地铁动车牵引传动系统分析、建模及优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地铁动车牵引传动系统是车体和车辆的核心,是车辆国产化的重点和难点。论文分析了地铁动车独特的轮轨粘着特性和牵引电机负载特性,完整而准确的建立了地铁动车牵引传动系统模型,深入研究了再粘着优化控制和牵引电机并联控制策略,并针对牵引电传动系统设计中的核心问题:“车辆牵引/制动特性曲线设计”、“变流器与牵引电机合理匹配”、“牵引电机额定转差率设计”等,提出了与之相应的优化设计方法,获得了以下成果。
     地铁动车一般采用的架控模式,论文建立了“双轴模型”进行粘着控制研究,在分析传统防滑/防空转策略不足的基础上,提出一种基于全维状态观测器的再粘着优化控制方法。通过恰当的极点配置,使得观测器具有良好的稳定性和收敛性,在此基础上针对机械参数变化和负载扰动对控制系统性能进行研究,结果表明所提出的再粘着优化控制满足地铁实际应用需求。为深入地研究牵引特性和车体动力性能,借助MATLAB工具,建立了地铁动车牵引传动系统模型,并进行了各种工况仿真,结果表明再粘着优化控制方法达到了理想的控制效果。
     地铁架控模式下并联运行的牵引电机存在转矩不平衡,牵引转矩大的动轴常因超出粘着极限而发生空转/打滑,论文分析了产生不平衡的原因,推导出转矩不平衡度与动轮轮径差、电机转差率三者之间的数学关系,基于再粘着优化控制,提出一种带励磁补偿的电机并联优化控制方法:根据轮径差值大小及网压、车速等适当降低电机控制的励磁给定,从而增大转差频率(转差率),降低电机间的转矩不平衡,最后进行了仿真研究和试验。
     为设计节能型地铁列车,总结出一种地铁车辆牵引/制动特性曲线的设计方法,在满足列车可用粘着校核以及不降低列车动力性能的前提下,通过牵引控制充分利用车辆电气制动再生回馈电能,减少闸瓦磨损和“二次能耗”。技术经济分析的结果表明,车辆制动特性曲线优化可达到节能降噪的目的。
     与干线铁路机车不同,地铁列车具有负载断续及短时过载的特点,论文总结出一种适用于地铁牵引变流器与牵引电机“系统匹配”的方法:在动车牵引传动系统设计之初,以车辆特性曲线为依据,变流器的容量参考电机制动峰值功率来设计,而牵引电机则按照“小电机匹配”方式来选择额定点的最大转矩倍数(颠覆转矩),更加强调变流器的安全裕度及电机容量的充分利用。综合考虑地铁动车牵引传动系统设计、电机并联优化控制和易于维护等因素,提出了牵引电机额定转差率的设计方法,并进行的牵引电机特性试验。
     研制了一套适用于地铁B型车的牵引变流器,对主电路、控制系统、监控界面和牵引计算软件等进行了详细的设计,对牵引特性、电机矢量控制和变流器温升等进行了试验,并对试验结果进行了分析。
Metro traction system is the core of motor car, which is the key point of the vehicle localization. The adhesion characteristics between wheel and track and the traction motor load characteristics were analyzed in the paper, and the metro traction system model was built accurately. Based on the model, the re-adhesion optimization control and the traction motor connected in parallel were studied. At the same time, the core technology for traction system design were studied, including train characteristics curves design, traction converter and induction motor matching, nominal slip ratio design of traction motor, etc. The following achievements were obtained.
     The double axle's model in bogie-control mode was built to study the adhesion control, and a re-adhesion optimization control method based on full state observer for traction drive was raised. To perform the maximum utilization of adhesion, a full state observer was built to obtain the motor load torque. Then the adhesion coefficient was calculated to find the adhesion peak zone. A searching algorithm was used to get the optimal slip velocity reference automatically. Then combined the line voltage, train velocity and the master-controller instruction, obtained the torque reference for traction motor control. To study the wheel-track adhesion characteristics, traction drive and the train kinetics performance, the metro traction drive system model was built in Matlab. Simulation and experiment were done.
     The dissertation deeply analyzed the torque-unbalanced reasons for parallel-connected motor in one bogie and the severe aftereffect. The mathematical relations among torque-unbalance, wheel diameter difference and motor slip ratio were get by formula derivation. An optimal parallel-connected motor control strategy based on re-adhesion optimization utilization and magnetizing compensation was presented. The former generated the torque reference, and the latter regulated the magnetizing reference for motor control according to wheel diameter difference, line voltage and train speed. The slip frequency (i.e. slip ratio) was increased and the torque-unbalanced level was decreased. Simulation and experimental waveforms were given.
     Considering the macro designing of metro traction drive system, an engineering design method for train traction/braking characteristics curves was presented. In the prerequisite of meeting available adhesion checking, the regeneration feedback energy was full used by traction control, and the loss between brake and wheel were reduced. Analysis showed that the presented train braking characteristics curve achieved energy saving and noise reduction, low-carbon environmental protection objectives.
     According to characteristics of metro train load intermittent and short-term overload, a suitable traction converter and traction motor "system matching" approach was proposed. Namely, based on train characteristics curves, the capacity of converter designing referred to motor braking peak power, while the traction motor was in accordance with "small motor match" method to select the maximum torque multiplier (subversion torque) at the nominal point, more emphasized on the safety margin of converter capacity and the motor utilization capacity. The successful trial operation of homemade metro traction system verified the proposed "system match" method. Comprehensive consideration the metro traction system macro-design, motor parallel control, and the easy maintenance for subway operators, put forward the designing method for traction motor rated slip ratio and other rated electrical parameters. The motor characteristic curves by experiments meet the requirements of train operating and traction control.
     A metro traction inverter was developed for type B train. The main circuit, control system, supervision interface and traction calculation software were detailed designed. The effect of the traction motor vector control and traction characteristics was tested, and test results were analyzed.
引文
[1]翟维丽.城市轨道交通系统关键技术及相关问题研究[博士学位论文].吉林大学.2007.
    [2]王巍.地铁主传动系统牵引逆变器的研究[硕士学位论文].湖南大学.2007.
    [3]埃森哲卓越绩效研究院.《中国城市轨道交通该如何发展?》:2010:http://www.ftchinese.com/story/001031050.
    [4]徐惠林.北京地铁车辆电传动系统的国产化研究.现代城市轨道交通,2008,(4):7-11.
    [5]李丽敏,顾天鸿,陈进杰.关于降低我国地铁造价的探讨.国防交通工程与技术,2005,3(4):6-8.
    [6]沈阳地铁二号线在国内项目中首次采用国产地铁车辆牵引传动及网络控制系统、制动系统.2007.http://www.sdpc.gov.cn/gzdt/t20071204_176842.htm.
    [7]翁星方.北京地铁国产化列车IGBT牵引逆变器.机车电传动,2008,(4):45-47.
    [8]陈喜红.国内外地铁车辆技术的发展趋势.电力机车技术,2002,25(6):28-31.
    [9]熊信银,吴耀武.遗传算法及其在电力系统中的应用.第一版.湖北.华中科技大学出版社,2002,.
    [10]Elbas-company-website. http://www.elbas.ch.
    [11]Losel T, Dresden. Simulation program for the design and calculation of DC vehicles. Elektrische Bahnen. (1996) H.5, S 135-139,1996,.
    [12]Ive-website. http://www.ivembh.de/dynamis/programm.en.htm.
    [13]S. I. Volsky, E. V. Syroezhkin, A. V. Lamanov, D. V. Chuev A V O. Traction induction drive for railway.2003, http.//www.members.lycos.nl/caspoceducation/1107.pdf.
    [14]陈汝义,张旭秀,等.基于MATLAB的交流传动机车异步电动机并联系统的仿系统.机车电传动,2001,(4):35-36.
    [15]王挺泽.“中原之星”号牵引电传动系统设计与试验.机车电传动,2002,(2):9-12.
    [16]唐飞龙.地铁车辆电传动系统的主电路仿真.电力机车与城轨车辆,2008,31(6):12-14.
    [17]曹霄.无速度传感器异步电动机直接转矩控制系统带速度重投控制的研究.[硕士学位论文].中南大学.2007.
    [18]李祥飞,王坚.基于Matlab的异步电机间接定子量仿真研究.变流技术与电力牵引,2007,(4):52-55.
    [19]年晓红,王坚.牵引电机无速度传感器间接定子量磁场定向控制.变流技术与电力牵引,2008,(2):40-42.
    [20]尚敬,刘可安.电力牵引异步电动机无速度传感器间接定子量控制.电工技术学报,2007,22(2).
    [21]Kelecy P M, Lorenz R D. Control methodology for single inverter, parallel connected dual induction motor drives for electric vehicles.Power Electronics Specialists Conference, PESC'94 Record. vol.2:987-991.
    [22]陶生桂,胡兵,刘艳秋,et al.上海地铁二号线传动系统的仿真分析与研究.世界仪表与自动化,2004,8(2):12-15.
    [23]李江红,马健,等.机车粘着控制的基本原理和方法.机车电传动,2002,(6):4-8.
    [24]徐立恩,陈华国,曾云,et al.广州地铁车辆国产化改造的粘着利用控制.机车电传动,2008,(6):44-47.
    [25]顾伍楼.地铁车辆计算粘着系数和牵引电动机功率选用问题简析.铁道机车车辆,2003,23(6).
    [26]Kansala K, Hasemann J-. An embedded distributed fuzzy logic traction control system for vehicles with hydrostatic power transmission.7th Mediterranean Electrotechnical Conference, 1994.vol.2:719-722.
    [27]Hasemann J-, Kansala K. A fuzzy controller to prevent wheel slippage in heavy duty off road vehicles.IEEE 44th Vehicular Technology Conference,1994. vol.2:1108-1112.
    [28]Sun-ku K, Uk-youl H, Hak-il K, et al. Re-adhesion control with estimated adhesion force coefficient for wheeled robot using fuzzy logic.Industrial Electronics Society,2004. IECON 2004. Vol.3:2530-2535.
    [29]李江红,陈华国,胡照文.国产化北京地铁车辆的粘着控制.机车电传动,2005,(6):40-42.
    [30]Takaoka Y, Kawamura A. Disturbance observer based adhesion control for Shinkansen.6th International Workshop on Advanced Motion Control,2000:169-174.
    [31]Senini S, Flinders F, Oghanna W. Dynamic simulation of wheel-rail interaction for locomotive traction studies.Proceedings of the 1993 IEEE/ASME Joint Railroad Conference,1993:27-34.
    [32]王延飞,曹宏发,靳明旭.交流传动电力机车采用轴控的必要性.铁道机车车辆,2006,26(4):29-31.
    [33]Verhille J N, Bouscayrol A, Barre P J, et al. Torque tracking strategy for antislip control in railway traction systems with common supplies.Industry Applications Conference,2004.39th IAS Annual Meeting. vol.4:2738-2745.
    [34]R P E,杜香芹(译),刘信君(校).采用单电压源逆变器双异步电动机结构提高机车传动系统的性能.变流技术与电力牵引,2006,(4):53-60.
    [35]Ando I, Sato M, Sazawa M, et al. High efficient parallel-connected induction motor speed control with unbalanced load condition using one inverter.Industrial Electronics Society,2003. IECON'03. vol.1:162-167.
    [36]Matsumoto Y, Eguchi N, Kawamura A. Novel re-adhesion control for train traction system of the "Shinkansen" with the estimation of wheel-to-rail adhesive force. Industrial Electronics Society,2001. IECON'01. vol.2:1207-1212.
    [37]高水华,彭佩怡,梅映新.多电机并联运行的应用研究.船电技术,2007,27(6):370-373.
    [38]李官军,冯晓云,王利军,et al.高速动车组恒速控制策略的研究与仿真.机车电传动,2007,(5):12-14.
    [39]马志文.电力牵引交流传动互馈试验系统的研究[博士学位论文].北京交通大学.2007.
    [40]李哲峰,孙大南,林文立,et al.基于矢量控制的交流传动互馈系统.电力电子技术,2009,43(6):28-30.
    [41]高飞,武强健.高速轮轨滚动粘着蠕滑模拟试验台的研制及试验研究.铁道车辆,1997,35(6):8-12.
    [42]薛定宇.基于MATLAB\Simulink的系统仿真技术与应用.第一版.北京.清华大学出版社.2002.
    [43]高培庆.铁路牵引用异步电动机的发展.机车电传动,2002,(1):10-13.
    [44]龙育才.深圳地铁车辆国产化及对有关问题的思考.上海:2004.
    [45]徐惠林.北京地铁5号线车辆电传动系统.机车电传动,2008,(6):36-39.
    [46]仝力,徐国卿,陶生桂.城市轨道车辆异步牵引电动机型谱特点及额定参数的确定.城 市轨道交通研究GDJT,1999,(02).
    [47]陈泽深,王成国.铁道车辆动力学与控制.中国铁道出版社,2004,:10-36.
    [48]Woo-seok K, Yong-seok K, Jun-koo K, et al. Electro-mechanical re-adhesion control simulator for inverter-driven railway electric vehicle.Industry Applications Conference,1999. Thirty-Fourth IAS Annual Meeting. vol.2:1026-1032.
    [49]Doh-young P, Moon-sup K, Don-ha H, et al. Hybrid re-adhesion control method for traction system of high-speed railway.Electrical Machines and Systems,2001. ICEMS 2001. vol.2:739-742.
    [50]Meifen C, Takeuchi K, Furuya T, et al. Adhesion control in low-speed region and experiment verification with considering low-resolution pulse generator.Power Conversion Conference,2002. PCC Osaka 2002. vol.2:873-878.
    [51]Ishikawa Y, Kawamura A. Maximum adhesive force control in super high speed train. Power Conversion Conference-Nagaoka 1997. vol.2:951-954.
    [52]Ohishi K, Ogawa Y, Miyashita I, et al. Anti-slip re-adhesion control of electric motor coach based on force control using disturbance observer. Industry Applications Conference,2000. vol.2:1001-1007.
    [53]Ohishi K, Nakano K, Miyashita I, et al. Anti-slip control of electric motor coach based on disturbance observer. Advanced Motion Control,1998. AMC'98-Coimbra.580-585.
    [54]刘豹.现代控制理论.第二版.北京.机械工业出版社.1994.:189-206.
    [55]Ohsawa H, Furuya T, Cao M, et al. Measurement of tractive force during acceleration and deceleration periods.Advanced Motion Control,2004. AMC'04:177-181.
    [56]Shimizu Y, Ohishi K, Sano T, et al. Anti-slip re-adhesion control based on disturbance observer considering bogie vibration.2007 European Conference on Power Electronics and Applications.1-10.
    [57]鄢景华.自动控制原理.第二版.哈尔滨.哈尔滨工业大学出版社.2000.
    [58]Wenli L, Lijun D, Gang Z, et al. Maximum Adhesion Force Control Simulated Model of Electric Locomotive.2007 IEEE International Conference on Automation and Logistics.1704-1708.
    [59]蒋大明,戴胜华.自动控制原理.第一版.北京.清华大学出版社北方交通大学出版社.2003.
    [60]宋文祥,姚钢,周文生,et al.异步电机全阶状态观测器极点配置方法.电机与控制应用,2008,35(9):6-10.
    [61]Kawamura A, Furuya T, Takeuchi K, et al. Maximum adhesion control for Shinkansen usingthe tractive force tester.Industrial Electronics Society,IECON 02.2002.vol.1:567-572.
    [62]Pham, Van, Tien, et al.异步电机牵引特性的仿真研究.电气传动,2009,39(5):24-26.
    [63]刘静.磁浮列车牵引控制系统建模和仿真分析及与运行控制系统通信的研究[硕士学位论文].浙江大学.2006.
    [64]Bk Lee M E. A simplified functional simulation model for three-phase voltage-source inverter using switching function concept. IEEE transactions on Industrial Electronics, Vol.48. 2001,309-321.
    [65]Eupec technical manual:http://www.igbt.cn/admin/productfile/FZ1200R33KF2C.pdf.
    [66]奉泽熙,宁韶安,曹霄.直接转矩控制技术在广州地铁一号线车辆VVVF逆变器国产化中的应用.电力机车与城轨车辆,2009,32(1):17-20.
    [67]李显宏.MATLAB 7.X界面设计与编译技巧.第一版.北京.电子工业出版社.2006.
    [68]郭丕生.牵引电动机速率差异对电机电流分配均匀度的影响及控制方法.《内燃机车》,1995,.
    [69]尹良镇.轨道车辆交流牵引异步电动机并联工作特性研究[硕十学位论文].大连交通大学.2007.
    [70]肖彦君,吴茂杉.交流传动城轨动车轮径允差问题的探讨.铁道机车车辆,2004,24(1):6-8.
    [71]程泓生.关于交—直—交传动机车轮径偏差问题的探讨.机车电传动,1991,(3):4-10.
    [72]葛兴来,陆阳,冯晓云,et al. DJ1交流传动电力机车并联电机功率偏差的研究.铁道机车车辆,2004,24(1):28-30.
    [73]吴茂杉.国内城轨车辆电传动系统主要问题分析.变流技术与电力牵引,2007,(1):7-12.
    [74]杨旭丽,彭星明.机车牵引电机一致性问题与匹配.电机技术,2007,(1):14-15.
    [75]李卫超,胡安,聂子玲.感应电机并联运行矢量控制系统仿真研究.电机与控制学报,2006,10(1):102-106.
    [76]K M,高首聪,黄慧.单个逆变器驱动两台并联感应电机的无速度传感器矢量控制方法.变流技术与电力牵引,2005,(4):6-10.
    [77]Matsuse K, Kawai H, Kouno Y, et al. Characteristics of speed sensorless vector controlled dual induction motor drive connected in parallel fed by a single inverter.Industry Applications, 2004.vol40:153-161.
    [78]Matsumoto Y, Osawa C, Mizukami T, et al. A stator-flux-based vector control method for parallel-connected multiple induction motors fed by a single inverter.Applied Power Electronics Conference and Exposition,1998. APEC'98.vol.2:575-580.
    [79]Matsumoto Y, Ozaki S, Kawamura A. A novel vector control of single-inverter multiple-induction-motors drives for Shinkansen traction system.Applied Power Electronics Conference and Exposition,2001. APEC 2001. vol.1:608-614.
    [80]Yamashita M, Watanbe T. A readhesion control method without speed sensor for electric railway vehicles. Electric Machines and Drives Conference,2003. IEMDC'03.vol.1:291-296.
    [81]渡边朝纪,彭惠民.考虑轮径差的无速度传感器再粘着控制.变流技术与电力牵引BLJS,2002,(05).
    [82]Taniguchi M, Yoshinaga T, Matsuse M. A Speed-Sensorless Vector Control of Parallel-Connected Multiple Induction Motor Drives with Adaptive Rotor Flux Observers.Power Electronics Specialists Conference,2006. PESC'06:1-5.
    [83]Watanabe T, Yamashita M. Basic study of anti-slip control without speed sensor for multiple motor drive of electric railway vehicles. Power Conversion Conference,2002. PCC Osaka 2002. vol.3:1026-1032.
    [84]杜永红,李哲峰,刘志刚.异步电动机间接磁场定向控制双闭环系统.电工技术学报,2009,(5):24-28.
    [85]刁利军.电力推进负载模拟系统研究[博士学位论文].北京交通大学.2008.
    [86]Bimal K bose著,王聪译.现代电力电子学与交流传动.第一版.北京.机械工业出版社,2006,.
    [87]林文立,刘志刚,沈茂盛,et al.新型船舶综合全电力推进模拟实验系统研究.北京交通大学学报:自然科学版,2006,30(5):109-112.
    [88]李卫超,胡安,聂子玲,et al.异步电机并联运行磁场定向控制.电工技术学报,2006,21(11):21-27.
    [89]Jiangbo W, Yue W, Zhaoan W, et al. Comparative Study of Vector Control Schemes for Parallel-Connected Induction Motors.Power Electronics Specialists Conference,2005. PESC'05. 1264-1270.
    [90]张大勇.电力机车用大功率交流传动系统的优化设计[硕士学位论文].中南大学.2007.
    [91]宋剑伟.地铁用电设备节能措施探讨.都市快轨交通,2006,19(2):76-80.
    [92]汪强.浅谈节约型轨道交通建设.节能,2006,25(11):12-13.
    [93]钟振龙,余斌.广州地铁车辆制动系统的特点分析.机车电传动,2005,(4):45-48.
    [94]连鹏飞.深圳地铁2号线制动电阻设置浅析.电气化铁道,2007,(3):45-47.
    [95]曾建军,林知明,张建德.地铁制动能量分析及再生技术研究.电气化铁道,2006,(6):33-36.
    [96]王保坚,陈朗,等.广州地铁动车组空气制动不能缓解的原因与诊断.铁道车辆,2003,41(1):38-39.
    [97]张文丽,李群湛,刘炜,et al.地铁列车再生制动节能仿真研究.变流技术与电力牵引,2008,(3):41-44.
    [98]刘宝林.地铁列车能耗分析.电力机车与城轨车辆,2007,30(4):65-68.
    [99]巫红波,王明娟,吕劲松.广州地铁二号线车辆闸瓦与车轮磨耗异常分析及改进.电力机车与城轨车辆,2006,29(5):51-52.
    [100]徐安.城市轨道交通电力牵引[M].中国铁道出版社,2009,:44.
    [101]吴俊泉.城市快速轨道交通车辆的编组方式与加速特性.电力机车技术,2001,24(3):39-40.
    [102]张宇.深圳地铁1号线(续建)车辆牵引仿真计算.电力机车与城轨车辆DJJI,2008,(05).
    [103]黄济荣.电力牵引交流传动与控制[M].第一版.北京.机械工业出版社.1998.
    [104]苏梅,李建新.我国城市铁路最高设计速度值研究.交通运输系统工程与信息,2004,4(4):64-67.
    [105]丁荣军.交流传动机车牵引特性曲线与变流器—牵引电机系统的匹配.机车电传动JCDC,1999, (06).
    [106]李伟.电压型逆变器供电的异步牵引电动机电磁设计和稳态特性研究[硕士学位论文].重庆大学.2004.
    [107]江彩玉,徐国卿,仝力,et al.城市轨道车辆异步牵引电机额定参数研究.城市轨道交通研究,2001,(03).
    [108]汤蕴缪,史乃.电机学.第一版.北京.机械工业出版社.2003.
    [109]胡雄辉.地铁列车组异步牵引电动机电磁设计方案.电力机车技术,2001,(04).
    [110]徐国卿,仝力.广义罚函数法及其在电机优化设计中的应用.机车电传动,2000,(3):13-15.
    [111]李景灿.改进遗传算法在高效率三相感应电动机优化设计中的应用研究[硕士学位论文].重庆大学.2002.
    [112]张晶.单相串激电机多目标优化设计[硕士学位论文].广东工业大学.2007.
    [113]李立君,尹泽勇,乔渭阳.基于多目标遗传算法的航空发动机总体性能优化设计.航空动力学报,2006,21(1):13-18.
    [114]侯晓军.城市轨道车辆用牵引电动机额定参数确定及合理选用.天津:1998.
    [115]徐安.城市轨道交通车辆牵引参数的选择.城市轨道交通研究,1998,1(2).
    [116]国际电工电子委员会.IEC 61287-1铁道车辆上安装的电力变换器(换流器)第1部分:性能和试验方法.2005,
    [117]陈文光,丁荣军.国产化北京地铁列车牵引电传动系统设计.机车电传动,2006,(4): 31-36.
    [118]高爽.沈阳地铁1号线地铁车辆制动电阻功率选择.机车电传动,2008,(3):55-57.
    [119]Lin W, Mei Y, Sun D, et al. Design of a soft switched 8kW battery charging converter for 100% Low Floor Light Rail Vehicle. Vehicle Power and Propulsion Conference,2008. VPPC'08. 1-5.
    [120]李哲峰.100%低地板车牵引传动系统系统分析与控制策略研究[博士学位论文].北京交通大学.2009.
    [121]桂翔.城市轨道交通牵引计算仿真系统的研究和开发[硕士学位论文].北京交通大学.2008.
    [122]中华人民共和国建设部.建标104-2008”城市轨道交通工程项目建设标准”.北京.中国计划出版社.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700