2010,4(5):35~37.
    [61]朱红钧,林元华.空气钻井井筒内气体携岩与冲蚀评价分析[J].钻井液与完井液,2010,27(2):34~36.
    [62]赵新瑞,姜敬华.井斜控制理论与防斜钻井技术综述[J].钻采工艺,2000,23(1):4~8.
    [63]李佩武.偏轴钻具组合防斜打直技术研究及应用[D].中国石油大学(华东),2005.
    [64] Wilson G E, Sii Drilco. A General Overview of Air Drilling and Deviation Control[R]. SPE 9529. 1981.
    [65]罗整,徐忠祥.空气锤钻井技术在气体钻井中的应用[J].钻采工艺,2007,30(6):9~10.
    [66]刘权萍,孟英峰.空气锤在石油钻井中的应用前景[J].天然气工业,2006,26(4):50~53.
    [67]侯树刚,李铁成.空气锤及空气钻头在普光气田的应用[J].天然气工业,2007,27(9):65~67.
    [68]陈志学.气体钻井工艺技术理论及应用研究[D].西南石油大学,2004.
    [69]孟庆昆,王向东.KQC系列空气锤在油田气体钻井中的应用[J].石油矿场机械,2007,36(11):54~57.
    [70] G. Han, M S Bruno. 3D Simulation of Rock Breakage with Air Hammers in Gas Well Drilling[R]. SPE 99522, 2006.
    [71]潘仁杰.螺杆钻具控制井斜的理论分析与应用研究[D].西南石油大学硕士论文,2003.
    [72]狄勤丰,吴玉禄.预弯曲动力学防斜打快技术初探[J].石油学报,2003,24(3):86~89.
    [73]汝大军,李立昌.预弯曲钻具组合特性分析及其应用[J].石油钻采工艺,2003,25(4):14~16.
    [74]狄勤丰,朱卫平.预弯曲动力学防斜打快钻具组合动力学模型[J].石油学报,2007,28(6):118~121.
    [75]胥思平,狄勤丰.预弯曲动力学防斜快钻技术的试验研究[J].天然气工业,2006,26(2):59~61.
    [76]张桂林,刘同富.偏重钻具防斜机理分析及应用[J].石油钻探技术,1999,27(1):18~20.
    [77]丰全会,窦正道.偏轴防斜钻具的研究及在江苏部分地区的应用.石油钻采工艺,2002,24(2):4~7.
    [78]夏宏南,杨明合.偏轴防斜钻具的研究及试验[J].断块油气田,2004,11(5):66~68.
    [79]张玉胜,陈平.偏轴钻具防斜效果探讨[J].天然气工业,2004,24(12):89~92.
    [80]夏宏南,王小健.偏轴防斜钻具井底钻具组合受力分析模型的建立[J].探矿工程,2004,10:39~41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700