CASS深度处理漂染废水试验研究及其数学模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
综述了印染废水的现状及印染废水深度处理技术研究进展,并简要介绍了CASS(Cyclic Activated Sludge System)工艺特点、工作原理及应用。本文选用CASS作为其深度处理漂染废水的试验工艺,并对CASS动力学数学模型进行了简要探讨。主要研究结论如下:
     1、试验研究表明,在水力停留时间HRT=15.5h下CASS系统处理效果最好,污泥浓度为1071mg/L,COD污泥负荷为0.21kgCOD/(kgMLSS·d),进水COD浓度为112~194mg/L,出水COD浓度49.0~58.7mg/L,去除率在52.5%~70.8%之间,平均去除率62.1%,出水COD浓度波动很小,稳定在60mg/L以下。
     2、在不同进水浓度下,COD去除率,随反应时间的变化,其趋势是稳定的,说明CASS系统抗冲击负荷特别显著。另外,在CASS系统中,通过调整回流比,可以有效的控制出水水质。进水时间长短对CASS反应器中有机物降解过程有比较大的影响。进水时间越长,有机物投加的速度越慢,越有利于难降解有机物的去除;另一方面,长时间进水有利于生物选择器絮凝性细菌的生成及保证缺氧区的水解、酸化效果。
     3、对主反应区基质降解动力学特征进行研究表明,试验废水基质降解速率服从一级反应动力学关系,曝气5个小时后,废水中的可溶性有机物已基本降解完全,有机物降解进入了难降解阶段。COD可生化率仅有60.7,说明该废水的可生化性不高,这也说明CASS缺氧水解酸化的必要性及生化出水尝试物化处理的可行性。
     4、物化实验表明,混凝剂聚合氯化铝对COD的去除效果优于硫酸铝,最佳剂量在100mg/L左右,去除率在20%左右,物化去除率不高。同时实验发现,无论是硫酸铝还是聚合氯化铝对色度改观并不大。
     5、漂染废水二级处理出水经CASS深度处理后,出水中仍含有极少量的染料,使其带有一定的色度,呈浅黄色。另外一些无机盐如Na2SO4、NaCl无法通过CASS生化深度处理去除,可回用于对用水要求相对较低的工序,如煮练和漂洗工序,即可减少生产用水,又可减少废水排放,对漂染企业来讲是切实可行的。
     6、本课题来源于漂染废水二级出水的实际工程,针对性强。从COD去除率、脱色效果、达标可靠性、对水质水量适应性、投资、运行费用、管理等方面综合考虑,CASS工艺作为漂染废水深度处理技术是切实可行的好方法,其效果优于其它方法,费用省于其它方法。CASS工艺对于现有漂染废水处理设施的改造及回用有着很好的应用前景。
     7、本文对CASS动力学模型进行了探讨,对动力学参数进行了估计,并用Matlab程序对数学模型进行了求解。在印染废水深度处理中对CASS反应器进行模拟,优化设计参数,从而应用于工程设计。
The present situation and the study progress on advance treatment of the dyeing wastewater is rerviewed, and the characteristics, principles and applications of Cyclic Activated Sludge System (CASS) briefly introduced. The experiment eploys the technique of CASS to further treat the bleaching and dyeing wastewater, and establishes the corresponding dynamics mathematics model. The main results are summarized as follows:
     1. The experiment indicated that the CASS’s treating effect is the best when HRT is 15.5h, MLSS 1071mg/L, COD Sludge load 0.21 kgCOD/(kgMLSS·d), the influent COD 112~194mg/L, with the effluent COD being 49.0~58.7mg/L, removal rate between 52.5% and 70.8% steadily, average removal rate 62.12%, and effluent COD below 60mg/L.
     2. Under various influent concentration of wastewater,the COD removal rate kept stable, along with the reaction time, which proved the CASS system anti-impact load is specially remarkable. Moreover, the quality of water can be effectively controlled via adjusting reflux ratio of sludge. It was found the influent time played key role to the quality of effluent water. The longer the influent time, the slower the organism being added, the better the removal effect of unsoluable organim.Further more, the long influent time contribute to the formation of flocculence bacterium in the biological selector and the hydrolyzition and acidification of the organism in the anoxic zone.
     3. The experiment results showed that the degradation velocity obeys one class reaction kinetics. After 5 hours’aeration, soluble organic compound degraded almost completely, and organic compound difficultly to degrade remained. COD biodegradation rate only 60.7, which manifested that the necessity of hydrolyzation and acidification, and the feasibility of chemical-physical method for the effluent of CASS.
     4. The COD removal effect of poly-aluminum chloride coagulant surpasses that of the aluminium sulfate.With best dosage about 100 mg/L, removal rate is about 20%, not significant. However, both of the two coagulants display little influence on the wastewater chromaticity.
     5. After the secondary effluent of bleaching and dyeing wastewater treated by CASS, it still contained a few dyes which enable it to have certain chromaticity of buff color. Moreover some inorganic salt like Na2SO4, NaCl are unable to be removaled. Therefore, the effluent water was only fit to be reused in such working procedure like boil practices and rinse with relatively low water quality request, which would not only reduce the production water supply, but also may reduce the wastewater emissions. Thus the technique of CAAS is practical and feasible for dyeing factories.
     6. This experiment aimed to serve the practical treatment to secondary effluent of bleaching and dyeing wastewater. In terms of COD removal rate, color removal effect, reliability, water quality, the investment, the operation expense, and the management etc., CASS is a quite practical and feasible wastewater treating method, which is superior to other means. Therefore, CASS technique has promising application prospect.
     7. This article has carried on the discussion to dynamics model of CASS, estimated dynamics parameters, caculated the mathematical model with Matlab to optimum the design parameters, which is important to the practical application of CASS in treating the dying wastewater.
引文
[1] 戴日成, 张统. 印染废水水质特征及处理技术综述 [J]. 给水排水, 2000, 26 (10): 45-50.
    [2] 奚旦立, 陈季华, 马春燕. 印染废水处理现状及存在问题 [C]. 全国纺织印染废水深度处理及回用和污水达标排放学术研讨会科技文集, 2005, pp. 55-58.
    [3] 国家环保总局科技标准司. 印染废水污染防治技术指南 [M]. 北京: 中国环境科学出版社, 2002, pp. 100-101.
    [4] 何文杰, 韩宏大. 洗染废水处理回用研究 [J]. 中国给水排水, 1994, 10(3): 45-47.
    [5] Giovanni Bergna, Roberto Bianchi, Francesca Malpei. GAC adsorption of ozonated secondary textile effluents for industrial water reuse [J]. Wat. Sci. Tech., 1999, 40(4-5): 435-442.
    [6] 张健俐, 于长华, 威俊. 采用二级组合处理并回用印染废水的应用研究 [J]. 水处理技术, 2003, 29(2): 117-118.
    [7] Sheng H. Lin, Cheng L. Lai. Kinetic characteristics of textile wastewater ozonation in fluidized and fixed activated carbon beds [J]. Wat. Res., 2000, 34(3): 763-772.
    [8] 夏志新. 吸附电解氧化法深度处理印染废水的研究 [D]. 广东工业大学硕士论文, 2001.
    [9] 吴晓翔. 硅藻精土新技术在印染废水深度处理中的应用 [C]. 全国纺织印染废水深度处理及回用和污水达标排放学术研讨会科技文集, 2005, pp. 48-50.
    [10] Sheng H. Lin, Ming L. Chen. Treatment of textile wastewater by chemical methods for reuse [J]. Wat. Res., 1997, 31(4): 868-876.
    [11] Tak-Hyun Kim, Chulhwan Park, Jinwon Lee, et al. Pilot scale treatment of textile wastewater by combined process(fluidized biofilm process-chemical coagulation-electrochemical oxidation) [J]. Wat. Res., 2002, 36(16): 3979-3988.
    [12] X.Z. Li, Y.G. Zhao. Advanced treatment of dyeing wastewater for reuse [J]. Wat. Sci. Tech., 1999, 39(10-11): 249-255.
    [13] 孙文中, 崔玉民, 朱亦仁等. 用复相光催化剂 WO3/CdS/W 深度处理印染废水的研究 [J]. 水处理技术, 2002, 28(5): 278-280.
    [14] 王涛, 阮新潮, 曾庆福等. 微波无极紫外光氧化处理印染终端废水回用中试 [J]. 武汉科技学院学报, 2005, 18(8): 55-58.
    [15] 耿士锁. 生物接触氧化-生物炭流化床在毛纺印染废水深度处理中的应用 [J]. 环境与开发, 1997, 12(4): 28-30.
    [16] 秦永生, 孙长虹, 武江津. 生物活性炭工艺用于废水深度处理的设计 [J]. 中国给水排, 2003, 19(9): 88-91.
    [17] 肖玉南. 加压曝气增氧生物炭滤池深度处理印染废水的特性研究 [D]. 东华大学硕士学位论文, 2005.
    [18] 张华, 田晴, 陈季华. 加压富氧生物活性炭在碱减量印染废水深度处理中的应用研究 [J]. 给水排水, 2004, 30(4): 46-49.
    [19] U. Rott, R. Minke. Overview of wastewater treatment and recycling in the textile processing industry [J].Wat. Sci. Tech., 1999, 40(1):137-144.
    [20] 郑俊, 吴浩汀, 程寒飞. 曝气生物滤池污水处理新技术及工程实例 [M]. 北京: 化学工业出版社, 2002, pp.26-39.
    [21] 周锋. BAF 处理印染废水二级出水试验研究 [D]. 东南大学硕士学位论文, 2004.
    [22] 黄瑞敏, 王欣, 陈克复等. 印染废水回用处理技术研究 [J]. 工业水处理, 2004, 24(7): 33-35.
    [23] 陈保雄. 废水的循环再生工艺—针织毛衣厂洗涤水闭路循环 [J]. 生态科学, 1996,15(2):83-84.
    [24] A. Bottino, G. Capannelli, G. Tocchi, M. Marcucci et. al. Membranes processes for textile wastewater treatment aimed at its reuse [C]. Prec. 8th World Filtration Congress, Symposium and Exhibition, Brighton, UK, 2000, pp. 521-524.
    [25] 杜启云, 李然, 戴海平等. 膜集成技术处理鄂尔多斯羊绒集团生产废水中试研究 [J]. 膜科学与技术, 2002, 22(6): 34-37.
    [26] A. Rozzi, M. Antonelli, M. Arcari. Membrane treatment of secondary textile effluents for direct reuse [J]. Wat. Sci. Tech., 1999, 40(4-5): 409-416.
    [27] A. Rozzi, F. Malpei, L. Bonomo et al. Textile Wastewater Reuse in Northern Italy(COMO) [J]. Wat Sci. Tech., 1999, 39(5): 121-128.
    [28] M. Marcucci, G. Nosenzo, G. Capannelli et al. Treatment and reuse of textile effluents based on new ultrafiltration and other membrane technologies [J]. Desalination, 2001, 138(1-3): 75-82.
    [29] F. Malpei, L. Bonomo, A. Rozzi. Feasibility study to upgrade a textile wastewater treatment plant by a hollow fibre membrane reactor for effluent reuse [J]. Wat. Sci. Tech., 2003, 47(10-11): 33-39.
    [30] R. Krull, E. Doepkens. Recycling of dyehouse effluents by biological and chemical treatment [J].Wat. Sci. Tech., 2004, 49(4): 311-317.
    [31] P. Schoeberl, M. Brik, R. Braun et al. Treatment and recycling of textile wastewater-Case study and development of a recycling concept [J]. Desalination, 2005, 171(2): 173-183.
    [32] D. Mattioli, F. Malpei, G. Bortone and A. Rozzi. Water Recycling and Resource Recovery in Industry [M]. IWA Publishing, London, 2002, pp. 545-584.
    [33] A. Rozzi, F. Malpei, R. Bianchi et al. Pilot-scale membrane bioreactor and reverse osmosis studies for direct reuse of secondary textile effluents [J]. Wat. Sei. Tech., 2000, 41(10): 189-195.
    [34] M. Brik, P. Schoeberl, B. Chamam, et al. Advanced treatment of textile wastewater towards reuse using a membrane bioreactor [J]. Process Biochemistry, 2006, 41(8): 1751-1757.
    [35] M.C. Goronszy. Cyclic technology reaches new heights [J]. Water quality international, 1996, Mar-Apr, 18-20.
    [36] L. Novak, M.C. Goronszy, J. Wanner. Dynamic Mathematical Modeling of Sequencing Batch Reactors with Aerated and Mixed filling Period [J]. Wat. Sci. Tech., 1997, 35(1), 105-112.
    [37] 孙大群, 边德军, 张文华. 循环活性污泥系统(CASS) [J]. 长春工程学院学报, 2001, 2(3): 15-17.
    [38] 沈耀良, 王宝贞. 循环活性污泥系统(CASS)处理城市废水 [J]. 给水排水, 1999, 25(11): 5-8.
    [39] 魏永, 闪红光. 循环式活性污泥法(CASS)的研究进展 [J]. 辽宁城乡环境科技, 2004, 24(4): 7-10.
    [40] M.C. Goronszy, 朱明权. 循环式活性污泥法(CASTTM)在工业废水处理中的应用 [J]. 中国给水排水, 1997, 13(1): 7-12.
    [41] 侯瑞琴, 张统. 循环式活性污泥法污水处理厂的设计及运行 [J]. 中国给水排水, 1999, 15(8): 32-34.
    [42] 王宝贞, 王琳主编. 水污染治理新技术:新工艺、新概念、新理论 [M]. 北京: 科学出版社, 2004, pp. 57-64.
    [43] M.C. Goronszy, 朱明权. 循环式活性污泥法(CAST)的应用及发展 [J]. 中国给水排水, 1996, 12(5): 4-10.
    [44] 孙剑辉, 闫怡新. 循环式活性污泥法的工艺特性及其应用 [J]. 工业水处理, 2003, 23(5): 5-8.
    [45] 王守中, 张统, 侯瑞琴等. 北京航天城污水处理厂CAST法工艺调试及运行 [J]. 给水排水, 1999, 25(8): 10-12.
    [46] 强绍杰, 黄政新. 循环式活性污泥法在啤酒废水处理中的应用 [J]. 给水排水, 1998, 24(3): 30-32.
    [47] 国家环保局. 水和废水监测分析方法(第四版) [M]. 中国环境科学出版社, 2002.
    [48] 顾夏声. 废水生物处理数学模式 [M]. 北京: 清华大学出版社, 1993, pp. 45-54.
    [49] Jr. Ketchum. Design and physical features of sequencing batch reactors [J]. Wat. Sci. Tech., 1997, 35(1): 11-18.
    [50] R.W. Dennis, R.L. Irvine. Effect of fill: ratio on sequencing batch biological reactors [J]. Water Pollution Control Fed., 1979, 51(2): 255-263.
    [51] R.L. Irvine, Jr. Ketchum. Sequencing batch reactor for biological wastewater treatment [J]. CRC Crit Rev Environ Control, 1988, 18: 225-241.
    [52] J. Silverstein, E.D. Schroeder. Performance of SBR activated sludge processes with nitrification / denitrification [J]. WPCF, 1983, 55(4): 377-384.
    [53] H. Nakazawa, K. Tanaka. Kinetic model of sequencing batch activated sludge process for municipal wastewater treatment [J]. Wat. Sci. Tech., 1991, 23(4/6): 1097-1106.
    [54] G.F. Nakhla, A.M. Ahmed, S. Farooq. Modeling of sequencing batch reactors treating inhibitory and noninhibitory wastewaters [J]. Water Environment Research, 1997, 69(1): 6-13.
    [55] Asher Brenner. Use of computers for process design analysis and control: Sequencing batch reactor application [J]. Wat. Sci. Tech., 1997, 35(1): 95-104.
    [56] P. Wilderer, D. Orhon, E. Morgenroth et al. The mechanism and design of sequencing batch reactor systems for nutrient removal-The state of the art [J]. Wat. Sci. Tech., 2001, 43(3): 53-60.
    [57] J. Oles, P.A. Wilderer. Computer aid design of sequencing batch reactors based on the IAWPRC Activated Sludge Model [J]. Wat. Sci. Tech., 1991, 23(4/6): 1087-1095.
    [58] A. Brenner. Modelling of N and P transformation in an SBR treating municipal wastewater [J].Wat. Sci. Tech., 2000, 42(1/2): 55-64.
    [59] G. Andreotola, G. Bortone, A. Tilche. Experimental validation of a simulation and design model for nitrogen removal in sequencing batch reactors [J]. Wat. Sci. Tech., 1997, 35(1): 113-120.
    [60] Hiroaki Furumai, Absar A. Kazmi, Masafumi Fujita. et al. Modeling long term nutrient removal in a sequencing batch reactor [J]. Wat. Res., 1999, 33(11): 2708-2714.
    [61] Kuba. Biological phosphorus removal from wastewater by aerobic-anoxic sequencing batch reactor [J].Wat. Sci. Tech., 1993, 27(5/6): 241-252.
    [62] P.S. Barker, P.L Dold. Denitrification behavior in biological excess phosphorus removal activated sludge system [J]. Wat. Res., 1996, 30(4): 769-780.
    [63] Shun-Hsing Chuang, Chiao-Fuei Ouyang, Yeuh-Bin Wang. Kinetic competition between phosphorus release and denitrification on sludge under anoxic condition [J]. Wat. Res., 1996, 30(12): 2961-2968.
    [64] Zhi-rong Hu, M.C. Wentzel, G.A. Ekama. Anoxic growth of phosphate-accumulating organisms (PAOs) in biological nutrient removal activated sludge systems [J].Wat. Res., 2002, 36(19): 4927-4937.
    [65] Libelli S. Marsili, P. Ratini, A. Spagni et al. Implementation, study and calibration of a modified ASM2d for the simulation of SBR processes [J]. Wat. Sci. Tech., 2001, 43(3): 69-76.
    [66] Hong Zhao, Oliver J. Hao, Thomas J. McAvoy. Approaches to modeling nutrient dynamics: ASM2, simplified model and neural nets [J]. Wat. Sci. Tech., 1999, 39(1): 227-234.
    [67] Hyumook Kim, Oliver J. Hao, Thomas J. McAvoy. SBR system for phosphorus removal:ASM2 and simplified linear model [J]. Journal of Environmental Engineering, 2001, 127(2): 98-104.
    [68] J. Mikosz, E. Plaza, J. Kurbiel. Use of computer simulation for cycle length adjustment in sequencing batch reactor [J]. Wat. Sci. Tech., 2001, 43(3): 61-68.
    [69] J.E. Claes, V.G. Ryckaert, J.F. Van Impe et al. Mathematical modeling and identification of UNITANK wastewater treatment systems [J]. European Water Pollution Control, 1996, 6(6): 34-44.
    [70] W. Wu, P. Timpany, B. Dawson. Simulation and application of a novel modified SBR system for biological nutrient removal [J]. Wat. Sci. Tech., 2001, 43(3): 215-222.
    [71] M.C.Goronszy. Full-scale cyclic activated sludge system phosphorus removal [J]. Wat. Sci. Tech., 1992, 26(9/11): 2253-2256.
    [72] Gunnar Demoulin, Mervyn C. Goronszy, Konrad Wutscher et al. Co-current nitrification/ denitrification and biological P-removal in cyclic activated sludge plants by redox controlled cycle operation [J]. Wat. Sci. Tech., 1997, 35(1): 215-224.
    [73] 刘芳, 顾国维, 蓝梅. 基于ASM1变化模型的进展 [J]. 建设科技, 2002, 7: 58-59.
    [74] 乌尔松, 纽厄尔编著; 高景峰, 彭永臻译. 污水处理系统的建模、诊断和控制 [M]. 北京: 化学工业出版社, 2004, pp. 35-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700