Ti-6Al-4V/Al-12Si界面金属间化合物生长规律及转变机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛合金和铝合金的焊接过程中,在Ti合金/Al合金界面处极易生成各种脆性的金属间化合物,制约着接头的结合性能。本文以Ti-6Al-4V钛合金为母材,选用Al-12Si作为钎料,主要研究了在Ti合金热浸Al-12Si钎料的过程中Ti合金/Al-12Si固液界面之间发生的反应,以及温度、保温时间、冷却条件及施加超声波振动对Ti合金/Al-12Si界面结构的影响规律,阐明了金属间化合物的生长规律及转变机理。
     通过SEM观察、结合EDS和TEM分析,确定了Ti合金/Al-12Si界面层的物相组成。700℃Ti合金热浸Al-12Si时,界面处只生成了一种金属间化合物,颗粒状的Ti7Al5Si12,堆积在铝合金基体中。延长保温时间、降低冷却速度以及添加较长时间超声波时,都可以使界面层的厚度增加。界面层的硬度为~12.7GPa,弹性模量为~226.8GPa。
     800℃Ti合金热浸Al-12Si时,界面层由三种金属间化合物组成,靠近钛合金基体的连续薄层TiSi,在TiSi层和铝合金钎料之间分布的块状的TiAl3,在TiAl3中穿插分布的条状的Ti7Al5Si12,在TiAl3中,Si元素以固溶的形式存在,固溶度一般为14at.%-15at.%。缓慢冷却过程时,界面处条状的Ti7Al5Si12的数量增多。界面层的硬度为~9.2GPa,弹性模量为~193.7GPa。较长时间添加超声波时,界面层的厚度均明显增加,超声作用加速了Ti合金/Al-12Si的界面反应。
     通过金属间化合物的演变试验,可以确定Ti合金/Al-12Si界面处金属间化合物的生长及转变机制。Si元素的分布对界面反应具有重要影响,在700℃保温过程中,Si元素向界面处扩散,在Ti合金/Al-12Si界面处Ti原子、Al原子和Si原子发生反应生成金属间化合物Ti7Al5Si12,在温度升高的过程中,Ti7Al5Si12会发生分解反应,产物之一为TiAl3,Si元素以固溶的形式分布在TiAl3中,当温度足够高时,界面处的Ti原子、Al原子也会直接反应生成金属间化合物TiAl3,长时间保温过程中,以TiAl3为主的界面层逐渐增厚,从800℃开始冷却的过程中,铝合金中的Si元素会向界面处扩散,与TiAl3相互作用转变生成Ti7Al5Si12。
During the welding process of titanium alloy and aluminum alloy, it is easy to form many kinds of brittle intermetallic compounds at the interface of Ti/Al dissimilar alloys. Those compounds weak the bonding strength of Ti/Al joints. The objective of this paper is to study the effect of temperature, holding time, cooling conditions as well as the ultrasonic on the interfacial reactions during Ti-6Al-4V alloy dipping in the Al-12Si bath, clarified the intermetallic compounds growth and transformation mechanism.
     The phase compositions of the interfacial layer were identified by SEM observation, combined with EDS and TEM analysis. The intermetallic compound Ti7Al5Si12 is the only phase discovered at the interface when Ti-6Al-4V alloy dipping in the Al-12Si bath at 700℃, which is granular and distributing in the aluminum alloy. Extending the holding time, reducing the cooling speed or adding a long time ultrasonic, all of them can increase the thickness of the interfacial layer. The hardness of the interfacial layer is about 12.7 GPa, elastic modulus is approximately 226.8 GPa.
     The interfacial layer consists of three kinds of intermetallic compounds (TiSi+TiAl3+Ti7Al5Si12)When the dipping temperature is 800℃. Those compounds are a continuous thin layer TiSi nearby the titanium alloy, block-like TiAl3 as well as the strip-like Ti7Al5Si12 locates in the TiAl3 base respectively. Si exists in the block-like TiAl3, the solubility of Si in TiAl3 reaches 14at.%-15at.%. The number of Ti7Al5Si12 between TiAl3 and Al-12Si alloy increases with the decreasing of cooling speed. The hardness of the interfacial layer is about 9.2 GPa, elastic modulus is approximately 193.7 GPa. The thickness of the interfacial layer increased significantly with adding a long time ultrasonic, which accelerated the interfacial reaction between Ti/Al dissimilar alloys.
     According to the evolution experiments of interfacial layers, the growth and transformation mechanism of intermetallic compounds is clarified. The distribution of Si has an important influence on the interfacial reaction. Si diffuses to the interface when holding at 700℃, atoms Ti, atoms Al and atoms Si react at the interface of Ti/Al-12Si and create intermetallic compound Ti7Al5Si12. With the rising of temperature, Ti7Al5Si12 happens to decompose and TiAl3 is one of the products, while Si exists in TiAl3 at the form of solid solution, once the temperature is high enough, atoms Ti and atoms Al at the interface will react directly and generate intermetallic compound TiAl3, the thickness of the TiAl3 layer adds gradually with the increasing of holding time. During the process of cooling down from 800℃, Si in the aluminum alloy diffuses to the interface, the TiAl3 will reacts with Si and form the compound Ti7Al5Si12.
引文
[1]李晓红,毛唯,曹春晓,钟群鹏.钎焊与扩散焊在航空制造业中的应用[J].航空制造技术,2004(11):28-32.
    [2] Abdel-Hamid A A. Hot dip aluminide coating of Ti and the effect of impurities and alloying additions in the molten Al bath[J]. Zeitschrift fuer Metallkunde, 1991, 82(12):921-927.
    [3] Sujata R, Bhargava S, Sangal S. Microstructural features of TiAl3 base compounds formed by reaction synthesis[J]. The Iron and Steel Institute of Japan International, 1996, 36(3):255-262.
    [4] Sujata M, Bhargava S, Sangal S. On the formation of TiAl3 during reaction between solid Ti and liquid Al[J]. Journal of Materials Science Letters, 1997, 16(14):1175-1178.
    [5] Sujata M, Bhargava S, Suwas S, Sangal S. On kinetics of TiAl3 formation during reaction synthesis from solid Ti and liquid Al[J]. Journal of Materials Science Letters, 2001, 20(24):2207-2209.
    [6] Chen Y B, Chen S H, Li L Q. Effects of heat input on microstructure and mechanical property of Al/Ti joints by rectangular spot laser welding-brazing method[J]. International Journal of Advanced Manufacturing Technology, 2009, 44:265-72.
    [7] Chen S H, Li L Q, Chen Y B. Interfacial reaction mode and its influence on tensile strength in laser joining Al alloy to Ti alloy[J]. Materials Science and Technology, 2010, 26(2):230-235.
    [8] Chen S H, Li L Q, Chen Y B, Huang J H. Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process[J]. Journal of Alloys and Compounds, 2011, 509(3):891-898.
    [9] Luo J G, Acoff V L. Interfacial reactions of titanium and aluminum during diffusion welding[J]. Welding Journal, 2000, 79(9):239-243.
    [10] Luo J G, Acoff V L. Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils[J]. Materials Science and Engineering, 2004, 379(1-2):164-172.
    [11] Luo J G, Acoff V L. Processing gamma-based TiAl sheet materials by cyclic cold roll bonding and annealing of elemental titanium and aluminum foils[J]. Materials Science and Engineering, 2006, 433(1-2):334-342.
    [12] Peng L M, Wang J H, Li H, Zhao J H, He L H. Synthesis and microstructuralcharacterization of Ti-Al3Ti metal-intermetallic laminate (MIL) composites[J]. Scripta Materialia, 2005, 52(3):243-248.
    [13] Peng L M, Li H, Wang J H. Processing and mechanical behavior of laminated titanium-titanium tri-aluminide (Ti-Al3Ti) composites[J]. Materials Science and Engineering A, 2005, 406(1-2):309-318.
    [14] Xu L, Cui Y Y, Hao Y L, Yang R. Growth of intermetallic layer in multi-laminated Ti/Al diffusion couples[J]. Materials Science and Engineering A, 2006, 435-436:638-647.
    [15] Yang D, Hodgson P, Wen C. The kinetics of two-stage formation of TiAl3 in multilayered Ti/Al foils prepared by accumulative roll bonding[J]. Intermetallics, 2009, 17(9):727-732.
    [16] Ren J W, Li Y J, Feng T. Microstructure characteristics in the interface zone of Ti/Al diffusion bonding[J]. Materials Letters, 2002, 56(5):647-652.
    [17] Li Y J, Wang J, Liu P, Ren J W. Microstructure and XRD analysis near the interfaceof Ti/Al diffusion bonding[J]. International Journal for the Joining of Materials, 2005, 17(2):53-57.
    [18] Yao W, Wu A P, Zou G S, Ren J L. Formation process of the bonding joint in Ti/Al diffusion bonding[J]. Materials Science and Engineering A, 2008, 480(1-2):456-463.
    [19] Yao W, Wu A P, Zou G S, Ren J L. 5A06/TA2 diffusion bonding with Nb diffusion-retarding layers[J]. Materials Letters, 2008, 62(17-18):2836-2839.
    [20] Takemoto T, Okamoto I. Intermetallic compounds formed during brazing of titan- ium with aluminium filler metals[J]. Journal of Materials Science, 1988, 23(4):1301-1308.
    [21] Takemoto T, Nakamura H, Okamoto I. Strength of titanium joints brazed with aluminum filler metals[J]. Transactions of Japanese Welding Research Institute, 1990, 19(1):45-49.
    [22]张启运,庄鸿寿.钎焊手册[M].北京:机械工业出版社,1999:273.
    [23] Lee T W, Kim I k, Lee C H. Growth behavior of intermetallic compound layer in sandwich-type Ti/Al diffusion couples inserted with Al-Si-Mg alloy foil[J]. Journal of Materials Science letters, 1999, 18(19):1599-1602.
    [24] Sohn W H, Bong H H, Hong S H. Microstructure and bonding mechanism of Al/Ti bonded joint using Al-10Si-1Mg filler metal[J]. Materials Science and Engineering A, 2003, 355(1-2):231-240.
    [25] Yang W Y, Weatherly G C. A study of combustion synthesis of Ti-Al intermetallic compounds[J]. Journal of Materials Science, 1996, 31(14):3707-3713.
    [26] Wang T, Zhang J S. Thermoanalytical and metallographical investigations on the synthesis of TiAl3 from elementary powders[J]. Materials Chemistry and Physics, 2006, 99(1):20-25.
    [27] Qiu X T, Liu R R, Guo S M, Graeter J H, Kecskes L, Wang J P. Combustion Synthesis Reactions in Cold-Rolled Ni/Al and Ti/Al Multilayers[J]. Metallurgical and Materials Transactions A, 2009, 40A(7):1541-1546.
    [28] Zha M, Wang H Y, Li S T, Li S L, Guan Q L, Jiang Q C. Influence of Al addition on the products of self-propagating high-temperature synthesis of Al-Ti-Si system[J]. Materials Chemistry and Physics, 2009, 114(2-3):709-715.
    [29] Enjo T, Ikeuchi K, Horinouchi T. Effects of Impurity in Aluminum on Diffusion Welding of Aluminum to Titanium[J]. Transactions of Japanese Welding Research Institute, 1986, 15(1):61-68.
    [30] FUJI A, K A, NORTH T. Influence of silicon in aluminum on the mechanical -properties of titanium/aluminium friction joints[J]. JOURNAL OF MATERIALS SCIENCE, 1995, 30(20):5185-5191.
    [31] Yang J M, Lee S, Park J C, Lee D W, Lee T K, Choi J T, Lee S Y, Kawasaki M, Oikawa T. Nanoscale analysis on interfacial reactions in Al-Si-Cu alloys and Ti underlayer films[J]. Journal of Applied Physics, 2003, 93(2):855-858.
    [32] Chen S H, Li L Q, Chen Y B, Liu D J. Si diffusion behavior during laser welding-brazing of Al alloy and Ti alloy with Al-12Si filler wire[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(1):64-70.
    [33] Zhou W, Zhao Y G, Li W, Mei X L, Qin Q D, Hu S W. Effect of Al-Si coating fusing time on the oxidation resistance of Ti-6Al-4V alloy[J]. Materials Science and Engineering A, 2007, 460-461:579-586.
    [34] Gupta S P. Intermetallic compounds in diffusion couples of Ti with an Al-Si eutectic alloy[J]. Materials Characterization, 2002, 49(4):321-330.
    [35] Ma Z P, Zhao W W, Yan J C, Li D C. Interfacial reaction of intermetallic compounds of ultrasonic-assisted brazed joints between dissimilar alloys of Ti-6Al-4V and Al-4Cu-1Mg[J]. Ultrasonics Sonochemistry, 2011, 18(5):1062-1067.
    [36]冯若.超声手册[M].南京:南京大学出版社,1999:78-88.
    [37] Zeren M, Karakulak E. Influence of Ti addition on the microstructure and hardness properties of near-eutectic Al-Si alloys[J]. Journal of Alloys and Compounds, 2008, 450(1-2):255-259.
    [38] Zhu G L, Dai Y B, Shu D, Wang J, Sun B. Substitution behavior of Si in Al3Ti (D022): a first-principles study[J]. Journal of Physics Condensed Matter, 2009, 21(41):415503-415509.
    [39]祝国梁,疏达,戴永兵. Si在TiAl3中取代行为的第一性原理研究[J].物理学报,2009,58:200-215.
    [40]叶大伦,胡建华.实用无机热力学手册[M].北京:冶金工业出版社,2002:332-386.
    [41] Gr?bner J, Mirkovic D, Schmid-Fetzer R. Thermodynamic aspects of grain refinement of Al-Si alloys using Ti and B[J]. Materials Science and Engineering A, 2005, 395(1-2):10-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700