低温条件下好氧颗粒污泥同步脱氮除磷效能及其过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体富营养化问题的日益突出,为控制污水氮磷的排放提出了迫切的任务。传统的生物脱氮除磷系统尤其在低温时污泥性能与处理效果差,并存在不同程度的污泥膨胀等问题而影响系统的正常运行。好氧颗粒污泥作为一种特殊的生物膜结构,其具有独特的优点而倍受关注。然而,好氧颗粒污泥反应器的启动与稳定运行仍然是制约其工程应用的关键问题,在低温时由于微生物的活性受到抑制而使反应器的启动与运行问题更为突出。本文探索研究了好氧颗粒污泥的低温启动过程,并系统研究了低温好氧颗粒污泥的同步脱氮除磷的效能与过程以及颗粒污泥运行的稳定性。
     以乙酸钠和葡萄糖混合基质为碳源,研究了低温好氧颗粒污泥的启动特性。在10±1℃时成功实现了污泥的颗粒化。成熟的颗粒具有清晰光滑的轮廓,结构密实,平均粒径为2.8mm,湿密度为1.036g/mL,SVI为37mL/g。启动初期的前35天内污泥亚硝化活性增强而硝酸菌活性减小,出水亚硝化率为46%。通过PCR-DGGE和微生物群落演替分析,低温好氧颗粒内部富积了具有贮存PHB和反硝化功能的菌属,为颗粒污泥的同步硝化反硝化和反硝化除磷提供了基础。同时研究了温度对颗粒污泥脱氮除磷性能的影响,温度的大幅升高(△T>6℃),导致了颗粒污泥的解体。
     通过低温好氧颗粒SBAR反应器运行参数的优化研究表明,当进水COD/N/P为100/5/1时,出水氨氮浓度较高,单独增加反应器的运行周期并不能明显增加低温好氧颗粒污泥反应器对氨氮的去除效果。而减小进水COD/N比有利于低温颗粒污泥内部硝化菌的积累,从而发挥颗粒污泥反应器内较大的生物量的优势实现低温较好的硝化效果。另一方面,进水COD由1120mg/L降低至560mg/L后,颗粒污泥粒径由3.4mm降低到2.6mm;反应器污泥浓度也由11.0g/L降低到8.0g/L。曝气量是控制颗粒内部厌氧区域与好氧区域比例以实现同步硝化反硝化的重要参数,并对颗粒污泥的稳定运行影响显著。当Vobs小于0.58cm/s(曝气量小于0.05m3/h,溶解氧饱和度为36%)时,颗粒污泥反应器对氮磷有较好的同步去除效果,但是颗粒表面过量繁殖的丝状菌降低了颗粒污泥运行的稳定性。而Vobs小于1.17cm/s(曝气量小于0.10m3/h)时,混合液溶解氧浓度接近饱和,曝气量的增加颗粒内部的厌氧缺氧区域被压缩而反硝化效果受到抑制,并增加动力消耗。反应器运行参数优化后的低温好氧颗粒污泥单级反应器具有较好的同步碳氮磷的去除性能,其COD,NH4+-N和PO43--P去除率分别为89.5%,98.9%和95.5%。同时,颗粒污泥反应器10±1℃时具有较好的同步硝化反硝化性能,出水亚硝酸盐氮和硝酸盐浓度分别为3.2mg/L和小于0.5mg/L,同步硝化反硝化效率为83.3%。
     通过静态试验研究了10±1℃时好氧颗粒污泥反硝化除磷性能与过程。结果表明:厌氧阶段不同的碳源类型对颗粒污泥聚磷菌合成胞内PHAs的组成影响显著,并影响颗粒污泥的厌氧释磷与缺氧吸磷,即PHAs中PHV比例的增加提高了反硝化聚磷菌对硝态氮电子受体的利用效率。厌氧段初始COD浓度小于300mg/L时,可有效控制有机物流入到缺氧段而影响反硝化吸磷效果。好氧颗粒污泥的生物膜生长方式有效降低了亚硝酸盐氮对反硝化除磷的抑制作用,当亚硝酸盐氮浓度大于60mg/L时出现亚硝酸盐的抑制作用,远大于亚硝酸盐氮对絮状反硝化除磷污泥的抑制浓度。通过不同类型电子受体的反硝化除磷试验表明,颗粒污泥内部反硝化聚磷菌占总聚磷菌的58.7%,远大于厌氧—好氧条件下絮状污泥中的比例。
     为缩短和简化好氧颗粒污泥反应器的启动过程,研究了好氧颗粒污泥的储存对颗粒的影响,不同的氨氮负荷条件下脱氮除磷活性的恢复。两个月时间的保存后,颗粒污泥SVI由32mL/g增加到61mL/g,湿密度由1.036降低为1.017。在进水氨氮和磷浓度为40mg/L和12mg/L时,颗粒污泥的硝化与除磷活性分别在11d和42d后得到恢复。在进水氮氨浓度为80mg/L时,反应器运行27天后,进水氨氮可以被完全转化。由于混合液中较高的pH,颗粒表层发生磷的化学沉淀,使颗粒内基质的传输受限,而在试验中除磷活性并没有得到有效的恢复,出水磷浓度大于6.1mg/L,因此在颗粒污泥的活性恢复阶段应保持pH小于8.0。
The problem of water eutrophication increasingly outstanding puts forward urgent task for controlling N and P discharge. There are many problems such as the worse sludge performance and treatment effect at low temperature. In addition, sludge bulking affects the stable operation of the system to some extant. The aerobic granular sludge process, which is considered as a special biological membrane structure, has received much attention due to the unique merits of aerobic granular sludge. However, the quickly start-up and stable operation of aerobic granular sludge reactor, especially at low temperature, is still the key problem that restricts its engineering application. In this work, start-up process of aerobic granular sludge at low temperature was investigated, and simultaneous nitrogen and phosphorus removal processes, the operating stability of aerobic granular reactor at low temperature were studied systematically.
     The start-up properties of aerobic granular sludge reactor at low temperature were studied, in which the mixture of acetate sodium and glucose served as carbon source. The granules were obtained at 10±1℃. The obtained granules exhibited clear and slippy surface, compact structure and better sedimentation feature. In the first 35 days during the start-up stage, nitrosation activity increased and nitrification activity decreased with the effluent nitrosation ratio of 46%. The results of PCR-DGGE and microbial community ecological succession showed that the bacteria genus which had the function of PHB synthesization and denitrification. This provided foundation of the simultaneously nitrification-denitrification and denitrifying phosphorus removal inside aerobic granules at low temperature. Effect of temperature on the removal properties of ammonia and phosphorus were also studied. The results showed that the stability of granules was affected when the operating temperature increased from 20±1℃to 26±1℃. The nitrite of effluent was accumulated as the temperature increased and its nitrosation ratio was 93.9%. As a result of increased temperature (△T>6℃), the granules grandually disintegrated during the operation period of 47d after the change of temperature.
     The operating parameters optimization of aerobic granular SBAR at low temperature was investigated. It was found that the effluent ammonia concentration was higher when COD/N/P was 100/5/1, and the removal efficiency of ammonia was not improved obviously only by extending the cycle time. A decline of COD/N ratio was benefit to the accumulation of nitrosation bacterial inside the granular sludge at low temperature. Furthermore, it took full advantage of higher MLSS in the reactor to achieve better nitrification effect at low temperature. When the influent concentration of COD decreased from 1120mg/L to 560mg/L, the diameter of stable granules decreased from 3.4mm to 2.6mm, and MLSS also reduced from 11.0g/L to 8.0 g/L. The aeration rate is the key parameter in controlling the ratio of anaerobic and aerobic area inside granules to achieve simultaneous nitrification and denitrification, and remarkably affects the stability operation of granular reactor. In the case of Vobs lower than 0.58cm/s, the effect of N and P removal by the granular sludge reactor was better. But the excessive propagation of filamentous organisms and then decreased operating stability of granular sludge reactor. In the case of Vobs higher than 0.58cm/s, the dissolve oxygen concentration in the mixture approached to saturation. And anaerobic area inside granule was compressed and denitrification effect was restrained and dynamic consumption increased as the aeration rate increased. It behaved better simultaneous N and P removal effect in the parameters optimized single grade reactor of aerobic granule sludge and the removal coefficiency for COD,NH4+-N and PO43--P were 89.5%,98.9% and 95.5%, respectively. Meanwhile, the reactor exhibited better performance of simultaneous nitrification and denitrification at 10±1℃. The experimental data showed that nitrite and nitrate concentration in effluent were 3.2mg/L and lower than 0.5mg/L, the nitrification and denitrification efficecy was 83.3%.
     The denitrifying phosphorus removal proformance and processes were studied through static experiments at 10±1℃. The results showed that the PHAs components synthesized by phosphorus accumulating organisms (PAOs) in granule sludge were affected by different types of carbon source in anaerobic period, and the release and uptake of phosphate were also affected. It was indicated that the increased ratio of PHV to PHAs led to the increase of the utilization efficiency of nitrate nitrogen by denitrification PAOs. When initial COD concentration in anaerobic period was lower than 300mg/L, it can effectively keep organic substrates from flowing into the following anoxic period which influenced the efficiency of denitrifying phosphorus removal. Inhibition of nitrite to denitrifying phosphorus removal was decreased due to biology film growth manner of aerobic granular sludge. The inhibitory concentration of intrite to denitrifying PAOs was 60 mg/L. Denitrifying phosphorus removal experiments with different types of electric acceptor showed that denitrifying PAOs inside granules obtained in aerobic-anaerobic condition was 58.7% to the total PAOs, which was much bigger than that in floc sludge existed in the same operation way.
     In order to shorten and simplify the start-up process of aerobic granular sludge reactor, the effects of aerobic granules storation on the granule properties were studied. The recovery of removal activity for ammonia and phosphorus by granular sludge.after a longer storage period was also investigated. After 2 monthes storation, SVI increased from 32mL/g to 61mL/g, and wet density decreased from 1.036 to 1.017. When inffluent concentration of NH4+-N and phosphate were 40mg/L and 12 mg/L, respectivily, the activity for nitrification and phosphorus removal of granular sludge recovered after 11 day and 42 day cultivation in aerobic-anaerobic condition. When inffluent concentration of NH4+-N was 80mg/L, the NH4+-N can be converted completely after 27 days operation. Due to the higher pH of mixture, chemical sedimentation happened in the surface layer of granules, which limited the transmission of the substrates into granules, and the phosphorus removal activity of the granules cannot be recovered effectively, and the effluent phosphorus concentration was higher than 6.1 mg/L. Thus, pH should be kept lower than 8.0 in the activity recovery processes of granule sludge.
引文
1叶建锋.废水生物脱氮处理新技术.北京:化学工业出版社, 2006: 10-13
    2沈同,王镜岩.生物化学.第二版.北京:高等教育出版社, 2000: 156-164
    3 G. Bortone, F. Malaspina, L. Stante, et al. Biological Nitrogen and Phosphorus Removal in an Anaerobic/Anoxic Sequencing Biological Phosphorus Batch Reactor with Separated Bio-film Nitrification. Water Science Technology. 1994, 30(6): 303-313
    4邹联沛. MBR中DO对同步硝化反硝化的影响.中国给水排水. 2001, 17(6): 10-14
    5沈耀良,王宝贞.废水生物处理新技术-理论与应用.北京:中国环境科学出版社, 1999
    6 N. Berent, D.C. Peng, J.P. Delgenies, et al. Nitrification at Low Oxygen Concentration in Biofilm Reactor. Journal of Environmental Engineering ASCE, 2001, 127(3): 266-271
    7汪大翚,雷乐成.水处理新技术及工程设计.北京:化学工业出版社, 2001
    8高大文,彭永臻,杨庆等.应用实时控制实现和稳定短程硝化反硝化.中国给水排水, 2003, 19(12): 1-5
    9许保玖,龙腾锐.当代给水与废水处理原理(第二版).北京:高等教育出版社, 2000
    10吴广华,张耀斌,全燮等.温度及反硝化聚磷对SBMBBR脱氮除磷的影响.环境科学, 2007, 28(11): 2484-2487
    11邱慎初,丁堂堂.探讨城市污水生物处理出水的总磷达标问题.中国给水排水, 2002, 18(9): 23-25
    12 A. Mulder. Advanced Wastewater Treatment: Nutrient Removal and Anaerobic Processes. Water Science Technoloty, 1997, 35(10): 235-243
    13王晓莲. A2/O工艺运行优化及其控制的基础研究.北京工业大学博士学位论文. 2007: 21-22
    14郝晓地,刘壮,刘国军.欧洲水环境控磷策略与污水除磷技术(下).给水排水. 1998, 24(9): 68-71
    15周斌.改良型A2/O工艺的除磷脱氮运行效果.中国给水排水. 2001, 17(7): 46-48
    16任洁,顾国维,杨海真.改良型工艺处理城市污水的中试研究.给水排水.2000, 26(6): 7-10
    17张波,苏玉民.倒置A2/O氮磷脱除功能.环境工程. 1999, 17(5): 17-18
    18沈耀良,王宝贞.废水生物处理新技术—理论与应用.中国环境科学出版社, 1999: 157-159
    19邓荣森,谭显春,焦斌权.一体化氧化沟的除磷试验研究.给水排水. 2000, 26(1): 14-17
    20刘章富,熊杨,侯铁等.同步生物除磷脱氮的几种实用新工艺.中国给水排水. 2002, 18(9): 65-68
    21 J.E. Alleman. Elevated Nitrite Occurrence in Biological Wastewater Treatment System. Water Science Technology. 1984, 17(1): 409-419
    22 J.W. Mulder, M.C.M. van Loosdrecht, C. Hellinga, et al. Full-scale Application of the SHARON Process for Treatment of Rejection Water of Digested Sludge Dewatering. Water Science Technology. 2001, 43(11): 127-134
    23 K. Hanaki, C. Wantawin, S. Ohgaki. Nitrification at Low Level of Dissolved Oxygen with and Without Loading in a Suspended Growth Reactor. Water Research. 1990, 24(3): 297-302
    24杨麒,李小明.同步硝化反硝化机理的研究进展.微生物学通报. 2003, 30(4): 88-91
    25吕其军,施永生.同步硝化反硝化脱氮技术.昆明理工大学学报(理工版). 2003, 28(6): 91-95
    26周少奇,周吉安,范家明.同时硝化反硝化生物脱氮技术研究进展.环境科学与技术. 2002, (2): 38-44
    27吕锡武.同时硝化和反硝化的理论和实践.环境化学. 2002, 21(6): 564-570
    28 L.A. Robertson, E.W.J. van Neil. Simultaneous Nitrification and Denitrification in Aerobic Chemostat Cultures of Thiosphaera Pantotropha. Applied Environmental Microbiology. 1988, 54(1): 2812-2818
    29 H. Christine, K. Sabine. Simultaneous Nitrification / Denitrification in an Aerobic Biofilm System. Water Science Technology. 1998, 37(4-5): 183-187
    30吕锡武,李峰,稻森悠平等.氨氮废水处理过程中的好氧反硝化研究.给水排水. 2000, 26(4): 197-201
    31 M.C. Hascoet, M. Florentz. Influence of Nitrates on Biological Phosphorus Removal Nutrient Wastewater. Water S.A. 1985, 11(1): 23-26
    32 A. Gerber, R.H. Villiers, E.S. Mostert, et al. The Phenomenon of Simultaneous Phosphate Uptake and Release and Its Importance in Biological Nutrient Removal in: Biological Phosphate Removal from Wastewaters. Pergamon Press, Oxford, 1987: 123-134
    33 J. Wanner, J.S. Cech, M. Kos. New Process Design for Biological Nutrient Removal. Water Science Technology. 1992, 25(4-5): 445-448
    34 T. Kuba, M.C.M. van Loodrecht. Phosphorus Removal from Wastewater by Anaerobic-Anoxic Sequencing Batch Reactor. Water Science Technology. 1993, 27(5-6): 241-252
    35 A. Wachtmeister, T. Kuba, M.C.M. van Loosdrecht. A Sludge Characterization Assay for Aerobic and Denitrifying Phosphorus Removing Sludge. Water Research. 1997, 31(3): 471-478
    36 J.Y. Hu, S.L. Ong, W.J. Ng, et al. A New Method for Characterizing Denitrifying Phosphorus Removal Bacteria by Using Three Different Types of Electron Acceptors. Water Research. 2003, (37): 3463-3471
    37罗固源,吉芳英,罗宁等.硝酸盐电子受体反硝化同时除磷试验分析.环境工程. 2004, 22(1):32-35
    38 T. Mino, M.C.M. van Loosdrecht, J.J. Heijnen. Microbiology and Biochemistry of the Enhanced Biological Phosphate Removal Process. Water Research, 1998, 32(11): 3193-3207
    39 S. Tsuneda, T. Ohno, K. Soejima, et al. Simultaneous Nitrogen and Phosphorus Removal Using Denitrifying Phosphate-Accumulating Organisms in a Sequencing Batch Reactor. Biochemical Engineering Journal. 2005, 27(3): 191-196
    40杨国靖,李小明,曾光明等.利用好氧颗粒污泥实现同时除磷脱氮.中国给水排水. 2005, 21(2): 18-22
    41 Y. Liu, J.H. Tay. State of the Art of Biogranulation Technology for Wastewater Treatment. Biotechnology Advences. 2004, 22(7): 533-563
    42 S.H. Chuang, C.F. Ouyang, Y.B. Wang. Kinetic Competition Between Phosphorus Release and Denitrification on Sludge under Anoxic Condition. Water Research. 1996, 30(12): 2961-2968
    43黄健,张华,杨伟伟.碳源对反硝化除磷的影响.合肥工业大学学报. 2006, 29(12): 1588-1591
    44张红,张朝升,荣宏伟等.有机碳源浓度对反硝化除磷的影响研究.广州大学学报. 2006, 5(6): 73-76
    45 Y.Y. Wang, Y.Z. Peng, S.Y. Wang, et al. Effect of Carbon Source and Nitrate Concentration on Denitrifying Phosphorus Removal by DPB Sludge. Journal of Environmental Science. 2004, 16(4): 548-552
    46王亚宜,彭永臻,王淑莹等.反硝化除磷理论、工艺及影响因素.中国给水排水. 2003, 19(1): 33-36
    47 T. Saitoa, D. Brdjanovic, M.C.M. van Loosdrecht. Effect of Nitrite on Phosphate Uptake by Phosphate Accumulating Organisms. Water Research. 2004, 38(7): 3760-3768
    48 J. Meinhold, E. Arnold, S. Isaacs. Effect of Nitrite on Anoxic Phosphate Uptake in Biological Phosphorus Removal Activated Sludge. Water Research. 1999, 33(8): 1871-1883
    49王亚宜,王淑莹,彭永臻. MLSS、pH及NO2--N对反硝化除磷的影响.中国给水排水. 2005, 21(7): 47-51
    50刘建平,肖春华.寒冷地区污水处理浅析.低温建筑技术. 2003, (4): 89-90
    51 M. Henze, W. Gujer, T. Mino, et al. Activated Sludge Models; Asm1, Asm2, Asm2d and Asm3. Scientific and Technical Reportseries. Scientific and Technical Report No.9. IWA Publishing. 2000, London. P. 130
    52陈滢,彭永臻. SBR法处理生活污水时非丝状菌污泥膨胀的发生与控制.环境科学学报. 2005, 25(1): 105-108
    53郑兴灿,李亚新.污水除磷脱氮技术.北京:中国建筑工业出版社. 1998: 98-122
    54 A.A. Friedman, E.D. Schroeder. Temperature Effects on Growth and Yield of Activated Sludge. J. Jour. WPCF. 1972, 7(2): 105-114
    55 S. Knoop, S. Kunst. Influence of Temperature and Sludge Loading on Activated Sludge Setting, Especially on Microthrix Parbicella. Water Science Technology. 1998, 37(4-5): 27-35
    56桑义敏,尹伟. CASS工艺在处理低温生活污水中的应用.环境工程. 2002, 20(2): 16-18
    57贲岳,陈忠林,徐贞贞等.低温生活污水处理系统中耐冷菌的筛选及动力学研究.环境科学. 2008, 29(11): 3189-3193
    58马文成.耐冷菌处理低温生活污水的实验研究.哈尔滨工业大学硕士学位论文. 2005: 62-63
    59王燕妮.低温污水曝气生物滤池处理技术中试试验研究.哈尔滨工业大学硕士学位论文. 2007: 44-45
    60赵立军.低温污水生物强化处理技术应用研究.哈尔滨工业大学博士学位论文. 2007: 95-96
    61齐巨龙,谭洪新,孙大川等.低温条件下水芹对水体氮磷的静态净化研究.渔业现代化. 2008, 35(3): 6-10
    62熊集兵,刘春法,杨肖娥等.低温条件下陆生观叶植物红叶甜菜去除不同富营养化水体氮磷的效应.农业环境科学学报. 2008, 27(2):736-740
    63 C.T.M.J. Frijters, D.H. Eikelboom, A. Mulder, et al. Treatment of Nunicipal Wastewater in a Circox Airlift Reactor with Integrated Denitrification. Water Science Technology. 1997, 36(1): 173-181
    64沈仲根,张丽丽,陈建孟.有机负荷影响好氧颗粒污泥特性的研究.环境污泥与防治. 2008, 30(8): 69-72
    65王芳,杨凤林,张兴文等.不同有机负荷下好氧颗粒污泥的特性.中国给水排水. 2004, 20(6): 46-48
    66 A.J. Li, S.F. Yang, X.Y. Li, et al. Microbial Population Dynamics During Aerobic Sludge Granulation at Different Organic Loading Rates. Water Research. 2008, 42(13): 3552-3560
    67 A. Mosquera-Corral, M.K. de Kreuk, J.J. Heijnen. Effects of Oxygen Oncentration on N-removal in an Aerobic Granular Sludge Reactor. W ater Research. 2005, 39(12): 2676-2686
    68 D.C. Peng, B. Nicolas, D. Jean-philippe, et al. Aerobic Granular Sludge - a Case Report. Water Research. 1999, 33(3): 890-893
    69 J.J. Beun, M. C. M. van Loosdrecht, J. J. Heijnen. Aerobic Granulation in a Sequencing Batch Airlift Reactor. Water Research. 2002, 36(3): 702-712
    70 B.S. Mcswain, R.L. Irvine, P.A. Wilderer. The Influence of Settling Time on the Formation of Aerobic Granules. Water Science Technology. 2004, 50(10): 195-202
    71 L. Qin, J.H. Tay, Y. Liu. Selection Pressure is a Driving Force of Aerobic Granulation in Sequencing Batch Reactors. Process Biochemical. 2004, 39(5): 579-584
    72 Y.M. Lin, Y. Liu, J.H. Tay. Development and Characteristics of Phosphorus Accumulating Granules in Sequencing Batch Reactor. Applied Microbiology Biotechnology. 2003, 62(4): 430-435
    73 R. Wirtz, R. Dague. Enhancement of Granulation and Start-up in the Anaerobic Sequencing Batch Reactor. Water Environmental Research. 1996,68(5): 883-892
    74 J.H. Tay, Q.S. Liu, Y. Liu. Microscopic Observation of Aerobic Granulation in Sequential Aerobic Sludge Blanket Reactor. Journal Applied Micorbiology. 2001, 91(1): 168-175
    75 E. Morgenroth, T. Sherden, M.C.M. van Loosdrecht. Aerobic Granular Sludge in a Sequencing Batch Reactor. Water Research. 1997, 31(12): 3191-3194
    76 H.L. Jiang, J.H. Tay, Y. Liu, et al. Ca2+ Augmentation for Enhancement of Aerobically Grown Microbial Granules in Sludge Blanket Reactors. Biotechnology Letter. 2003, 25(2): 25-29
    77 Y. Liu, H. Xu, S.F. Yang. A Ggeneral Model for Biosorption of Cd2+, Cu2+ andZn2+ by Aerobic Granules. J. Biotechnology. 2003, 102(3): 233-239
    78 Y. Liu, S.F. Yang, Q.S. Liu. The Role of Cell Hydrophobicity in the Formation of Aerobic Granules. Current Microbiology. 2003, 46(4): 270-274
    79 B.S. McSwain, R.L. Irvine, M. Hausner, et al. Composition and Distribution of Extracellular Polymeric Substrances in Aerobic Flocs and Granular Sludge. Applied Environmental Microbiology. 2005, 71(2): 1051-1057
    80 S.S. Adav, D.J. Lee, J.H. Tay. Extracellular Polymeric Substances and Structural Stability of Aerobic Granule. Water Research. 2007, 42(6-7): 1644-1650
    81 M.Y. Chen, D.J. Lee, J.H. Tay. Distribution of Extracellular Polymeric Substances in Aerobic Granules. Applied Microibology Biotechnology. 2007, 73(6): 1463-1469
    82 M.Y. Chen, D.J. Lee, J.H. Tay. Staining of Extracellular Polymeric Substances and Cells in Bio-aggregates. Applied Microbiology Biotecnology. 2007, 75(2): 467-474
    83 M.K. de Kreuk, M.C.M. van Loosdrecht. Selection of Slow Growing Organisms as a Means for Improving Aerobic Granular Sludge Stability. Water Science Technology. 2004, 49(11-12): 9-17
    84 Y. Liu, S.F. Yang, J.H. Tay. Improving Stability of Aerobic Granules by Selecting Slow Growing Nitrifying Bacteria. Journal Biotechnology. 2004, 108(2): 161-169
    85 J.H. Tay, Q.S. Liu. The Role of Cellular Polysaccharides in the Formation and Stability of Aerobic Granules. Applied Microbiology Letters. 2001, 33(3): 222-226
    86 F. Fang, X.W. Liu, J. Xu, et al. Formation of Aerobic Granules and Their PHB Production at Various Substrate and Ammonium Concentrations. Bioresource Tecnology. 2009, 100(1): 59-63
    87 J.J. Beun, A. Hendrids, M.C.M. van Loosdrecht. Aerobic Granulation in a Sequencing Batch Reactor. Water Research. 1999, 33(10): 2283-2290
    88 T. Etterer, P.A. Wilderer. Generation and Properties of Aerobic Granular Sludge. Water Science Technology. 2001, 43(3): 19-26
    89 J.H. Tay, Q.S. Liu, Y. Liu. Aerobic Granulation in Sequential Sludge Blanket Reactor. Water Science Technology. 2002, 46(4-5): 13-18
    90 Y. Liu, J.H. Tay. The Essential Role of Hydrodynamic Shear Force in the Formation of Biofilm and Granular Sludge. Water Research. 2002, 36(7): 1653-1665
    91 J.H. Tay, Q.S. Liu, Y. Liu. The Effects of Shear Force on the Formation, Structure and Metabilsm of Aerobic Granules. Applied MicrobiologyBiotechnology. 2001, 57(1-2): 227-233
    92 M.K. de Kreuk, J.J. Heijnen, M.C.M. van Loosdrecht. Simultaneous COD, Nitrogen and Phosphate Removal by Aerobic Granule. 2005, 90(6): 761-769
    93 R. Lemaire, Z.G. Yuan, L.L. Blackall, et al. Microbial Distribution of Accumulibacter spp. and Competibacter spp. in Aerobic Granules from a Lab Scale Biological Nutrient Removal System. Environmental Microbiology. 2008, 10(2): 354-363
    94 B.J. Ni, W.M. Xie, S.G. Liu, et al. Granulation of Activated Sludge in a Pilot-scale Sequencing Batch Reactor for the Treatment of Low-strength Municipal Wastewater. Water Research. 2009, 43(3): 751-761
    95 B.Y.P. Moy, J.H. Tay, S.K. Toh. High Organic Loading Influences the Physical Characteristics of Aerobic Sludge Granules. Letter Applied Microbiology 2002, 34(6): 407-412
    96 P.J. Allsop, Y. Chisti, M. Moo-oung. Dynamics of Phenol Degradation by Pseudomonas Putida. Biotechnology Bioengineering. 1993, 41(5): 572-580
    97 H.L. Jiang, J.H. Tay, S.T.L. Tay. Changes in Structure, Activity and Metabolism of Aerobic Granules as a Microbial Response to High Phenol Loading. Applied Microbiology Biotechnology. 2004, 63(5): 602-608
    98 H. Xu, Y. Liu, J.H. Tay. Effect of pH on Nickel Biosorption by Aerobic Granular Sludge. Bioresource Technology. 2005, 97(3): 359-363
    99 X.F. Sun, S.G. Wang, X.W. Liu, et al. Competitive Biosorption of Zinc(II) and Cobalt(II) in Single- and Binary-metal Systems by Aerobic Granules. Journal of Colloid and Interface Science. 2008, 324(1-2): 1-8
    100王景峰.好氧颗粒污泥脱氮除磷及颗粒污泥膜生物反应器研究.天津大学博士学位论文. 2005, 127-131
    101 J.H. Tay, P. Yang, W.Q. Zhuang, et al. Reactor Performance and Membrane Filtration in Aerobic Granular Sludge Membrane Bioreactor. Journal of Membrane Science. 2008, 304(1-2): 24-32
    102 Y.C. Juang, D.J. Lee, J.Y. Lai. Fouling Layer on Hollow-fibre Membrane in Aerobic Granule Membrane Bioreactor. Journal of the Chinese Institute of Chemical Engineers. 2008, 39(6): 657-661
    103 J. Zhou, F.L. Yang, F.G. Meng, et al. Comparison of Membrane Fouling during Short-term Filtration of Aerobic Granular Sludge and Activated Sludge. Journal of Environmental Science-China. 2007, 19(11): 1281-1286
    104 N. Kishida, J. Kim, S. Tsuneda, et al. Anaeroibc/Oxic/Anoxic Granular Sludge Process as an Effective Nutrient Removal Process Utilizing Denitrifying Polyphosphate-Accumulating Organisms. Water Research. 2006, 40(12):2303-2310
    105 G. J. F. Smolders, J. Klop. A Metabolic Model of the Biological Phosphorus Removal Process, Effect of the Sludge Retention Time. Biotechnology Bioengineering, 1995, (48): 222-233
    106国家环保局.水和废水监测分析方法.第四版.中国环境科学出版社, 2006
    107王芳. SBAR中好氧颗粒污泥的培养及其特性研究.大连理工大学博士学位论文. 2004: 5-8
    108 A. Laguna, A. Ouattara, R.O. Gonzalez, et al. A simple and Low Cost Technique for Determining the Granulometry of Upflow Anaerobic Sludge Blanket Reactor Sludge. Water Science Technology. 1999, 40(8): 1-8
    109 C. Di Iaconi, R. Ramadori, A. Lopez, et al. Influence of hydrodynamic shear forces on properties of granular biomass in a sequencing batch biofilter reactor. Biochemical Engineering Journal, 2006, 30(2):152-157
    110周旭红,曹晓辉.污泥中总磷测定方法的探讨.浙江化工. 2005, 36(2): 41-42
    111 M. Moreau, Y. Liu, B. Capdeville, et al. Kinetic Behaviors of Heterotrophic and Autotrophic Biofilm in Wastewater Treatment Processes. Water Science Technology. 1994, 29(10-11): 385-391
    112 J.C. Ochoa, J. Colprim, B. Palacios, et al. Active Heterotrophic and Autotrophic Biomass Distribution between Fixed and Suspended Systems in a Hybrid Biological Reactor. Water Science Technology. 2002, 46(1-2): 397-404
    113 X. Huang, R. Liu, Y. Qian. Behavior of Soluble Microbial Products in a Membrane Bioreactor. Process Biochemistry. 2000, 36(5): 401-406
    114 J.S. Kim, C.H. Lee, H.D. Chun. Comparison of Ultrafiltration Characteristics between Activated Sludge and BAC Sludge. Water Research. 1998, 32(11): 3443-3451
    115 B. Frolund, T. Griebe, P.H. Nielsen. Enzymatic Activity in the Activated-Sludge Floc Matrix. Applied Microbiology and Biotechnology. 1995, 43(4): 755-761
    116林加涵,魏文龄,彭宣宪.现代生物学实验(下册).高等教育出版社. 2001
    117 O.H. Lowry, N.J. Rowebrough, A.L. Farr, et al. Protein Measurement with the Folin Phenol Reagent. Journal of Biological Chemistry. 1951, 193: 265-275
    118 J. Tong, Y.G. Chen. Enhanced Biological Phosphorus Removal Driven by Short-chain Fatty Acids Produced From Waste Activated Sludge Alkaline Fermentation. Environmental Science Technology. 2007, 41(20): 7126-7130
    119 M.K. de Kreuk, M. Pronk, M.C.M. van Loodrecht. Formation of Aerobic Granules and Conversion Processes in an Aerobic Granular Sludge Reactor at Moderate and Low Temperatures. Water Research. 2005, 39(18): 4476-4484
    120 Y. Liu, Q.S. Liu. Causes and Control of Filamentous Growth in AerobicGranular Sludge Sequencing Batch Reactors. Biotechnology Advances. 2006, 24(1): 115-127
    121张蓉蓉,任洪强,魏翔.好氧颗粒污泥处理高浓度氨氮废水的研究.环境污染与防治. 2006, 28(10): 788-791
    122刘小英,穗贤杰,彭党聪.生物除磷颗粒污泥的丝状菌膨胀及恢复研究.中国给水排水. 2007, 23(17): 23-27
    123 Y. Li, Y. Liu. Diffusion of Substrate and Oxygen in Aerobic Granule. Biochemical Engineering Journal. 2005, 27(1): 45-52
    124 D.L. Ford, R.L. Churchwell, J.W. Kachdick. Comprehensive Analysis of Nitrification of Chemical Processing Wastewaters. Jouranl of Water Pollution Control Federation. 1980, 52(11): 2726-2746
    125 X.Y. Shi, H.Q. Yu, Y.J. Sun, et al. Characteristics of Aerobic Granules Rich in Autotrophic Ammonium-Oxidizing Bacteria in a Sequencing Batch Reactor. Chemical Engineering Journal. 2009, 147(2-3): 102-109
    126 D. Brdjanovic, S. Logemann, M.C.M. van Loosdrecht, et al. Influence of Temperature on Biological Phosphorus Removal: Process and Molecular Ecological Studies. Water Research. 1998, 32(4): 1035-1048
    127 Z.W. Wang, Y. Liu, J.H. Tay. Distribution of EPS and Cell Surface Hydrophobicity in Aerobic Granules. Applied Microbiology and Biotechnology. 2005, 69(4): 469-473
    128张丽丽,陈效,陈建孟.胞外多聚物在好氧颗粒污泥形成中的作用机制.环境科学. 2007, 28(4): 795-799
    129 F. Wang, S.Q. Xia, Y. Liu. Community Analysis of Ammonia and Nitrite Oxidizers in Start-up of Aerobic Granular Sludge Reactor. Journal of Environmental Science. 2007, 19(8): 96-102
    130 X.D. Hao, J.J. Heijnen, M.C.M. van Loosdrecht. Sensitivity Analysis of a Biofilm Model Describing an Onstage Completely Autrophic Nitrogen Removal (CANON) Process. Biotechnology Bioengineering. 2002, 77(3): 265-277
    131龙北生,孙大群,边德军等.采用两级SBR工艺优化除磷脱氮.给水排水. 2003, 29(11): 34-37
    132 P.H. Jones, H.M. Sabra. Effect of Systems Solids Retention Time (SSRT or Sludge Age) on Nitrogen Remival from Activated-Sludge Systems. Water Pollution Control. 1980, 79(1): 106-116
    133 Y. Li, Y. Liu, L. Shen, et al. DO Diffusion Profile in Aerobic Granule and Its Microbiological Implications. Enzyme and Microbial Tehcnology. 2008, 43(4-5): 349-354
    134石利军,王旭江,杨凤林等.循环流生物膜法反应器同时硝化反硝化实验研究.环境科学与技术. 2005, 28(6): 93-105
    135张鹏,苏宏.生物膜系统同时硝化和反硝化的实验研究.环境科学与技术. 2005, 28(3): 16-17
    136 J.B. Holman, D.G. Wareham. COD, Ammonia and Dissolved Oxygen Time Profiles in the Simultaneous Nitrification Denitrification Process. Biochemical Engineering Journal. 2005, 22(2): 125-133
    137 E.V. Munch, P. Lant, J. Keller. Simultaneous Nitrification and Denitrification in Bench-Scale Sequencing Batch Reactors. Water Research. 1996, 30(2): 227-284
    138 K. Pochana, J. Keller. Study of Factors Affecting Simultaneous Nitrification and Denitrification (SND). Water Science and Technology. 1999, 39(6): 61-68
    139吕炳南,陈志强.污水生物处理新技术.哈尔滨工业大学出版社. 2005:44-45
    140 S. Okabe, K. Hirata, Y. Watanabe. Dynamic Changes in Spatial Microbial Distribution in Mixed-Population Biofilms: Experimental Results and Model Simulation. Water Science Technology. 1995, 32(8): 67-74
    141 M.K. de Kreuk. Aerobic Granular Sludge Scaling up a New Technology. The Ph.D. thesis, Technology University Delft. 2006, 35-45
    142 J.J. Beun, M.C.M. van Loosdrecht, J.J. Heijnen. Aerobic Granulation. Waster Science Technology. 2000, 41(4-5): 41-48
    143 C. Picioreanu, M.C.M. van Loosdrecht, J.J. Heijnen. Mathematical Modeling of Biofilm Structure with a Hybrid Differential-Discrete Cellular Automation Approach. Biotechnology Bioengineering. 1998, 58(1): 101-116
    144 A. Schramm, L.H. Larsen, N.P. Revsbech. Structure and Function of a Nitrifying Biofilm as Detemined by In Situ Hybridization and the Use of Microelectrodes. Applied and Environmental Microbiology. 1996, 61(12): 4641-4647
    145 T. Kindaichi, T. Ito, S. Okabe. Ecophysiological Interaction between Nitrifying Bacteria and Heterotrophic Bacteria in Autotrophic Nitrifying Biofilms as Detemined by Micro autoradio graphy fluorescence in situ hybridization. Applied and Environmental Microbology. 2004, 70(3): 1641-1650
    146 K.A. Third, N. Burnett, R. Cord-Ruwisch. Simulataneous Nitrification and Denitrification Using Stored Substrate (PHB) as the Electron Donor in an SBR. Biotechnology Bioengineering. 2003, 83: 706-720
    147王亚宜.反硝化除磷脱氮机理及工艺研究.哈尔滨工业大学博士学位论文. 2004: 103-108
    148 S.F. Yang, J.H. Tay, Y. Liu. Inhibition of Free Ammonia to the Formation of Aeroibc Granules. Biochemical Engineering Journal. 2004, 17(1): 41-48
    149 T. Kuba, M.C.M. van Loosdrecht. Occurrence of Denitrifying PhosphorusRemoval Bacteria in Modified UCT-Type Wastewater Treatmentplants. Water Research. 1997, 31(4): 777-786
    150 T.E. Cloete, D.J. Oosthuizen. The Role of Extracellular Exopolymers in the Removal of Phosphorus from Activated Sludge. Water Research. 2001, 35(15): 3595-3598
    151刘亚男,于水利,赵冰洁.胞外聚合物对生物除磷效果影响研究.哈尔滨工业大学学报. 2005, 37(5): 623-625
    152周健.胞外聚合物(EPS)对污泥沉降性能的影响及其在生物除磷中的作用研究.重庆大学硕士学位论文. 2006, 75-76
    153周健,栗静静,龙腾锐等.胞外聚合物EPS在废水生物除磷中的作用.环境科学学报. 2008, 28(9): 1758-1762
    154吴凡松,彭永臻.城市污水处理厂的生物除磷系统设计.中国给水排水. 2002, (18): 56-58
    155 Y.G. Chen, Y.S. Chen, Q. Xu. Comparison between Acclimated and Unacclimated Biomass Affecting Anaerobic-Aerobic Transformations in the Biological Removal of Phosphorus. Process Biochemistry. 2005, 40(2): 723-732
    156 A. Oehmen, Z. Yuan, R.J. Zeng, et al. Competition between Polyphosphate and Glycogen Accumulating Organisms in Enhanced Biological Phosphorus Removal Systems with Acetate and Propionate as Carbon Sources. Journal of Biotechnology. 2006, 123(1): 22-32
    157 D.E. Lin, Y.W. Zhang, D.C. Sun, et al. Polyphdroxyal-Kanoates of Different Structure Synthesized by Activated Sludge with Acetate and Propionate as Sole Carbon Source. Acta Scientiarum Naturalium Univer-Sitatis Sunyatseni. 2003, 42: 118-121
    158 M.C. Wentzel, L.H. Lotter, G.A. Ekama, et al. Evaluation of Biochemical- Models for Biological Excess Phosphorus Removal. Water Science Technology. 1991, 23(4-6): 567-576
    159 P. Canizares, A. De Lucas, L. Rodriguez, et al. Anaerobic Uptake of Different Organic Substrates by an Enhanced Biological Phosphorus Removal Sludge. Environmental Technology. 2000, 21(4): 397-405
    160 Y.H. Kong, J.L. Nielsen, P.H. Nielsen. Microautoradiographic Study of Rhodocyclus-Related Polyphosphate-Accumulating Bacteria in Full-Scale Enhanced Biological Phosphorus Removal Plants. Applied Environmental Microbiology. 2004, 70(9): 5383-5390
    161 D.S. Lee, C.O. Jeon, J.M. Park. Biological Nitrogen Removal with Enhanced Phosphorus Uptake in a Sequencing Batch Reactor Using Single Sludge System. Water Research. 2001, 35(16): 3968-3976
    162 T. Kuba, G. Smolders, M.C.M. van Loosdrecht, et al. Biological Phosphorus Removal form Wastewater by Anaerobic-Aerobic Sequencing Batch Reactor. Water Science Technology. 1993, 27(5-6): 241-252
    163 H.J. Li, Y.G. Chen, G.W. Gu. The Effect of Propionic to Acetate Acid Ratio on Anaerobic-Aerobic (Low Dissolved Oxygen) Biological Phosphorus and Nitrogen Removal. Bioresource Technology. 2008, 99(10): 4400-4407
    164王伟.碳源及电子受体对反硝化除磷系统的影响研究.哈尔滨工业大学硕士学位论文. 2007: 43-49
    165 Y. Comeau, K.J. Hall, W.K. Oldham. Indirect Polyphosphate Quantification in Activated Sludge. Water Pollution Research Journal Canada. 1990, 25(2): 161-174
    166 D. Jenkins, V. Tandoi. The Applied Microbiology of Enhanced Biological Phosphate Removal Accomplishments and Needs. Water Research. 1991, 25(12): 1471-1478
    167 G. Carvalho, P.C. Lemos, A. Oehmen, et al. Denitrifying Phosphorus Removal: Linking the Process Performance with the Microbial Community Structure. Water Research. 2007, 41(19): 4383-4396
    168 M. Merzouke, N. Bernet, J.P. Delgenes, et al. Effect of Prefermentation on Denitrifying Phosphorus Removal in Slaughterhouse Wastewater. Bioresource Technology. 2005, 96(12): 1317-1322
    169高景峰,郭建秋,毕环宇等.间歇式除磷好氧颗粒污泥反应器的快速启动.环境工程. 2008, 26(1): 15-18
    170 M. Maurer, D. Abramovich, H. Siegrist, et al. Kinetics of Biologically Induced Phosphorus Precipitation in Waste-Water Treatment.Water Research. 1999, 33(2): 484-493
    171 C.O. Jeon, D.S. Lee, M.W. Lee, et al. Enhanced Biological Phosphorus Removal in an Anaerobic–Aerobic Sequencing Batch Reactor: Effect of pH. Water Environment Research. 2001, 73(3): 301-306
    172 L.S. Serafim, P.C. Lemos, M.A.M. Reis. Effect of pH Control on EBPR Stability and Efficiency. Water Science Technology. 2002, 46(4–5): 179-184
    173 C.D.M. Filipe, G.T. Daigger, C.P.L. Grady. Stoichiometry and Kinetics of Acetate Uptake under Anaerobic Conditions by an Enriched Culture of Phosphorus-Accumulating Organisms at Different pHs. Biotechnology Bioengineering. 2001, 76(1): 32-43
    174 A. Oehmen, M.T. Vives, H. Lu, et al. The Effect of pH on the Competition between Polyphosphate-Accumulating Organisms and Glycogen-Accumulating Organisms. Water Research. 2005, 39(15): 3727-3737
    175 A.J. Schuler, D. Jenkins. Effects of pH on Enhanced Biological Phosphorus Removal Metabolisms. Water Science Technology. 2002, 46(4–5): 171-178

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700