SBR工艺处理含苯酚及氨氮废水的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油化工废水中由于同时含有苯酚和氨氮,废水处理难度较大。实验采用SBR工艺处理含苯酚及氨氮的模拟化工废水,通过探讨不同条件(如温度、溶解氧、pH、底物浓度)下苯酚和氨氮的降解规律以及活性污泥的沉降性能,确定了SBR工艺处理含苯酚及氨氮废水的最佳运行条件;研究了苯酚抑制生物硝化的规律。
     试验结果表明:当进水苯酚浓度20mg/L左右,氨氮浓度60mg/L左右,DO浓度2.0~2.5mg/L,污泥浓度3000mg/L左右,pH值8.5左右,曝气时间8h时,在15℃~20℃的范围内,苯酚的降解速率随温度升高而升高,温度超过20℃后其降解速率变化不大,且苯酚的去除率稳定在99%以上;在15℃~25℃的范围内,氨氮降解速率随温度的升高而升高,并且20℃时氨氮的去除率已达到83.6%,出水氨氮浓度在10mg/L以下;20℃~25℃时的污泥沉降比(SV%)在26%以下,而15℃时SV%为45%。综合考虑苯酚和氨氮的降解情况,温度以20℃-25℃为宜。
     当进水苯酚浓度20mg/L左右,氨氮浓度60mg/L左右,温度20℃~25℃,污泥浓度3000mg/L左右,pH值8.5左右,曝气时间8h时,在DO浓度1.0~2.5mg/L的范围内,当DO<2.0mg/L时,苯酚降解速率和氨氮降解速率随DO浓度的增大而升高,DO为2.0mg/L时苯酚和氨氮的去除率分别稳定在99%和90%以上;而DO>2.0mg/L时苯酚和氨氮的降解速率及去除率则变化不大;DO浓度为2.0~2.5mg/L时,SV%在30%以下,污泥沉降性能良好。综合考虑DO浓度以2.0~2.5mg/L为宜。
     当进水苯酚浓度20mg/L左右,氨氮浓度60mg/L左右,温度20℃-25℃,污泥浓度3000mg/L左右,DO浓度2.0~2.5mg/L,曝气时间8h时,pH在7.3~8.1的范围内,苯酚的降解速率随pH值的增大而升高,苯酚的去除率由74.2%升高到99.9%;pH值超过8.1增大到8.7时,其降解速率随有所下降但变化不大,苯酚去除率是97.9%;pH值7.3~8.7范围内,氨氮降解速率随pH值的增大而升高,并且pH为8.1时氨氮的去除率已达到80.6%,出水氨氮浓度是12mg/L;pH值7.3~8.7的范围内,污泥沉降性良好,SV%都在34%以下,因而综合考虑pH值以8.1~8.7为宜。
     在水温20~25℃左右,DO 2.0mg/L-2.5mg/L,MLSS 3000mg/L左右,pH 8.5左右时,随着苯酚浓度的增大,苯酚和氨氮降解所需时间逐渐延长,苯酚浓度增大到40mg/L时,氨氮的降解己很难进行,8小时内的去除率只有62.1%,此时的SV%是60%,活性污泥沉降性能严重变差。进水氨氮浓度的增大使硝化反应时间的延长,在同一时间内氨氮去除率的下降,但对苯酚降解的影响不大。
     试验测定和理论计算得出苯酚对硝化的抑制率(苯酚对生物硝化的抑制程度,以硝化速率来计算)为50%时的苯酚质量浓度为19.7mg/L~21.1mg/L,抑制作用为75%时的苯酚质量浓度为34.45mg/L~40.15mg/L;苯酚对硝化过程的抑制属非竞争性抑制,是可逆的;有苯酚时温度对硝化速率的影响要大于无苯酚时温度对硝化速率的影响,因此,在苯酚存在下要达到无苯酚存在时相同的硝化速率应适当地提高温度。
Owing to containing phenol and ammonia, petrochemical sewage is quite difficult to be treated. The rules of phenol and ammonia degradation and the sludge settling property were discussed at the different conditions, such as the telnperature, dissolved oxygen (DO), pH, and substrate concentration in this article through the test of bio-treatment of sewage using SBR process. And the best operating conditions of phenol and ammonia degradation were determined. The rules of phenol inhibition to biological nitrification were also studied.
     The results indicated that, when the influent concentration of phenol and ammonia were about 21mg/L and 62mg/L with the DO, pH, aerobic time and the sludge concentration were 2.0~2.5mg/L, 8.0~8.5, 8h and about 3000mg/L respectively, at the conditions of temperature was 15℃~20℃, phenol degradation rate increased with the temperature increased, and above 20℃, it changed little, and the phenol removal rate stabilized over 99%. At 15℃~25℃, ammonia degradation rate increased with the temperature increased, and the ammonia removal rate was 83.6%with the effluent concentration of ammonia was below 10mg/L. The SV%was 26%at 25℃and 45%at 15℃, so the sludge settling property at 25℃was better than that at 15℃. Considering the phenol and ammonia degradation, the best temperature was at 20℃~25℃.
     With the influent concentration of phenol and ammonia were about 21mg/L and 62mg/L with the temperature, pH, aerobic time and the sludge concentration were 20℃~25℃, 8.0~8.5, 8h and about 3000mg/L respectively, at the conditions of DO concentration was 1.0~2.5mg/L, and when DO<2.0mg/L, phenol and ammonia degradation rate increased with the DO concentration increased, and phenol and ammonia removal rate stabilized over 99%; and 90%, and there was little change when DO was above 2.0mg/L. The sludge settling property was good with the SV%was below 30%at DO: 2.0~2.5mg/L. So the best DO concentration was at 2.0~2.5mg/L.
     When the influent concentration of phenol and ammonia were about 21mg/L and 62mg/L, with the temperature, DO, aerobic time and the sludge concentration were 20℃~25℃, 2.0~2.5mg/L, 8h and about 3000mg/L respectively, at the conditions of the pH was at 7.3~8.1, phenol degradation rate increased with the pH increased, and the phenol removal rate was from 74.2%to 99.9%, then it declined to 97.9%when the pH was at 8.7. And at pH: 7.3~8.7, ammonia degradation rate increased with the pH increased, and the ammonia removal rate was 80.6%with the effluent concentration of ammonia was below 12mg/L. The sludge settling property was better with the SV%was below 34%at pH: 7.3~8.7. So the best pH was about 8.1~8.7.
     At the conditions of the temperature, DO, pH, and the sludge concentration were 20℃~25℃, 2.0~2.5mg/L, 8.0~8.5, and about 3000mg/L respectively, the time of phenol and ammonia degradation gradually extended with the influent concentration of phenol increased. The ammonia removal rate was only 62.1%at the influent concentration of phenol was 40mg/L, and the sludge settling property was bad with the SV%was 60%. The time of ammonia degradation extended and the ammonia removal rate declined if the influent concentrations of ammonia increased, but influent concentration of amlnonia had little impact on phenol degradation.
     The phenol concentration was 19.7mg/L~21.1mg/L and 34.45mg/L~40.15mg/L if calculated in the nitrification inhibition formula under the condition that the extent of inhibition was about 50%and 75%respectively. Since the inhibition of phenol to nitrification was by nature not competitive and reversible, the inhibition could be eliminated without phenol. Furthermore, Nitrification rate were more sensitive to temperature change in phenol contained wastewater.
引文
[1] 何苗.有毒难降解有机物的污染及防治对策[J].世界环境,1997,1(2):34~36
    [2] C. Moreno-Castilia, J. Rivera-Ulrilia. Adsorption of some substituted phenols on activated carbons from a bituminious coal[J]. Carbon, 1995, 33(6): 845~851
    [3] BeerSingh, S. Madhusadhanam, Vimta Dubey, Rabidner. Active carbon for removal of toxic chemicals from contaminated water[J]. Carbon, 1996, 34(3): 327~330
    [4] Xiaohu Deng, Yinghong Yue, Zi GaoW. Preparation and characterization of active carbon adsorbents for wastewater treatment from elutrilithe [J]. Journal of colloid and interface science, 1997, 192(12): 475~480
    [5] Robert J deJonge, Anton M Breure, Johan G Van angel. Reversibility of adsorption of aromatic compounds onto powdered activated carbon [J]. Water research, 1996, 30(4): 883~892
    [6] Ruey-Shin Juang, Jia-Yun Shian. Adsorption of phenol from water onto macrovore ticularresins[J]. Journal of hazardous materials, 1999, B70: 171~183
    [7] Zhu L, Ren X, Yu S. Use of Cetytrimethyl ammonium Bromide-beoniteto remove organic Contamitants of varying Polar character from water[J]. Environ Sci. Technol, 1998, 32(21): 3374~3378
    [8] 朱利中,胡建中,沈小强,柴骏.有机膨润土吸附对硝基苯酚的性能及其在水处理中的应用初探[J].环境科学学报,1995,15(3):316~321
    [9] D. Batahyal, A. Sahu, S. k. Chaudhuri. Kinetic. Sand mechanism of removal of 2, 4-dimethyl phenol from aqueous solution with coal flyash[J]. Separation Technology, 1995, 5(12): 179~186
    [10] 林齐平.含酚废水治理技术进展[J].水处理技术,1993,9(3):174~179
    [11] 徐伟辉,严叶卫.含酚废水处理工艺综述[J].上海船舶运输科学研究所学报,2005,28(1):53~55
    [12] L. Z. S hirgaonkar, A. B. Pandit. Sonophoto chemical destruction of aqueous solution of 2,4,6-trichlorophenol, Ultrason[J]. Sonochem, 1998, 5(16): 53~57
    [13] Seymour D. J., Gupta B. R. Oxidation of aqueous pollutant using ultrasound: salt-induce denhancement [J]. lnd.Eng.Chem.Res, 1997, 36(9): 3453~3461
    [14] Takno Yamagishi, aderleiter, Shingoueda, Fumio Yamaguchi, Yuichi Suwa. Simultaneous Removal of phenol and ammonia by an activated sludge process with cross-flow filtration [J]. Water Research, 2001, 35(13): 3089~3096
    [15] Eiroa M., Kennes C., Veiga M. C. Formaldehyde biodegradation and its inhibitory effect on nitrification. [J]. Chem. Technol. Biotechnol. 2004, 79: 499~504
    [16] Eiroa M., Kennes C., Veiga M. C. Simultaneous nitrification and formaldehyde biodegradation in an activated sludge unit. Bioresource Technol [J]. 2005a, 12(35): 35~38
    [17] L. Amor, M. Eiroa, C. Kennes, M. C. Veiga Phenol biodegradation and its effect on the nitrification process [J] Water Research. 2005, 39: 2915~2920
    [18] 肖庚富,王家玲.曝气浸没固定生物膜法及其在污水处理中的应用[J].环境科学与技术,1993,63(4):1~5
    [19] Hirosdhi Tsun, Masagh, Kawamura, TSAO Somiya. Anaerobic degradation of pentachlor-phenol in biological expended-bed reactor [J]. Wat. Sci. Tech., 1990, 34 (5-6): 335~344
    [20] Amid P, Khodadoust, Julle a wager, Makram T Suidamn, Anaerobic treatment in fluidized bed GAC bioreactors [J]. Wat. Res., 1997, 31 (7): 1776~1786
    [21] Gonza, lez G, Herrera G, Garca M. T, Pena M., Biodegradation of phenol in a continuous process: comparative study of stirred tank and fluidized-bed bioreactors [J]. Bioresource Technol. 2001. 76: 245~251
    [22] 张森林.季成四醇生产废水的生物降解.湘潭大学自然科学学报[J],1993,15(2):75~81
    [23] 周岳溪.循序间歇式活性污泥法处理造漆工业废水[J].环境科学,1993,14(4):71~73
    [24] 周群英.味清浓度水稀释液厌氧消化——SBR工艺处理[J].上海环境科学,1995,(7):13~15,27
    [25] 吴罡,韩中坚,葛梅等.SBR工艺处理含酚废水的研究[J].交通环保,2002,23(1):21~23
    [26] 于萍,姚琳,罗运柏.高浓度含酚废水处理的新工艺[J].工业水处理,2002,22(9):5~8
    [27] 刘和,王晓云,陈英旭.固定化微生物技术处理含酚废水[J].中国给水排水,2003,19(5)
    [28] 王润叶,谷天野.活性污泥处理煤气厂废水[J].中国煤炭,2003,29(5):52~53
    [29] 沈齐英,刘录,沈秋英,孔继兰.生物法处理含酚废水的实验研究[J].石油与天然气化工,2003,32(2):118~121
    [30] 冯鸿江.炼油厂含硫含酚废水生物处理研究[J].广东化工,2004,5(1)53~54
    [31] 杨建设,聂丽君.降酚优势菌处理含酚废水的实验研究[J].石油与天然气化工,2004,33(4):293~296
    [32] 徐伟辉,严叶卫.含酚废水处理工艺综述.上海船舶运输科学研究所学报[J],2005,28(1):54~56
    [33] 潘强.含酚废水处理.环境工程[J],2005,97(2):97~99
    [34] 魏远隆,安春江,席淑琪,雷武,夏明珠.王风云固定化微生物法处理含酚废水的研究[J].南京理工大学学报,2005,29(3):326~329
    [35] 朱永光,冯栩,廖银章,李旭东.活性污泥系统处理苯酚废水的生物强化效果[J].应用与环境生物学报,2006,12(4):559~561
    [36] H. Q. Yu, G W Gu. Treatment of phenolic wastewater by sequence batch reactors with areaten and unaeraten fills [J]. Waste Management. 1996, 16(7): 561~566
    [37] Manimekalai. R, Swaminathan. T. Removal of hazardous compounds by lignin peroxidase from Phanero chaetechry sosporium [J]. Bioprocess Engineering, 2000, 22(2): 29~33
    [38] Yamagishi T, Leite J, Ueda S., Yamaguchi F, Suwa Y. Simultaneous removal o f phenol and ammonia by an activated sludge process with cross-flow filtration. [J] Water Res. 2001, 35(13): 3089~3096
    [39] Hesham R, Lotfy I G R. A method for treating wastewater containing for maldehyde [J]. Water Research, 2002, 36: 633~637
    [40] Rao J R, Viraraghavan T. Biosorption of phenol from anaqueous Solution by Aspergillus niger biomass [J]. BioresourceTechnology, 2002, 85: 165~171
    [41] Fountoulakis M S, Dokianakis S N, Komaros M E. Removal of phenolics in olivemill wastewaters using the white-rot fungus Pleurotus ostreatus[J]. Water Research, 2002, 36: 4735~4744
    [42] V'azquez, and J Rodriguez, Simultaneous removal of phenol, ammonium and thiocyanate from coke wastewater by aerobic biodegradation [J] Journal of Hazardous Materials. 2006, B 137: 1773~1780
    [43] 沈耀良,王宝贞,废水生物处理新技术—理论与应用[M].北京,中国环境科学出版社,1999
    [44] Berent N, Peng D C, Delgeniès J P, etal. Nitrification at low oxygen concentration in biofilm reactor [J] J Environ Eng ASCE, 2001, 127(3): 266~271
    [45] 王志盈,刘超翔,袁林江等.低溶氧下生物流化床内亚硝化过程的选择特性研究[J].西安建筑科技大学学报,2000,32(3):4~7
    [46] 张小玲,李斌,杨永哲等.低DO下的短程硝化及同步硝化反硝化.中国给水排水[J],2004,20(5):13~16
    [47] 陈滢,王洪臣,彭永臻.控制低溶解氧浓度实现生活污水短程硝化研究[J].哈尔滨商业大学学报(自然科学版),2004,20(3):339~341
    [48] 汪大翚,雷乐成.水处理新技术及工程设计[M].北京:化学工业出版社,2001
    [49] 郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术[M].北京:科学出版社,2004
    [50] 李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社,2002
    [51] 龙北生,孙大群,边德军等.采用两级SBR工艺优化除磷脱氮.给水排水[J],2003,29(11):34~37
    [52] 李勇智.短程生物脱氮和反硝化除磷的基础研究:[学位论文]哈尔滨:哈尔滨工业大学,2003
    [53] 许保玖,龙腾锐.当代给水与废水处理原理(第二版)(M].北京:高等教育出版社,2000
    [54] 曾薇,彭永臻,王淑莹等.两段SBR法去除有机物及短程硝化反硝化[J].环境科学,2002,23(3):50~54
    [55] 高大文,彭永臻,杨庆等.应用实时控制实现和稳定短程硝化反硝化[J].中国给水排水,2003,19(12):1~5
    [56] 吉芳英.排除厌氧富磷污水ERP-SBR除磷脱氮工艺研究:[学位论文]重庆大学,2004
    [57] 冯叶成等.生物脱氮工艺研究进展[J].微生物学通报,2001,28(4):88~91
    [58] 顾国维编著.水污染治理技术研究[M].上海:同济大学出版社,1997
    [59] 王黎,郑龙熙等.现代生物脱氮技术发展趋势[J].石油化工,1999,12(2):36~42
    [60] 王建龙.生物脱氮新工艺及其技术原理[J].中国给水排水,2000,16(2):25~28
    [61] 高廷耀等生物脱氮工艺中的同步硝化反硝化现象[J].给水排水,1998,24(12):6~9
    [62] 周少奇,周吉林.生物脱氮新技术研究进展[J].环境污染治理技术与设备,2000,1(6):11~19
    [63] 华光辉,张波,沈晓南.采用间歇曝气工艺改进AB法工艺氮磷脱除功能的试验研究[J].环境工程,2001,19(1):15~17
    [64] Grady C P LJr, Daigger G T, et al. Biological wastewater treatment. Second Edition. New York[J], Marcel Dekker Inc, 1999
    [65] 冀秀玲,张金利,李韦华等.含酚废水处理中活性污泥沉降性能影响因素的研究[J].化学反应工程与工艺,2002,18(3):249~255
    [66] 张统主编.间歇式活性污泥法污水处理技术及工程实例[M].北京:化学工业出版社,2002
    [67] John A Pierson, Spyros G Pavlostathis. Real-time monitoring and control of sequencing batch reactors for secondary treatment of a poultry processing wastewater[J]. Water Environment Research, 2000, 72(5): 585~592
    [68] 蔡卫权等.SBR工艺运行控制战略研究进展[J].环境科学动态,2001,1(16):16~20
    [69] 沈耀良等.强化SBR工艺脱氮除磷效果的若干对策[J].中国给水排水,2000,16(7):23~25
    [70] 赵云挚,刘振鸿.SBR工艺脱氮除磷研究进展[J].工业用水与废水,2002,33(4):7~10
    [71] 刘和.固定化细胞处理含酚废水的研究[学位论文]兰州:兰州大学,2002
    [72] 刘颖.有毒物质对生物硝化的抑制影响研究[学位论文]上海:华东理工大学,2003
    [73] 陈滢,彭永臻,刘敏等.SBR法处理生活污水时非丝状菌污泥膨胀的发生与控制[J].环境科学学报,2005,25(1):105~108
    [74] 吴成强,杨金翠,杨敏,吕文洲.运行温度对活性污泥特性的影响[J].中国给水排水,2003,19(9):5~7
    [75] 郭玉妹.温度对生物污泥中微生物的影响[J].福建环境,1995,12(5):32
    [76] 高春娣,王淑英,彭永臻等.DO对有机物降解速率及污泥沉降性能的影响[J].中国给水排水2001,17(5):12~15
    [77] 丁峰,彭永臻,支霞辉.SBR法处理工业废水中pH值对污泥膨胀的影响[J].环境工程,2004,22(6):29~34
    [78] 许保玫,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000,25(4):217~223
    [79] 丁峰.pH值及营养物质对活性污泥膨胀的影响[学位论文]哈尔滨:哈尔滨建筑大学,1999
    [80] 丁原红,洪华生,熊小京等.渗滤液中的苯酚在高浓度氨氮环境中的降解[J].现代化工,2002,2(22):114~115
    [81] 增薇.两段SBR法亚硝酸型硝化反硝化及过程控制的基础研究[学位论文]哈尔滨:哈尔滨工业大学,2002
    [82] 卫达.低温对SBR处理生活污水及活性污泥沉降性能的影响[学位论文]哈尔滨:哈尔滨工业大学,2005
    [83] 涂保华,张洁,张雁秋.影响短程硝化反硝化的因素[J].工业安全与环保,2004,30(1):12~14
    [84] 李娟英.低浓度污染物生物处理特性研究[学位论文].上海:华东理工大学,2005
    [85] Keener W. K. and Arp D. J. Kinetic studies of Ammonia Monooxygenase inhibition Nitrosomonas europaea by hydrocarbons and halogenated hydrocarbons in an optimized whole-celia ssay [J]. Appl. Environ. Microbiol, 1993, 59(25): 1~2
    [86] Denyer S. P. and Stewart G S. A. B. Mechanisms of action of disinfectants [J]. International Biodeterio & Biodegrad, 1998, 41: 261~268
    [87] McCartyG W. Modes of action of nitrification inhibitors [J]. Biol. Fertil. Soils, 1999, 29: 1~9
    [88] S. R. Juliastuti, J. Baeyens, C. Creemers, D. Bixio and E. Lodewyckx, The inhibitory effects of heavy metals and organic compounds on the net maximum specific growth rate of the autotrophic biomass in activated sludge [J], J. Hazard. Mater. 2003, B 100: 271~283
    [89] S. R. Juliastuti, J. Baeyens and C. Creemers, Inhibition of nitrification by heavy metals and organic compounds: the ISO 9509 test [J], Environ. Eng. Sci. 2003, 20 (2): 79~90
    [90] Xu Z., Zheng G and Yang Q et al. Nitrification inhibition by Naphthalene Derivatives and its relationship with copper [J]. Environ. Contamination & Toxicology, 2000, 64: 542~549
    [91] Hu, Z., Chadran, K., Grasso, D., Smets, B. F. Impact of metal sorption and internalization on nitrification inhibition. Environ [J]. Sci. Technol. 2003, 37(4): 728~734
    [92] Camilla Grunditz and Gunnel Dalhammar. Development of nitrification inhibition assays using pure cultures of Nitrosom onas and Nitrobacter [J]. Wat Res, 2001, 35 (2): 433~440
    [93] Gerardi, M. H. Nitrification and denitrification in the activated sludge process. Wiley, New York, NY, USA. 2002
    [94] Juliastuti S R, Baeyens J, Creemers C, et al. The inhibitory effects of heavy metals and organic compounds on the net maximum specific growth rate of the autotrophic biomass in activated sludge [J]. Journal of Hazardous Materials, 2003, 100 (123): 271~283
    [95] 徐美燕,赵庆祥,刘颖.苯酚对生物硝化过程的抑制[J].安全与环境学报,2005,5(1):43~45
    [96] Ki T. Kima, In S. Kima, Seok H. Hwangb, Sang D. Kima, Estimating the combined effects of copper and phenol to nitrifying bacteria in wastewater treatment plants [J] War. Res, 2006, 40: 561~568
    [97] Q i Yizheng and Wang Shuxiong Biochemical Reaction Dynamic and Reactor [M]. Beijing: Chemical Industry Press, 1999
    [98] N eufeld R D, H ill A J, A dekoya D O. Phenol and free ammonia inhibition to nitrosomonas activity [J]. Water Res, 1998, 14(12): 1695~1703
    [99] Zhu Songming and Chen Shulin. The impacts of temperature on nitrification rate in fixed film biofilters [J]. A quacultural Engineering, 2002, 26(4): 221~237

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700