高频行驻波型热驱动热声制冷机的理论及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着热声研究的发展,为了提高热声转换效率,热声热机从驻波型发展到行波型。然而,实际热声热机系统不可能工作于纯行波或纯驻波模态,而是工作于行驻波模态。到目前为止,大部分研究者在研究热声热机时,仍基于行波或驻波的分析,极少有从行驻波的角度对实际热声系统中行驻波模态进行研究,更没有基于行驻波分析的热驱动热声制冷机的研究。正是因为这样,本文开展了行驻波型热驱动热声制冷机的理论和实验研究,以全新角度去认识和研究热声热机:基于波动理论,从行驻波的角度深化热声学的理论研究,提炼出了新的无因次参数,提出了行驻波热声效应的分析方法和回热器综合优化的方法,进一步丰富和完善了热声理论。基于优化分析的结论,提出并研制了行驻波型热驱动热声制冷机,推动热声热机的发展。为此,开展了以下几个方面的理论和实验的研究工作:
     1.对现有的线性热声理论进行了总结分析,并引入行驻波的概念,对热声热机声场进行行驻波分解。在此基础上,权衡速度、精度和易于使用等条件开发了“小振幅热声热机可视化仿真软件”,并使用该软件建立了行驻波型热驱动热声制冷机的数值模型。然后对行驻波型热驱动热声制冷机的回热器、热缓冲管、声功回收管和谐振管等元部件的结构参数以及系统的运行参数进行了优化计算。
     2.基于波动理论,对声场进行行驻波分解,给出了行驻波声场关键参数的无量纲表达式,提炼出了声场特性集成化参数。该集成化参数是声场中的关键参数(振荡压力、振荡速度、特征声阻抗、压流相位差和时均声能密度)集成化的体现,同时也反应了各个声场中关键参数之间的相互关系。结合这两个集成化参数,分析了行驻波声场的分布特性,分析表明,随着行波成分的增加,虽然行波相位区长度增加,但是行波相位区当地声阻抗减小。因此,在设计热声热机时,应综合考虑行波相位区的长度和行波相位区的阻抗来选择合适的行波比率。另外,在行波比率相同的行驻波声场中,时均声能密度各处相等。
     3.为了分析行驻波声场中的热声效应,提出了两种分析方法:数学公式分析和定性分析。两种分析方法的结论一致:对于热声发动机,为了提高声功增益和效率,回热器高温端应该靠近压力腹点,并且行波传播方向与温度梯度方向一致,使得发动机回热器中行波成分和驻波成分均实现热到声的转换;对于热声制冷机,为了提高制冷量和制冷系数,回热器高温端应该靠近压力腹点,并且行波传播方向与温度梯度方向相反,使得制冷机回热器中行波成分和驻波成分均将热量由低温端泵送到高温端。
     4.根据对行驻波声场中热声效应的分析,在国际上首次提出了一种行驻波型热驱动热声制冷机系统:该系统包含一个热声发动机和一个热声制冷机,前者为后者的驱动源。发动机和制冷机均位于一个环形圈中,并与一个谐振管相耦合,其优点为:(1)有效利用了声波中行波成分和驻波成分共同作用的热声效应;(2)由发动机产生的声功直接进入制冷机进行泵热;(3)使用声功回收管和声功反馈管将制冷机使用后的残余声功,反馈到发动机进行再次利用;(4)发动机和制冷机布置在同一个环形圈内,并且环形圈耦合谐振支路的结构使系统总长接近1/4波长,有效的减小了系统长度,使系统结构紧凑。研制的高频行驻波型热驱动热声制冷机总长不到1m,在以氦气为气体工质,充气压力为2.2MPa,工作频率为234Hz,加热量为300W时,实现了-30°C的无负载温度,并且在0°C时可以提供40W的制冷量。
     5.从基本热声公式出发,提炼出了行驻波声场参数、回热器结构参数以及热声热机性能参数的无因次表达式,并通过这些无因次参数的分析,结合声场集成化参数,提出了一种综合优化热声热机的全新的优化分析方法。该方法结合了回热器结构参数和声场参数,并考虑了各个参数之间的相互制约关系,对热声热机的性能进行了全面的优化分析。分析结果能帮助理解已存在热声热机的最优实验工况,同时对设计新型热声热机提供了理论指导。
Thermoacoustic research has progressed steadily over decades. To improve the thermoacoustic efficiency, the thermoacoustic devices have evolved from the standing wave devices into the traveling wave devices. However, a real regenerator operates on neither pure traveling wave mode nor pure standing wave mode. Therefore, so far, most researchers still focus their particular attentions on the traveling wave or the standing wave when they design their thermoacoustic devices, and few published literatures have studied on the traveling-standing wave. Therefore, this thesis investigatie the theory and experiement of the thermoacoustically driven thermoacoustic refrigerator based on thermoacoustic analysis in the traveling-standing wave, and understand the thermoacoustic device from a new view. Based on the wave theory, this thesis developes the thermoacoustic theory by traveling-standing wave view, abstracts some new normalized parameters, proposes analysis methods of thermoacoustic performance in traveling-standing wave, and presents a novel optimization method of the regenerator. This enriches and consummates the themoacoustic theory. Based on the optimization analysis, a novel thermoacoustically driven thermoacoustic refrigerator based on thermoacoustic analysis in the traveling-standing wave is proposed and investigated, which develops the themoacoustic device. In this thesis, progresses are made as follows:
     1. This thesis summarizes and analysizes the liner thermoacoustic theory, introduces the concept of the traveling-standing wave, and then separates the traveling-standing wave. Based on this, combining the merit of the existed software and the new technology of thermoacoustics, and try to compromise among speed, precision and facility, a new computation software of thermoacoustic device was wrote. Then, a theoretical model of high frequency thermoacoustically driven thermoacoustic refrigerator was set up, and the oscillation pressure, oscillation flow rate, the phase difference, temperature and the time-averaged energy flux in the engine was analyzed, which make the acoustic distribution clearer. And then, optimize these thermodynamic components (e.g. the regenerator units, thermal buffer tube, compliance cavity, feedback inertance, and recycling inertance) carefully by this software.
     2. Based on the wave theory, this thesis separates the traveling-standing wave, obtains normalized expressions of some key parameters about the acoustic field, and abstracts two integration parameters. The two integration parameters can representate the characterization of the key parameters in the acoustic field, such as the time averaged acoustic energy density, the osocillation pressure, the osocillation velocity, the specific acoustic impedance and the leading phase of pressure to velocity, and include their relationship. Then analyzed the acoustic field characteration by the two integration parameters. It is pointed out that, with increase of the travelling wave componet, although, the length of the travelling wave phase region increases, the specific acoustic impedance in the travelling wave phase region decreases. Thus, the specific acoustic impedance and the length of the traveling wave region should be considered in the designs of new thermoacoustic devices, synthetically. Accordingly, the time averaged acoustic energy density is independent of the position in the acoustic field. Thus, the time-averaged acoustic energy density is also the time-spatial averaged acoustic energy density.
     3. To study the thermoacoustic performance in traveling-standing wave, two analysis methods are presented: the mathematical formulation analysis and the qualitative analysis. It is found that the results of the two methods are consistent. For the thermoacoustic engine, in order to gain a better acoustic power and efficiency, the hot end of regenerator should be close to the pressure antinode, and the traveling wave component should propagate from the hot end to the ambient end. For the thermoacoustic refrigerator, in order to gain a better cooling power and coefficient of performance, the ambient end of regenerator should be close to the pressure antinode, and the traveling wave component should propagate from the ambient end to the cold end.
     4. Acoording to the thermoacoustic performance in traveling-standing wave, a novel thermoacoustically driven thermoacoustic refrigerator has been originally proposed in this paper. It consists of a thermoacoustic engine and a thermoacoustic refrigerator, and the former is the driving source of the latter. Both the engine and the refrigerator are located in one loop tube coupled with a resonator tube. Compared with the other types of the heat driven thermoacoustic refrigerators, this device has the merits: (1) It effectively utilize the thermoacoustic performance of the combined action of the traveling wave component and the standing wave component; (2) The acoustic power produced by the thermoacoustic engin is used to drive the thermoacoustic refregenerator directly; (3) The feedback tube realizes the recycle of the residual acoustic power out of the thermoacoustic refregenerator. On the basis of the analysis and consideration, a miniature high frequency thermoacoustically driven thermoacoustic refrigerator besed on traveling-standing wave was built firstly in the world. The total length of this refrigerator system is less than 1 m. At the operating point with the mean pressure of 2.2 MPa, helium as working gas, frequency of 234 Hz, and a heating power of 300 W, the experimental refrigerator provides a no-load temperature of -30°C and a cooling power of 40 W at the cooling temperature of 0°C.
     5. Based on the linear thermoacoustic theory, the normalized expressions of acoustic parameters, regenerator parameters and the thermoacoustic performence parameters are derived and calculated, and then proposed a novel synthetical optimzation method for thermoacoustic device. Some conclusions have been obtained, which are of significance to explain the optimum work conditions of existing engines and to guide the designs of new thermoacoustic devices.
引文
[1]周远.新型低温制冷方法、进展及展望.香山科学会议第240次学术讨论“制冷与低温科学技术研究前沿”,北京,2004:6-11.
    [2] Backhaus S, Swift GW. New varieties of thermoaeoustic engines. Proceedings of the 9th International Congress on Sound and Vibration, Orlando FL, 2002: 502.
    [3] Rayleigh L. The theory of sound. Dover Publications. UK, 1896.
    [4] Swift GW. Thermoacoustic engines. J Acoust Soc Am, 1988, 84: 1145-1180
    [5]郭方中,李青.热动力学.华中科技大学出版社,2007.
    [6] Higgins B, Nicholson’s J.I, 130(1802).
    [7] Sondhauss C. Ueber die Schallschwin,ungen den Luft in erhitzten Glasrohren und in gedeckten Pfeifen von ungleicher Weite, Ann. Phys.(Leipzig),1850: 79.
    [8] Rijke PL. Notizǚber eine neuc Art, die in einer an beiden Enden offenen Rǒhre enthaltene Luft in Schwingungen zu versetzen Ann. Phys. (Leipzig) 107, 1859: 339.
    [9] Kirchhoff G. Ueber den Einfluss der Warmeleitung in einem Gas auf die Schallbewegung. Ann Phys(Leipzig), 1850(19): 1.
    [10] Feldman KT. Review of the literature on Sondhauss thermoacoustic phenomena. J Sound Vib, 1968, 7(1): 71-82.
    [11] Feldman KT. Review of the literature on Rijke thermoacoustic phenomena. J Sound Vib, 1968, 7(1): 83-89.
    [12] Rayleigh L. The explanation of certain acoustical phenomena. Nature, 1878(18): 319-321 .
    [13] Taconis KW.Vipor-liquid equilibrium of 3He in 4He. Physica, 1949(15): 738.
    [14] Rott N. Damped and thermally driven acoustic oscillations in wide and narrow tubes. Z. Angew. Math. Phys., 1969(20): 230-243.
    [15] Rott N. Thermally driven acoustic oscillations, Part II: Stability limit for helium. Z. Angew. Math. Phys., 1973(24): 54.
    [16] Rott N. The influence of heat conduction on acoustic streaming. Z. Angew. Math. Phys., 1974(25): 417-421.
    [17] Rott N. Thermally driven acoustic oscillations, Part III: Second-order heat flux. Z. Angew. Math. Phys., 1975(26): 43-49.
    [18] Rott N, and Zouzoulas G. Thermally driven acoustic oscillations, Part IV: Tubes with variable cross section. Z. Angew. Math. Phys., 1976(27):197-224.
    [19] Rott N. Thermoacoustics. Adv. Appl. Mech., 1980(20): 135-175.
    [20] Yazaki T, Tominaga A, Narahara Y. Stability limit for thermally driven oscillations. Cryogenics, 1979(19): 393-396.
    [21] Yazaki T, Tominaga A, Narahara Y. Experiments on thermally driven acoustic oscillations of gaseous helium. J. Low Temp. Phys., 1980(41): 45-60.
    [22] Merkli P, Thomann H. Thermoacoustic effects in a resonance tube. J Fluid Mech, 1975(68): 567-575.
    [23] Thomann H. Acoustical streaming and thermal effects in pipe flow with high viscosity. Z Angew Math Phys, 1976, 27: 709-715
    [24] Ward WC, Swift GW. Design environment for low-amplitude thermoacoustic engines(DeltaE). J Aoustic Soc Am., 1994(95): 3671-3672
    [25] Ward WC, Swift GW. Full tested software and user’s guide available at http://www.lanl.gov/thermoacoustics/
    [26] Tominaga A. Thermodynamic aspects of thermoacoustic theory. Cryogenics, 1995(35): 427-440.
    [27] Tominaga A. Phase dependence of energy flows in a regenerator. Cryog Eng (in Japan), 1992(27): 63.
    [28] Xiao JH. Thermoacoustic theory for cyclic regenerator, Part I: fundament. Cryogenics, 1992(32): 895.
    [29] Xiao JH. Thermoacoustic heat transportation and energy transformation, Part 1: Formulation of the problem. Cryogenics, 1995, 35(1):15-20.
    [30] Xiao JH. Thermoacoustic heat transportation and energy transformation, Part 2: Isothermal wall thermoacoustic effects. Cryogenics, 1995, 35(1):21-26.
    [31] Xiao JH. Thermoacoustic heat transportation and energy transformation, Part 3: Adiabatic wall thermoacoustic effects. Cryogenics, 1995, 35(1):27-32.
    [32]肖家华.热声效应与回热式制冷机(热机)的热声理论[博士学位论文].中国科学院情报文献中心,1990.
    [33] Guo FZ. On the theory of cyclic flow cryogenic regenerator. Proc. of INCONCRYO, India, 1985: 227.
    [34] Guo FZ, Chou Y M, Lee S Z, et al. Flow characteristics of a cyclic flow regenerator. Cryogenics, 1987, 27:152.
    [35] Guo FZ. The investigation on cyclic flow regenerator for Stirling cycle cryocooler. Proc. of JSJS-3, Japan, 1989: 59.
    [36] Guo FZ. Network model of cyclic flow regenerator for Stirling cryocooler (invited). Proc. of ICEC-13, Beijing, 1990: 199.
    [37] Guo FZ, Li Q. Progress of the research work on network modeling of split cycle Stirling cryocooler. Proc. of JSJS-4, Beijing, 1993: 152.
    [38] Xiang Y, Kuang B, Guo FZ. Parity simulation of thermoacoustic effect in regenerator of Stirling cryocooler. Cryogenics, 1995, 35(8): 489.
    [39]向宇.汽液两相欠热沸腾声辐射及其自激热声振荡形成机理的实验和理论研究[博士学位论文].华中科技大学图书馆, 1995.
    [40] Carter RL, White M, Steele AM. Private communication of Atomics International Division of North American Aviation, Inc., 1962.
    [41] Feldman KT. A study of heat generated pressure oscillation in a closed end pipe, Ph.D. dissertation. Mechanical Engineering, University of Missouri, 1966.
    [42] Feldman KT. Review of the literature on Sondhauss thermoacoustic phenomena. J. Sound Vib., 1968(7): 71-82.
    [43] Feldman KT. Review of the literature on Rijke thermoacoustic phenomena. J. Sound Vib., 1968(7): 83-89.
    [44] Wheatley JC, Cox A. Natural engines. Physics Today, 1985(38): 50.
    [45] Swift GW. Analysis and performance of a large thermoacoustic engine. J Acoust Soc Am, 1992, 92(3): 1551-1563 .
    [46] Olson JR, Swift GW. A loaded thermoacoustic engine. J Acoust Soc Am, 1995, 98(5): 2690-2693.
    [47] Godshalk KM, Jin C, Kwong YK, Swift GW. Characterization of 350Hz thermoacoustic driven orifice pulse tube refrigerator with measurements of the phase of the mass flow and pressure. Advances in Cryogenic Engineering, 1996(41): 1411-1418.v0
    [48] Swift GW, Migliori A, Hofler T. Theory and calculations for an intrinsically irreversible acoustic prime mover using liquid sodium as primary working fluid. J Acoust Soc Am,1985, 78(2):767-781.
    [49] Migliori A, Swift GW. Liquid-sodium thermoacoustic engine. Applied Physics Letters,1988, 53(5): 355-357.
    [50] Zhu SW, Matsubara Y. Theoretical and experimental study of thermal acoustic engine. In: Proceedings of 7th Int’l Conf on Stir-ling Cycle Machines, 1995. 579-584.
    [51] Zhou SL, Matsubara Y. Experimental research of thermoacoustic prime mover. Cryogenics, 1998, 38(8): 813-822.
    [52] Chen RL, Garrett SL. Solar/heat-driven thermoacoustic engine. J Acoust Soc Am, 1998, 103(5): 2841.
    [53] Garrett SL, Backhaus S. The power of sound. American Scientist. 2000(88): 516-525
    [54]邓晓辉.热声谐振管的实验和理论研究.华中理工大学博士后研究工作报告,1996.
    [55] Tu Q, Li Q, Guo FZ. Temperature difference generated in thermo-driven thermoacoustic refrigerator. Cryogenics, 2003, 43(9):515-522.
    [56] Chen GB and Jin T. Experimental investigation on the onset and damping behaviour of the oscillation in a thermoacoustic prime mover. Cryogenics, 1999, 39(10): 843-846.
    [57] Chen GB, Jiang JP, Shi JL. Influence of buffer on resonance frequency of thermoacoustic engine. Cryogenics, 2002, 42(3/4): 223-227.
    [58]谢秀娟,伍继浩,禹智斌等.基于DeltaE程序的行波热声热机特性研究.低温工程,2003, 132(2):31-35.
    [59]周刚,李青,李正宇等.热声发动机径向尺寸对谐振频率的影响.声学技术,2007,27(4),761-766.
    [60]戴巍,罗二仓等.改进型驻波发动机的实验研究.中国工程热物理年会,2004.
    [61] Dai W, Yu GY, Zhu SL. 300 Hz thermoacoustically driven pulse tube cooler for temperature below 100 K. Applied Physics Letters, 2007(90): 024104.
    [62] Ceperley PH. A pistonless Stirling engine–The traveling wave heat engine. J. Acoust. Soc. Am., 1979(66): 1508-1513.
    [63] Ceperley PH. Gain and efficiency of a short traveling wave heat engine. J. Acoust. Soc. Am., 1985(77): 1239-1244.
    [64] Yazaki T, Maekawa IT, Tominaga A. Traveling wave thermoacoustic engine in a looped tube. Phys. review lett., 1998, 81(15):3128-3131.
    [65] Backhaus S, Swift GW. A thermoacoustic-Stirling heat engine. Nature, 1999(399): 335-338.
    [66] Backhaus S, Swift GW. A thermoacoustic-Stirling heat engine: Detailed study. J. Acoust. Soc. Am., 2000(107): 3148-3166.
    [67] David Gedeon. DC gas flow in Stirling and pulse tube cryocooler. In R.G.Ross, editor, Cryocooler 9,1997:385-392.
    [68] Olson JR, Swift GW. Acoustic streaming in pulse tube refrigerators: Tapered pulse tubes. Cryogenics, 1997(37): 769-776 .
    [69] Biwa T, Yazaki T. Work flow measurement in a thermoacoustic engine. Cryogenic, 2001(41): 305-310.
    [70] Biwa T, Ueda Y, Yazaki T. Thermodynamical mode selection rule observed in thermoacoustic oscillations. Europhys. Lett., 2002; 60(3): 363-368.
    [71] Ueda Y, Biwa T, Mizutani U, Yazaki T. Experimental studies of thermoacoustic Stirling prime mover and its application to a cooler. J. Acoust. Soc. Am., 2004, 115(3): 1134-1141.
    [72] Biwa T, Ueda Y, Yazaki T, Mizutani U. Thermodynamical mode selection rule observed in spontaneous gas oscillations. The proceedings of 17th International Conference on Acoustics, 2001. Rome; Part A.
    [73] Ueda Y, Biwa T, Yazaki T. Work flow measurement on thermoacoustic stirling engine. The 17th International Conference on Acoustics, 2001. Rome.
    [74] Ueda Y, Biwa T, Mizutani U, Yazaki T. Acoustic field in a thermoacoustic Stirling engine having a looped tube and resonator. Appl. Phys. Lett., 2002, 81(27): 5252-5254.
    [75] Matsubara Y, Mikaye A. Alternative method of the orifice pulse tube refrigerator. Cryocooler 5, edited by R. G. Ross, Jr., Plenum Press, New York, 1988: 127.
    [76] Sun D, Qiu LM, Zhang W. Investigation on traveling wave thermoacoustic heat engine with high pressure amplitude. Energy Conversion and Management, 2005, 46(2): 281-291.
    [77] Luo EC, Ling H, Dai W. A high pressure-ratio, energy-focused thermoacousticheat engine with a tapered resonator. Chinese Science Bulletin, 2005, 50(3): 284-286.
    [78] Li Q, WuJH, Guo FZ. Investigation on a high frequency travelling-wave thermoacoustic system. ICC12, 2002.
    [79] Yu ZB, Li Q, Chen X, Guo FG, Xie XJ. Experimental investigation on a thermoacoustic engine having a looped tube and resonator. Cryogenics, 2005(45): 566-571.
    [80] Yu ZB, Li Q, Chen X, Guo FZ. Investigation on the oscillation modes in a thermoacoustic Stirling prime mover: mode stability and mode transition. Cryogenics, 2003, 43: 687-691.
    [81]谢秀娟.高频斯特林新型热声发动机和制冷机的理论探索及研制[博士学位论文].中国科学院情报文献中心, 2006.
    [82]周刚,李青,李正宇等.行波热声发动机容腔管和反馈管的调相作用研究.低温与超导,2006, 34(4):250-252.
    [83]周刚. [博士学位论文].小型行波热声热机系统的研究[博士学位论文].华中科技大学, 2007.
    [84] Gardner DL, Swift GW, A cascade thermoacoustic engine, J. Acoust. Soc. Am., 2003(114): 1905–1919.
    [85] Hu ZJ, Li Q, Xie XJ, Zhou G. Design and experiment on a mini cascade thermoacoustic engine. Ultrasonics, 2006(44): 1515-1517.
    [86] Zhong Jun Hu,Qing Li, Qiang Li, Zheng Yu Li. A high frequency cascade thermoacoustic engine. Cryogenics, 2006, 46(11): 771-777.
    [87] J. C. Wheatley, T. Hofler, G. W. Swift, and A. Migliori. An intrinsically irreversible thermoacoustic heat engine, J. Acoust. Soc. Am., 1983, 74(1): 153-170.
    [88] Hofler TJ. Thermoacoustic refrigerator design and performance. PhD thesis, Physics department, University of California, San Diego, 1986.
    [89] Garrett SL, Adeff JA, Hofler TJ. Space Thermoacoustic Refrigerator for Space Applications. Journal of Thermophysics and Heat Transfer, 1993, 7(4): 595-599.
    [90] Space thermoacoustic refrigerator. http://www.acs.psu.edu/thermoacoustics/ refrigeration /star.htm.
    [91] Shipboard electronics thermoacoustic cooler. http://www.acs.psu.edu /thermoacoustics/refrigeration/setac.htm.
    [92] Poese ME, Smith RWM, Garrett SL. Thermoacoustic refrigeration for ice cream sales. http://www.structuredproducts.ge.com
    [93] Tijani MEH, Zeegers J, and de Waele ATAM. Design, development and operation of a thermoacoustic refrigerator cooling cooling below- 60℃. In: Ross, R G Jr. Cryocooler 11. New York: Kluwer Academic/Plenum Publishers, 2001: 309-316.
    [94] Tijani MEH, Zeegers JCH, Waele A. Design of thermoacoustic refrigerators. Cryogenics, 2002(42), 49-57.
    [95] Tijani MEH, Spoelstra S. Study of a coaxial thermoacoustic-Stirling cooler. Cryogenics, 2008, 48(1):77-82.
    [96]袁鹏,寿卫东.热声制冷效应的实验研究.同济大学学报, 1995; 23(6): 687-690.
    [97] Cool sounds-Environmentally friendly acoustic refrigerator for ice cream cabinets. http://www.light-science.com/cosound.html.
    [98] Radebaugh R. A review of pulse tube refrigeration. Adv Cryo Eng, 1990, 35(B): 1191-1205.
    [99] Radebaugh R, McDermott KM, Swift GW, Martin RA. Development of a thermoacoustically driven orifice pulse tube refrigerator. In Proceedings of the Interagency Meeting on Cryocoolers, October 24, 1990, Plymouth, MA, David Taylor Research Center, publication 91/003, Bethesda, MD, 1990: 205.
    [100] Wollan J, Swift GW, Wijngaarden W. Development of a Thermoacoustic Natural Gas Liquefier. Presented at the 2000 AGA Operations Conference, Denver, CO. May, 2000.
    [101] Hofler TJ. High-efficiency heat-driven acoustic cooling engine with no moving parts. U.S. Patent No.5901556, 1999.
    [102] Adeff JA, Hofler TJ. Design and Construction of a Solar Powered, Thermoacoustically Driven, Thermoacoustic Refrigerator. J. Acoust. Soc. Am., 2000, 107(6):L37-L42.
    [103] Garrett SL, Adeff JA, Hofler TJ. Space Thermoacoustic Refrigerator for Space Applications. Journal of Thermophysics and Heat Transfer, 1993, 7(4): 595-599.
    [104] Swift GW, Gardner DL. Acoustic recovery of lost power in pulse tube refrigerators. J. Acoust. Soc. Am., 1999, 105: 711-724.
    [105] Uda Y, Biwa T, Yazaki T. Construction of a thermoacoustic Stirling cooler. Physica B, 2003, 329: 1600-1601.
    [106]邱利民,蒋宁等.热声驱动脉冲关制冷机的实验研究.低温工程,2000;4:1-10.
    [107]蒋宁.热声驱动脉冲关制冷机的实验研究[硕士学位论文].浙江大学图书馆,2000.
    [108] Jin T, Chen GB, Shen Y. Study on thermoacoustic prime mover and its application to pulse tube refrigeration. First workshop on Thermoacoustics, the Netherlands, April 2001: 36.
    [109] Jin T, Chen G B, Shen Y. A thermoacoustically driven pulse tube refrigerator capable of working below 120K. Cryogenics, 2001, 41:595-601.
    [110] Tang K, Chen GB. Influence of resonance tube length on the performance of thermoacoustically driven pulse tube refrigerator. Cryogenics, 2005, 45(3): 185-191.
    [111] Sun DM, Qiu LM. Investigation on traveling wave thermoacoustic heat engine with high pressure amplitude. Energy Conversion and Management, 2005, 46(2): 281-291.
    [112]孙大明,邱利民等.行波热声发动机驱动脉冲管制冷机研究.低温工程,2005;(1):30-34.
    [113] Dai W, Luo EC, Hu JY, Ling H. A heat-driven thermoacoustic cooler capable of reaching liquid nitrogen temperature. Appl Phys Lett, 2005, 86(22).
    [114]胡剑英.液氮至液氢温区的热驱动低温制冷机的研究[博士学位论文].中国科学院情报文献中心, 2007.
    [115] Li CS, Liu XH, Wang GD. Simulation on temperature field of 50CrY4 automobile gear bar steel in continuous rolling by FEM [ J ]. Journal of Materials Processing Technology, 2002, 120(1/2/3): 26-29.
    [116] Gedeon D. A Globally Implicit Stirling Cycle Simulation. Proceedings of the 21st International Energy Conversion Engineering Conference, American Cheminal Siciety, Washington. DC. 1986: 550.
    [117] Bauwens L. Near-Isothermal Regenerator: A Perturbation Analysis. J. Acoust. Soc. Am., 1995: 749-756.
    [118] Hofler TJ. Design simulation for ThermoAcoustic research. Available at http://cooler.physics.nps.navy.mil/hofler/dstarhome.htm.
    [119] Gary J, Gallagher O, Radebaugh R. A Numerical Modal for Regenerator Performance. National Institute of Standards and Technology. Boulder, CO, 1994, also REGEN 3.1 User Guide.
    [120] Swift GW, Ward WC. Simple harmonic analysis of regenerators. J. Thermophysics and Heat Transfer, 1996(10): 652-662.
    [121] Swift GW. Thermoacoustics: A unifying perspective for some engines and refrigerators. Condensed Matter and Thermal Physics Group, Los Alamos National Laboratory, Fifth draft, 2001.
    [122]张铁.数值分析.第2版.冶金工业出版社, 2007.
    [123]刘惟信.机械最优化设计.第2版.清华大学出版社. 1994.
    [124]邓巍巍,王越南. VISUAL FORTRAN编程指南.人民邮电出版社.
    [125]张志涌.精通MATLAB 6.5.北京航空航天大学出版,社2003年3月.
    [126]李予敏. C++入门经典(第3版).清华大学出版社2006年1月.
    [127] Strutt JW, Rayleigh L. The Theory of Sound. 2nd ed., New York: Dover, 1945.
    [128] Biwa T, Tashiro Y, Mizutani U. Experimental demonstration of thermoacoustic energy conversion in a resonator. Physical Review E, 2004, 69(6).
    [129] Wheatley JC, Swift GW, Hofler TJ. Heat-driven acoustic cooling engine having no moving parts. United States Patent 4858441, Nov. 22, 1989.
    [130] Sakamoto S, Watanabe Y. The experimental studies of thermoacoustic cooler.Ultrasonics 2004, 42:53-56.
    [131] Fox RW, McDonald AT. Introduction to fluid mechanics.Wiley,1985.
    [132] Atchley AA, Bass HE, Hofler TJ, Lin H. Study of a thermoacoustic prime mover below onset of self-oscillation. J. Acoust. Soc. Am., 1992, 91(2): 734.
    [133] Atchley AA, Kuo F. Analysis of the initial buildup of oscillation in a thermoacoustic prime mover. J. Acoust. Soc. Am., 1994, 95(3): 1661.
    [134] Zhou S, Matsubara Y. Experimentall research of thermoacoustc Prime mover[J]. Cryogenics, 1998, 38(8): 813-822.
    [135] Nguyen NM, Meyer RG. Start-up and frequency stability in high-frequency oscillators. IEEE J Solid State Circ, 1992, 27(5): 810-820.
    [136] Jackson RW. Criteria for the onset of oscillation in microwave circuits. IEEE Trans Microw Theor Tech, 1992, 40(3): 566-569.
    [137]胡兴华,张晓青,王惠龄,舒水明.热声振荡器的二端口网络模型及起振条件.科学通报,2008年第53卷第1期:1-7.
    [138] Driels M. Linear control system engineering. New York: McGraw-Hill Inc, 1996.
    [139] Gatland HB. Electronic engineering applications of two-port networks. Oxford: Pergamon, 1976.
    [140] Devendra KM. Radio-Frequency and Microwave communication circuits: Analysis and design. 2nd ed. New York: John Wiley&Sons Inc, 2004.
    [141] Randall M, Hock T. General oscillator characterization using linear open-loop S-parameters. IEEE Trans Microw Theor Tech, 2001, 49(6): 1094-1100
    [142] Raspet R, Brewster J, Bass HE. A new approximation method for thermoacoustic calculations. J Acoust Soc Am, 1998, 103(5):2395-402.
    [143] Gaelle P, Bertrand L. Optimal acoustic fields in compact thermoacoustic refrigerators. Applied Acoustics, 2007, 68: 642-659.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700