谷胱甘肽对凡纳滨对虾抗氧化防御的调控机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
凡纳滨对虾(Litopenaeus Vannamei)是世界上最优良的虾类养殖品种,在我国沿海地区已进行了大规模的人工养殖,目前是我国对虾的主导养殖品种和重要的出口水产品之一。但在集约化养殖过程中,对虾面临着大量的应激因素(如:拥挤、营养、环境、代谢等)。激烈的应激往往会引起对虾抗病力减弱,疾病爆发和流行,导致养殖者过度使用兽药和抗生素饲料添加剂。长期、大量使用抗生素会造成对虾肠道内菌群失调,破坏微生态环境,产生药物残留。药物残留会导致人类过敏反应、免疫抑制、致畸、致癌、致突变等。近几年我国发生了多起食品安全的重大事件,严重地挫伤了消费者的信心。随着国际贸易中绿色壁垒的逐渐加强,我国农产品特别是水产品出口受到的影响越来越大,所有这些严重威胁着我国对虾养殖业的可持续发展。因此,抗生素替代品的研究与开发已成为人们关注的热点。研制高效安全的抗氧化饲料添加剂,通过营养调控提高或激活对虾自身的抗氧化防御能力,是解决上述难题的有效的新途径之—
     本论文以凡纳滨对虾为研究对象,通过“体内”(in vivo)和“体外”(in vitro)实验,系统研究了还原型谷胱甘肽(GSH)对凡纳滨对虾生长性能、抗氧化系统以及非特异免疫因子的影响;对凡纳滨对虾原代培养肝胰腺细胞的增殖、生理生化功能以及相关抗氧化酶的影响;并从分子水平上揭示了GSH在凡纳滨对虾上的抗氧化机理。本论文主要包括如下四个部分:
     1.凡纳滨对虾组织抗氧化酶活性和脂质过氧化产物含量对氨氮胁迫的反应特点
     本文选择南方有代表性的凡纳滨对虾(Litopenaeus vannamei)(初始体重为6.322±0.221g),分别测定了凡纳滨对虾在氨氮胁迫前后,腮丝、肌肉、肝胰腺和血清中超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)活性和GSH、丙二醛(MDA)含量以及机体总抗氧化能力(T-AOC)的变化情况。
     结果显示,经离子铵氮胁迫后,凡纳滨对虾鳃丝中除GSH-Px (p<0.05)外,肌肉中除SOD(p<0.05)外,其它各抗氧化酶活性、T-AOC、GSH和MDA含量,在胁迫前后变化不大;在肝胰腺中,除T-AOC外,各项指标和胁迫前相比,有显著的变化(p<0.05);在血清中,SOD、GSH-Px和MDA含量在氨氮胁迫前后有显著差异(p<0.05)。其中肝胰腺中CAT、GSH,血清中GSH-Px活性与胁迫前相比,差异极显著(p<0.01)。结果表明,血清和肝胰腺是凡纳滨对虾对铵氮造成胁迫的敏感组织,抗氧化酶SOD、CAT和GSH-Px、总抗氧化能力和MDA含量可作为衡量凡纳滨对虾氧化应激状态的敏感指标。
     2.谷胱甘肽对凡纳滨对虾生长性能、抗氧化和非特异免疫功能的影响
     在基础日粮中分别添加0、60、120、180、240和300mg/kg还原型谷胱甘肽(GSH),饲喂初始平均体重(initial body weight, IBW)为1.123±0.007g凡纳滨对虾(litopenaeus vannamei)(分别记为G0、G60、G120、G180、G240和G300组),研究饲料中添加GSH对凡纳滨对虾生长性能、机体抗氧化水平、脂质过氧化物含量和非特异免疫功能的影响。养殖试验持续8周。停止喂料24 h后,全部称重,统计耗料、死亡。每个重复随机取15只虾,取样。剩余部分放回原循环系统,加入20mg/L浓度的氯化铵处理1周,停止循环水,试验各组继续投喂试验饲料,第9周末,停喂24h后,统计成活率,取样。
     试验结果显示:
     (1)饲料中添加GSH能显著提高凡纳滨对虾的增重率、成活率和饲料转化效率。试验各组凡纳滨对虾成活率较对照组提高8.53%-31.69%(p<0.05);增重率随GSH添加量的增加而增加,当添加量为180mg/kg时达到高峰;随着GSH添加量的进一步增加,增重率呈下降趋势(p<0.05)。饲料中GSH添加量不低于120 mg/kg时,显著地降低饵料系数(p<0.05);饲料中添加GSH提高了凡纳滨对虾血清、肝胰腺和肌肉中的蛋白浓度。当GSH添加量不低于180 mg/kg时,血清及肝胰腺蛋白浓度显著高于对照组(p<0.05);肌肉蛋白浓度在GSH添加量180 mg/kg时达到最高(p<0.05);鳃丝蛋白浓度试验各组差异不显著(p>0.05);试验各组凡纳滨对虾的血淋巴细胞计数均显著高于对照组(p<0.05),且与GSH添加量呈剂量-效应关系;当饲料中GSH的添加量分别60、120和180mg/kg时,凡纳滨对虾肝胰腺中GSH浓度显著升高(p<0.05)。以增重率为评价指标,GSH在凡纳滨对虾饲料中的适宜添加量为174.13 mg/kg。
     (2)饲料中添加一定量的GSH能提高凡纳滨对虾肝胰腺抗氧化能力和降低脂质过氧化物含量。饲料GSH能显著提高凡纳滨对虾肝胰腺中抗氧化酶活性(p<0.05):其中120 mg/kg、180 mg/kg和300 mg/kg组的SOD活性,120 mg/kg、180 mg/kg和240 mg/kg组的GSH-Px活性,60 mg/kg、120 mg/kg组的GR活性,显著高于对照组(p<0.05);各试验组肝胰腺中GSH含量和总抗氧化能力T-AOC比对照组分别提高了8.93%-52.57%和3.02%-37.03%,且呈剂量-效应关系(p<0.05)。随着饲料GSH含量的升高,肝胰腺氧自由基(ROS)和脂质过氧化物MDA的含量呈下降趋势,分别在添加量为240 mg/kg和300 mg/kg时达到最低,且显著低于对照组(p<0.05)。对虾成活率和肝胰腺抗O2能力,均呈现先升后降的趋势,各项指标分别在120 mg/kg、180 mg/kg组达到最高值,并显著高于对照组(p<0.05)。
     (3)在凡纳滨对虾的肝胰腺中,髓过氧化物酶(MPO)、溶菌酶(LSZ)、碱性磷酸酶(AKP)、酸性磷酸酶(ACP)活性随着饲料中GSH添加量的增加,均呈先升后降的趋势,在120-240 mg/kg之间达到最高值,且显著高于对照组(p<0.05),但随着GSH量继续增加(高于240mg/kg时),各种酶的活性急剧下降。而在血清中,LSZ、AKP和ACP活性先随饲料GSH添加量的增加而增加,分别在180 mg/kg、240 mg/kg和240mg/kg达到最高值,然后急剧下降。血清和肝胰脏中的谷草转氨酶(AST/GOT)和谷丙转氨酶(ALT/GPT)呈下降趋势,在240 mg/kg组达到最低,且显著低于对照组(p<0.05),但在300mg/kg组又有所回升。凡纳滨对虾经过离子铵胁迫1周后,发现一定添加量的GSH能提高氨氮胁迫凡纳滨对虾成活率,并对免疫因子有积极的影响。但不同的免疫因子,在不同组织敏感程度不一样,作用剂量不同。从本试验结果看,血清和肝胰腺中的LSZ、AST/GOT、ALT/GPT\ACP都是能反应凡纳滨对虾非特异免疫因子的敏感指标,与成活率结果比较一致;而MPO和肝胰腺中的AKP相对而言,规律性不强。
     由上述可见,饲料中添加一定量的GSH能显著提高凡纳滨对虾的生长性能,提高凡纳滨对虾肝胰腺抗氧化能力和降低脂质过氧化物含量,有效提高凡纳滨对虾血清和肝胰腺中髓过氧化物酶、溶菌酶和磷酸酶活性,影响转氨酶的活性,并影响凡纳滨对虾机体的免疫因子水平,从而激发凡纳滨对虾的非特异免疫功能,提高凡纳滨对虾成活率,改善离子铵对凡纳滨对虾造成的氧化胁迫。
     3.凡纳滨对虾肝胰腺线粒体脂质过氧化模型建立与GSH的抗氧化损伤作用
     首先,建立凡纳滨对虾肝胰腺线粒体的制备方法。采用三种不同的差速离心法,提取凡纳滨对虾肝胰腺线粒体,用中性红—詹纳斯绿B (Jana's green B)染色鉴定,以OD260/OD280比值检查线粒体纯度。第二,建立凡纳滨对虾肝胰腺线粒体氧化损伤模型。分别用VC/FeSO4、NADH来诱导线粒体氧化,并确定各种催化剂的反应浓度,筛选反应时间和反应条件,建立两种诱导凡纳滨对虾肝胰腺线粒体的氧化模型。第三,研究GSH对凡纳滨对虾线粒体氧化损伤的抑制作用。在所建立的线粒体氧化损伤模型中加入不同浓度(0、0.1、0.2、0.4、0.8、1.2mmol/L)的GSH,以反应体系中MDA含量、线粒体膨胀度和DNA双链百分比为指标来观察GSH对线粒体脂质过氧化的抑制效果。研究结果显示:
     (1)凡纳滨对虾肝胰腺线粒体制备方法为:按肝胰腺(鲜重):缓冲液=1:15加入缓冲液STE (mmol/L:Sucrose 250, Tris-HCl 10, EDTA 1, pH8.0)进行匀浆,4℃1000g离心15min;4℃10000g离心20min,用缓冲液STM (mmol/L:Sucrose 250, Tris-HCl 50, MgCl2 5, pH7.4)重悬浮纯化,中性红—詹纳斯绿B染色,高倍镜观察为亮绿色,OD260/OD280=1.73。
     (2)建立的VC/FeSO4氧化模型为:在线粒体蛋白浓度1mg/ml, VC浓度0.2mmol/L, FeSO4浓度4μmol/L, pH7.4HEPES缓冲体系中,30℃,经30min反应。当外源GSH添加浓度为0.4mmol/L时,对线粒体脂质过氧化的抑制作用最显著。建立的NADH模型为:线粒体蛋白浓度1.0mg/ml, FeCl30.04mmol/L, ADP 4.0mmol/L,在25mmol/L HEPES/NaOH缓冲液pH7.4(含0.15mol/LKCl)条件下,加入NADH120μmol/L启动反应,30℃水浴,振荡30min后加入20%三氯乙酸终止反应。当外源GSH添加浓度为0.4mmol/L时,对线粒体的保护效果最好。
     (3)通过对VC/FeSO4和NADH模型的比较发现,两种模型都能显著(p<0.05)激发凡纳滨对虾肝胰腺线粒体的脂质过氧化,二者之间差异不显著(p>0.05)。与对照组相比,两个模型MDA含量分别为2.10倍和1.43倍,线粒体膨胀度分别为1.71倍和1.38倍,DNA双链百分比分别是60.07%和55.13%。从MDA和线粒体膨胀度来看,NADH模型的效果更好;以DNA双链百分比作为指标,VC/FeSO4模型效果更佳。
     4.凡纳滨对虾肝胰腺细胞原代培养、谷胱甘肽对细胞生长、生理生化和抗氧化功能以及抗氧化酶mRNA表达量的影响
     首先建立凡纳滨对虾肝胰腺细胞原代培养方法。第二,研究GSH对细胞增殖、生理生化和抗氧化功能的影响。用含有不同浓度(0、0.1、0.2、0.4、0.8、1.2mmol/L)GSH的培养基对凡纳滨对虾肝胰腺细胞进行原代培养,分别在第24h、48h和72h,收集细胞培养上清液,测定离体肝胰腺细胞的活力、RNA/DNA比、白蛋白含量、一氧化氮合酶(NOS)、胰岛素样生长因子-I(IGF-Ⅰ)、ATPase、谷丙转氨酶(ALT/GPT)和谷草转氨酶(AST/GOT)活性。分别在第24h、48h和72h收集细胞,匀浆后,测定细胞匀浆上清液中SOD、GSH-Px、CAT活性、MDA和H202含量。第三,研究GSH对离体肝胰腺细胞SOD和CAT mRNA表达量的影响。收集原代培养72h的肝胰腺细胞,提取细胞RNA,测定SODmRNA和CATmRNA表达量。结果如下:
     (1)建立的凡纳滨对虾肝胰腺细胞原代培养方法为:采用高锰酸钾浸泡、冰冷灭菌PBS溶液冲洗、75%乙醇体表消毒后取出肝胰腺,用0.05%Ⅱ型胶原酶27℃消化10min,低温离心(1200r/min, 10min; 1000r/min,5min),27℃、5%CO2和饱和湿度下进行培养(接种密度:5×105个细胞/m1)。72 h后,细胞状态良好,外表光滑,折光性好,经测定细胞活性高。
     (2)GSH能促进凡纳滨对虾离体肝胰腺细胞增殖、提高RNA/DNA比,促进IGF-Ⅰ分泌,表明GSH能通过对生长有关激素的调控来促进细胞的生长,GSH除了本身的抗氧化功能外,还具有营养作用。GSH能促进离体肝胰腺细胞白蛋白和NOS酶分泌,提高体外培养肝细胞的生物活性。能通过提高ATPase活性,保护细胞膜通透性,维持膜的正常生理功能。
     (3)培养72h后,添加GSH对抗氧化酶和MDA含量等的影响分别为:明显提高肝胰腺细胞匀浆中SOD活性,呈现先升后降,最后上升趋于平稳,除1.2 mmol/L组外,试验各组分别比对照组提高了17.28%、9.05%、37.04%和45.27%,其中0.8mmol/L组达到显著水平(p<0.05);各试验组GSH-Px活性均高于对照组,但试验各组组间差异不显著(p>0.05);MDA含量除1.2 mmol/L组外,试验各组均显著低于对照组(p<0.05),在0.2 mmol/L组达到最低水平;H202含量在各试验组显著降低,各组依次降低了4.42%、17.85%、10.22%、25.58%和16.48%,其中试验0.8 mmol/L组能达到显著水平(p<0.05)。
     (4)添加GSH明显提高凡纳滨对虾离体肝胰腺细胞SODmRNA表达量,除0.1 mmol/L组外,各试验组的SODmRNA表达水平均显著高于对照组(p<0.05)。与对照组相比,除1.2 mmol/L组外,添加GSH各组肝胰腺细胞CATmRNA的表达量均有所升高(p>0.05)。结果表明,GSH能提高离体肝胰腺细胞中SOD酶活力,降低脂质过氧化产物含量,影响SOD和CATmRNA的表达。
     5.结论
     1) GSH在体内能改善凡纳滨对虾的生长性能,提高饲料转化效率和存活率,提高对虾机体的抗氧化水平和抗氧化能力,缓解离子铵引起的氧化应激。以增重率为评价指标,GSH在凡纳滨对虾饲料中的适宜添加量为174.13 mg/kg。
     2)GSH在体外能抑制凡纳滨对虾肝胰腺线粒体的脂质过氧化,当GSH添加浓度为0.4mmol/L时,对线粒体的保护效果最好。外源GSH促进了离体肝胰腺原代培养细胞的生长、增殖,提高原代培养肝胰腺细胞的生物活性。能通过调节与生长代谢相关的酶和抗氧化酶的活性,降低MDA含量来保护细胞膜通透性,维持膜的正常生理功能。并提高了凡纳滨对虾离体肝胰腺细胞SODmRNA表达量,GSH的添加量为0.8 mmol/L时效果达显著水平。
Litopenaeus vannamei is one of the excellent aquaculture varieties in the world, and aquaculture of this white shrimp has become an important export industry in developing countries in Asia and America. In China's around-sea area, Litopenaeus vannamei has been developed to be the dominant cultured products which is one of the most important exported commodities. However, the white shrimp Litopenaeus vannamei are challenged with crowded, nutritional, environmental, and metabolic stress during the intensive aquaculture processes, resulting in significantly reduced disease resistance, thus disease broken epidemicaly and new plague emerged uninterruptedly. It's too difficult for veterinarian to diagnose and therapy these maladies so that the farmers keen on abusing the antibiotics in feedstuff. Long-time and large-dose antibiotics abusing in shrimp would lead to many side-effects, such as dysbacteriosis in intestinal tract, disruption microenvironment, drug residues ect. Eventually due to humankind's allergic reaction, immunosuppression, distortion, canceration, mutation, thus the sustainable development of Litopenaeus vannamei aquaculture industry is threaten by its susceptibility to disease outbreak.
     Now, it is considered that one of the effective ways to solve the problem is to increase or activate the antioxidative capacities of Litopenaeus vannamei by nutritional regulation, such as using highly efficient and safe antioxidative feed additives.
     In this research, we emphasized on the roles of reduced glutathione (GSH) playing in: (1) improving the growth performance of Litopenaeus vannamei; protecting the shrimp from oxidative stress; increasing non-specific immunologic factors level in vivo; (2) being an accelerator proliferation of primary cultured hepatopancreas cells; mediating the diverse biological effects of primary cultured hepatopancreas cells of Litopenaeus vannamei; (3) improving the expression of mRNA in SOD and CAT in vitro. This research comprises of four parts.
     1. Distribution of peroxidative enzymes and lipid peroxidation product in the tissues of litopenaeus vannamei before and after ammonia stress
     In order to reveal the distributed characteristics of the antioxidant enzymes ----superoxide dismutase (SOD), catalas (CAT), glutathione peroxidase (GSH-Px); total antioxidant capacity (T-AOC), glutathione (GSH) and lipid peroxidation product-malonydialdehyde (MDA) in various tissues of Litopenaeus vannamei, such as gills, muscles, hepatopancreas and serum, an experiment was designed to assess the changes of these indexes before and after ammonia stress.72 shrimps, with initial weight of 6.322±0.221g were randomly selected from the representative South China Litopenaeus vannamei to sample their gills, muscles, hepatopancreas and serum to analyze the activities of SOD, GSH-Px, CAT, T-AOC, the content of GSH and MDA before and after ammonia stress.
     The results indicated that hepatopancreas and serum were the sensitive tissues while gills and muscles were not as so sensitive as others. Ammonium-N stress experiments showed that CAT, GSH-PX activities, T-AOC, GSH and MDA content were not sensitive in gills and muscles to NH4Cl treatment whereas all these indexes (except T-AOC) were significantly (p<0.05) changed in hepatopancreas and SOD, GSH-Px and MDA were significantly (p<0.05) changed in serum of Litopenaeus vannamei. Furthermore, CAT activities and GSH content in hepatopancreas and GSH-Px activities in serum were significantly (p<0.01) changed after stress. These results suggest that hepatopancreas and serum are the tissues sensitive to ammonium-N stress, therefore, CAT、GSH-PX、T-AOC、GSH and MDA content could be regarded as antioxidative stress indexes of Litopenaeus vannamei and these antioxidant enzymes and lipid peroxidation product in hepatopancreas and serum could be regarded as the effective indexes of Litopenaeus vannamei when the shrimp suffer from a stress.
     2. Effects of dietary GSH on the growth performance, antioxidant indexes and lipid peroxidation content, nonspecific immune factors in Litopenaeus vannamei
     6 levels of glutathione (GSH) (0,60,120,180,240 and 300mg/kg), being named G0, G60, G120, G180, G240 and G300 respectively, were supplemented to a basal diet to test the effects of different dietary GSH levels on the growth performance, hepatopancreas antioxidant indexes and lipid peroxidation content, non-specific immune factors and activities of AKP, ACP, AST/GOT and ALT/GPT in litopenaeus vannamei (IBW of 1.12±0.01g).
     The feeding experiment ran for 8 weeks. After 24hs the shrimp were weighed, taken into account total dead rate, total feed consumption. Then,15 shrimps were sampled per replication. The rest shrimps were sent back to the circulation system. The Litopenaeus vannamei were treated with 20 mg/L of NH4Cl without water circulating for one week. At the end of 9th week, the feeding was stopped for 24 hours, the dead rate was calculated and samples were taken. The Litopenaeus vannamei tissues were collected for assessing viability and immune factor levels.
     The results showed that:
     (1) weight gain rate (WGR), survival rate and feed conversion efficiency (FCE) of the shrimp fed dietary GSH were significantly increased than those of control (p<0.05). Survival rate was increased for 8.53%-31.69%(p<0.05);WGR increased with dietary GSH increasing and reached the highest when dietary GSH was 180mg/kg, but tent to decrease when dietary GSH increasing above 180mg/kg (p<0.05); When dietary GSH was above 120mg/kg, FCE was significantly increased (p<0.05). Protein content in serum, hepatopancreas, muscle of the shrimp were increased when dietary GSH was supplemented, being significantly higher in serum and hepatopancreas than that of control when dietary GSH was above 180mg/kg (p<0.05); Protein content in gills had no significant difference among the 6 groups (p>0.05). The numbers of haemolymphs of the shrimp fed dietary GSH were significantly higher than those of the control (p<0.05), showing a dose-dependent relationship (p<0.05). GSH content in hepatopancreas was increased when dietary GSH was above 60mg/kg (p<0.05). In summation, the optimal level of dietary GSH for litopenaeus vannamei was 174.13 mg/kg.
     (2) Dietary GSH improved the activities of antioxidant enzymes and total antioxidation capacities, significantly decreased the content of MDA (p<0.05). The increasing dietary GSH had a significant effect on the activities of SOD and GSH-Px when the supplementary GSH was above 120 mg/kg (p<0.05), while had a significant effect on GR activities in 60mg/kg and 120mg/kg (p<0.05). Dietary GSH raised the content of GSH and the total antioxidant ability (T-AOC) in hepatopancreas and showed a dose-dependent relationship, the increase rate was 8.93%-52.57% and 3.02%-37.03%, respectively. With increasing dietary GSH, ROS and MDA level tent to decrease, reached the lowest at 240mg/kg and 300mg/kg (p<0.05) respectively. The ROS in group 180mg/kg,240mg/kg and the MDA content in each experiment group was significantly lower than those of the control (p<0.05). Dietary GSH significantly improved the survival rate and the anti-O2-ability in group 120mg/kg and 180mg/kg (p<0.05).
     (3) In hepatopancreas, with the increasing of dietary GSH level, activities of MPO, LSZ, AKP and ACP of the shrimp increased, reaching the highest at 120 mg/kg,240 mg/kg,240 mg/kg,120 mg/kg respectively, then significantly decreased at a higher level (when more than 240 mg/kg). While in serum, activities of LSZ, AKP and ACP increased, reaching the highest at 180 mg/kg,240 mg/kg and 240 mg/kg respectively, then significantly decreased. AST/GOT and ALT/GPT activities, both in serum and hepatopancreas of shrimp fed dietary GSH, decreased significantly and achieved the bottom at 240 mg/kg (p<0.05), then increased at 300 mg/kg.
     After a week's stress of NH4+, the survival of the shrimp fed with high level of dietary GSH was significantly increased than that of the control and the low dose group (p<0.05). Furthermore, the appropriate dietary GSH had a positive effect on nonspecific immunity factors. But for the different immunity factors, there had the different effects and had different sensitive tissues in Litopenaeus vannamei. LSZ, AST/GOT, ALT/GPT and ACP activities both in hepatopancreas and serum could be the sensitive indexes to reflect the state of non-specific immunity factors in Litopenaeus vannamei, nevertheless, the MPO and the AKP in hepatopancrea was lacking regularity.
     In conclusion, dietary GSH could increase body weight gain and feed conversion efficiency of Litopenaeus vannamei. Optimal supplementation of GSH in shrimp diet could improve antioxidant capacities and decrease lipid peroxidation products, enhance the immune factors of Litopenaeus vannamei, and improve the antioxidant stress caused by ionized ammon and activate the non-specific immune functions of Litopenaeus vannamei.
     3. Extraction method of hepatopancreas mitochondria, establishment of lipid peroxidation model and the effect of GSH on the oxidative damage in mitochondria of Litopenaeus vannamei
     In this study, the extraction method of hepatopancreas mitochondria of Litopenaeus vannamei was studied. By using different oxidants (VC/FeSO4、NADH) at different conditions (concentration, time, and pH), two lipid peroxidation models to induce hepatopancreas mitochondrial oxidation of the Litopenaeus vannamei were established. The optimized conditions and the effective elicitor to induce hepatopancreas mitochondrial oxidation of the Litopenaeus vannamei were elucidated by analyzing the lipid peroxidation products, swelling rate of mitochondria and DNA double chain ratio. These mitochondrial oxidation models could be suitable for studying the hepatopancreas mitochondrial damage caused by lipid peroxidation, and the roles in protecting oxidation damage conferred by GSH in vitro at the subcellular level.
     This research includes two parts. Firstly, the hepatopancreas mitochondria of Litopenaeus vannamei were extracted with three steps of ultracentrifugation. The mitochondria were authenticated by neutral red-Jana's green B, inspected the purity with the index of OD260/OD280 to choose the suitable extraction method of hepatopancreas mitochondria of Litopenaeus vannamei. Secondly, VC/FeSO4 and NADH were used to induce the peroxidation of hepatopancreas mitochondria of Litopenaeus vannamei, the concentration of different catalysts, the optimal time and conditions for the reaction were established to build two models. In these two models, various concentration of GSH (0, 0.1,0.2,0.4,0.8 and 1.2 mmol/L) were added to the reaction system to observe its inhibition effects of GSH. Finally, these two models were compared objectively, the MDA contents in the reaction system, the swelling rate and double chain of DNA in hepatopancreas mitochondria of Litopenaeus vannamei were the indexes to evaluate these two models.
     The results showed that:(1) After homogenated, the hepatopancreas with a wet weight:buffer rate is 1:15, in a buffer of STE (mmol/L:Sucrose 250, Tris-HCl 10, EDTA 1, pH8.0), then, centrifuged at 4℃1000gx5 min,10000gx20 min and purified with buffer STM (mmol/L:Sucrose 250, Tris-HCl 50, MgCl25, pH7.4). The hepatopancreas mitochondria were in light green color in the electron microscopy at high magnification after being dyed by neutral red-Jana's green B, and the OD260/OD280 was 1.73, which is proximity to 1.8.
     (2) In model VC/FeSO4, when the protein content of hepatopancreas mitochondria was lmg/ml, the VC 0.2mmol/L, the FeSO4 41/4mol/L, the reaction temperature 30℃, reacting for 30min in the buffer of pH 7.4 HEPES, the VC/FeSO4 system induced the peroxidation of hepatopancreas mitochondria effectively. While in the model of NADH, the best reaction conditions were:the protein content of hepatopancreas mitochondria was 1.0mg/ml, FeCl3 0.04mmol/L, ADP 4.0mmol/L, in 25mmol/L HEPES/NaOH buffer system with pH7.4, the start factor was NADH 120μmol/L, the reaction condition was 30℃,30min, then ended the reaction with 20%trichloroacetic acid. The exogenous GSH at 0.4mmol/L inhibited the peroxidation in both of these models obviously.
     (3) Comparing the NADH with the VC/FeSO4 model of hepatopancreas mitochondrial oxidation of the Litopenaeus vannamei revealed that both the NADH and the VC/FeSO4 could significantly activate mitochondrial lipid peroxidation of Litopenaeus vannamei (p<0.05), whereas there were no significant differences between the two models (p>0.05). In the VC/FeSO4 model, the MDA content, swelling rate of mitochondria and DNA double strands percentage were respectively 2.10 times,1.71 times and 60.07% of the control; in the NADH model, the three parameters were 1.43 times,1.38 times and 55.13%, respectively. From MDA and mitochondrial swelling rate, it was suggested that the NADH model functioned better; however, the percentage of double strand DNA indicated that the VC/FeSO4 model confered better inhibitory effect.
     4. Study of method for primary culture of hepatopancreatic cells of Litopenaeus vannamei, effects of GSH on the proliferation, physiological and biochemical characteristics and functions, the anti-oxidative effects, and expression of mRNA of SOD and CAT in primary culture cells in Litopenaeus vannamei
     In order to reveal the effects of GSH on the proliferation, physiological and biochemical characteristics and functions, on the antioxidant affects and on the expression of anti-oxidase in vitro, thus to have the light on the mechanism insight of micronutrient in regulating aquatic organism's antioxidant stress at molecular level, we designed the experiment as follows.
     Firstly, the method for improving the protocol of primary cultured hepatopancreatic cells of Litopenaeus vannamei were studied, including:(1) optimizing the methods of separating, digesting and purifying the hepatopancreatic cells of Litopenaeus vannamei;
     (2) choosing the culture medium for primary cultured hepatopancreatic cells; (3) selecting the most suitable salt rate and the pH of culture and the seeding density of hepatopancreatic cells of Litopenaeus vannamei.
     Secondly, the primary cultured hepatopancreatic cells were cultured in the medium with the final concentration of GSH by 0,0.1,0.2,0.4,0.8 and 1.2mmol/L, separately. We collected the supernatant of hepatopancrea cells of all the groups at 24h,48h and 72h separately, to measure the activities of cells, the RNA/DNA, the content of albumin, the nitricoxide synthase (NOS), Insulin-like growth factor-Ⅰ(IGF-Ⅰ), ATPase, alanine aminotransferase (ALT/GPT) and aspartate aminotransferase (AST/GOT).
     Thirdly, the cells were collected and crushed in the culture media by microwave and then centrifuged (4℃,3000 r/min, 10min) and the supernatants were taken to analysis the antioxidant index, include:SOD, GSH-Px, CAT, MDA and H2O2 quantitatively at 24h,48h and 72h, separately.
     Finally, after the hepatopancreatic cells were primary cultured in medium with different concentration of GSH for 72 hours, the cells were collected, the RNA of hepatopancreatic cells was extracted and the mRNA was detected by RT-PCR to measure the expression levels of SOD mRNA and CAT mRNA.
     The results showed that:
     (1) The method for primary culture of hepatopancreatic cells of Litopenaeus vannamei was established. After being soaked in potassium permanganate, washed by cold PBS and sterilized totally in 75% ethanol, the hepatopancreas were removed away from the Litopenaeus vannamei. The hepatopancreatic cells were isolated in 0.05% typeⅡcollagenase at 27℃for 10 min, then purified with a centrifugation method at 1200 r/min,10 min+1000 r/min,5min, and cultured in the box of 5% CO2, saturated degree of humidity,27℃at a seeding density of 5×105 cells/ml. The cells were at an excellent status characterized by smooth cell surface, better refractive, and higher activities of hepatocytes.
     (2) GSH boosted the proliferation of Litopenaeus vanhnamei's hepatocyte in vitro, increased RNA/DNA ratio, accelerated the hepatocytes to excrete IGF-1, indicating that GSH could facilitate the up-growth of cells through regulating the relevant hormone. GSH could take on nutrition action and antioxidant function. GSH could improve the content of albumin and the secretion of nitricoxide synthase (NOS) in vitro, thus enhance the bioactivity of hepatopancreatic cells in vitro. Boost the ATPase activity, and protect the penetrating power of cell membrane while keep the well-balanced physiological function. GSH could reduce the damnification hurt by environment factor, and then accelerate the organizational recovery when the hepatopancrea was damnified.
     (3) After being cultured for 72h, GSH addition increased the SOD activities in all the experiment groups except 1.2 mmol/L group. The the increase rate was 17.28%、9.05%、37.04% and 45.27% respectively and the group 0.8 mmol/L affected the SOD activities significantly compared with the control (p<0.05). In conclusion, the proper GSH addition affected the SOD activities in the hepatopancreatic cells of Litopenaeus vannamei in vitro, showing a trend of increasing first then declining and increasing slowly until reaching to a platform, finally. After being cultured for 72h, GSH addition improved the GSH-Px activities in all experiment groups, but had no difference between all the groups (p>0.05). Whlie, the CAT hadn't been detected in some groups because of the insensitivity of the methods for testing in the supernatant preparations from the hepatopancreatic cells in vitro.
     MDA contents had a obvious decline trend in all groups at 72h obviously (p<0.05) and reach the lowest content at 0.2 mmol/L group. After being cultured for 72h, the GSH addition can decrease the H2O2 contents in all the experiment groups significantly (p<0.05). The the decrease rate was 4.42%,17.85%,10.22%,25.58% and 45.27% respectively and had a difference at distinguish level of group 0.8 mmol/L (p<0.05).
     (4) Adding GSH evidently boosted the SOD genie expression of litopenaeus vannamei's hepatopancreatic cells in vitro. Except group 0.1mmol/L, the SOD mRNA expression level were all observably higher than the experiment group (p<0.05). Except group 1.2 mmol/L, adding GSH in hepatopancreatic cells elevated CATmRNA expression level (p>0.05). GSH hoisted SOD enzymatic activities in hepatic separate cells, depressed the lipid peroxide content, effected the expression of SOD and CAT mRNA.
     The results described above suggests that the supplementation of GSH in culture media be capable of reducing lipid peroxide and modulating the activities of SOD and CAT in hepatopancreatic cells of Litopenaeus vannamei in vitro. Through increasing the effect of the expression capacity of antioxidant enzyme CAT and SOD, especially SODase, regulating antioxidant level, that purged the free radicals, efficiently regulated the free radicals metabolism, prevented lipid peroxidation.
     In Conclusion, GSH can ameliorate the growth performance of Litopenaeus vannamei in vivi, boost the efficiency of feedstuff transforming, enhance the anti-oxidative level and anti-oxidative capability of Litopenaeus vannamei's, organic tissue, ease up the oxidation allergic response caused by ammonium stress. The optimal level of dietary GSH for litopenaeus vannamei was 174.13 mg/kg. GSH can also restrain the lipid peroxide of Litopenaeus vannamei hepatopancreatic mitochondrion in vitro, when the culture medium GSH concentration is 0.4mmol/L, there is best protection effect for mitochondrion. Exogenous GSH can improve the growth and proliferation of the hepatopancreatic cell in vitro, enhance it biologic activity. It can protect the cell membrane penetration by regulating the correlative metabolic enzyme and anti-oxidative enzyme, depressing the content of MDA, maintaining the well-balanced physiology function. It can boost the hepatopancreatic cell SODmRNA expression level in Litopenaeus vannamei. The effect reach the prominent level when the culture medium GSH is 0.8 mmol/L.
引文
1. 蔡大伟,侯艳宁.原代肝胰腺细胞培养技术研究现状及其新药研发中的应用.解放军药学学报,2009,25:245-246
    2. 蔡挺,刘鹏,杨群,许兆军,陈童恩.还原型谷胱甘肽在全身炎症反应综合征治疗中的效果观察.现代实用医学,2006,18:468-470
    3. 蔡卫平,廖履坦.还原型谷胱甘肽治疗药物性急性肾衰的初步观察.江苏医药,1999,25:784
    4. 陈竞春,石安静.贝类免疫生物学研究概况.水生生物学报,1996,20:74-78
    5. 陈丽君,徐毓其.谷胱甘肽S-转移酶基因家族的研究进展.皖南医学院学报,2003,22:144-146
    6. 陈晓,路新枝,高焱,史晓翀,于文功.甘糖酯抗氧化作用的分子机制.药学学报,2004,39:13-16
    7. 陈晓彬,林文叟,翁锡全,郭艳艳.低氧训练对谷胱甘肽抗氧化系统的影响.首都体育学院学报,2006,18:65-67
    8.陈新谦,金有豫.新编药物学.第十二版.北京:人民卫生出版社,1985:709-710
    9.单娟萍.还原型谷胱甘肽治疗原发性肾病综合征的临床观察.现代中西医结合杂志,2006,15:1024-1025
    10.丁美丽,林林.有机污染对中国对虾体内外环境影响的研究.海洋与湖沼,1997,28: 7-12
    11.范琰,刘梅林,祁芸芸.不同类型维生素E对人脐静脉内皮细胞细胞间黏附分子-1表达的影响.北京大学学报,2004,36:70-74
    12.方平,李顺炜.还原型谷胱甘肽治疗病毒性肝炎临床观察.安徽医药,2001,5:25-26
    13. 方允中,杨胜,伍国耀.自由基、抗氧化剂、营养素与健康的关系.营养学报,2003,25:337-343
    14. 方允中,郑荣梁.自由基生物学的理论与应用.北京:科学出版社,2002,1-22
    15.高姝娟,刘锡锰,高贵,杨同书.谷胱甘肽的抗线粒体脂质过氧化作用.生物化学杂志,1997,13:287-290
    16. 高姝娟,赵光程.抗氧化剂抗脂质过氧化机制的ESR研究.波谱学杂志,1998, 15: 139-143
    17. 高玮,黄灿华,兰萍章,张立人.斑节对虾肝胰腺和血淋巴组织细胞的体外培养.中山大学学报(自然科学版),2000,39:119-122
    18.顾取良,吴梧桐.谷胱甘肽药理和临床研究进展.药物生物技术,2001,8:47-50
    19.郭随章.谷胱甘肽的临床应用概况.药学实践杂志,2001,19:204-205
    20. 何芬.谷胱甘肽和蛋白酶解物对仔稚鱼生长及营养生理的影响.[博士学位论文].广州:华南农业大学图书馆,2006
    21.胡少译.日粮抗氧化剂减少肉鸡的腹水症.家禽世界,2000,16:18-22
    22.黄灿华,陈棣华.中国对虾病虾体内同工酶表型变化的初步研究.中国水产科学,1999,6:45-49
    23.黄晶,刘志婷,刘晓东.沙棘提取物对老龄大鼠SOD活力及SOD mRNA表达的影响,吉林大学学报(医学版),2003,29:613-615
    24. 惠天朝,王家刚,朱荫湄.镉对罗非鱼肝组织中的GSH代谢的影响.浙江大学学报:农业与生命科学版,2001,27:575-578
    25. 江晓路,刘树青.多糖对中国对虾免疫功能的影响.中国水产科学,1999,6:66-68
    26.姜国建,于仁诚,王云峰.中国明对虾血细胞中一氧化氮合成酶的鉴定及其在白斑综合症病毒感染过程中的变化.海洋与湖沼,2004,35:346-352
    27.姜国建,于仁诚,周名江.活性氮中间体和一氧化氮合成酶系统在水产养殖生物病害防御中的作用.海洋科学,2006:30:90-93
    28. 姜海洪,谢燕,刘泽军.线粒体呼吸链功能调控机制的研究进展.生理科学进展,2001,32:359-361
    29.姜令绪,潘鲁青,肖国强.氨氮对凡纳滨对虾免疫指标的影响.中国水产科学,2004,11:537-541
    30.姜泽东,周伯文,段晶晶.鱼类细胞培养的研究与应用.北京水产,2008,11:42-44
    31. 焦彩虹.谷胱甘肽对罗非鱼促生长作用及其作用机制.[硕士学位论文].广州:华南农业大学图书馆,2003
    32.雷质文,俞开康.感染白斑综合症病毒(WSSV)对虾相关免疫因子的研究.中国水产科学,2001,8(4):46-51
    33. 李飞,张其中,赵海涛.氨氮对南方鲶两种抗氧化酶和抗菌活力的影响.淡水 渔业,2005,35(6):11-15
    34.李光,樊景凤,林凤翱,梁玉波.对虾的免疫机制及其疾病免疫防治的研究进展.水产科学,2007,26:56-60
    35.李清,肖调义,毛华明.生物活性肽对鲤鱼血液生理生化指标的影响.长江大学学报(自然版),2008,2:27-29
    36.梁春梅.还原型谷胱甘肽对奥尼罗非鱼幼鱼生长、免疫功能的影响及机理研究.[硕士学位论文].广州:华南农业大学图书馆,2006
    37. 廖秀玉,林建东,肖雄箭,林辉.还原型谷胱甘肽对大鼠脓毒症肺损伤外周血淋巴细胞凋亡率及TTNF-α和IL-6水平的影响,临床急诊杂志,2008,9(3):157-160
    38.刘丽,韦建福,傅伟龙,吴觉文,郭慧,陈静.还原型谷胱甘肽对肉鸡生长及血清IGF-Ⅰ水平、组织IGF-Ⅰ mRNA表达的影响.中国兽医学报,2008,28(8):292-296
    39.刘恒,李光友.免疫多糖对南美白对虾作用的研究.海洋与湖沼,1998,29(2):113-118
    40.刘玫珊,柏素霞.含硫氨基酸对黄曲霉毒素B1的解毒机理.中国兽医科技,1994,24(11):6-9
    41.刘玫珊,金卫东,孙宝贵.鸡谷胱甘肽水平与球虫免疫的相关性的研究.沈阳农业大学学报,1990,21(2):99-104
    42. 刘玫珊,王柏山.鸡谷胱甘肽水平与抗病力的相关性研究.辽宁畜牧兽医,1994,2:11-13
    43.刘玫珊,赵润东.GSH对雏鸡胸腺和肝脏细胞DNA的合成量的影响.辽宁畜牧兽医,1994,4:3-5
    44.刘平祥.谷胱甘肽对断奶仔猪的促生长作用及其机制.[博士学位论文].广州:华南农业大学图书馆,2002
    45.刘树青,江晓路.免疫多糖对中国对虾血清溶菌酶、磷酸酶和过氧化物酶的作用.海洋与湖沼,1999,30(3):278-283
    46.刘晓华,曹俊明,吴建开,周萌,赵红霞,蓝汉冰,谢从新.饲料中添加谷胱甘肽对凡纳滨对虾肝胰腺抗氧化指标和脂质过氧化物含量的影响.水产学报,2007,31(2):235-240
    47. 刘晓华,陈汉生.饲料中脂类氧化酸败的原因及控制对策.畜禽工业,2001,8: 22-23
    48. 陆任,许燕.胁迫大鼠肾脏中MDA含量及GSH-Px、CAT和Ca2+-ATPase活性的变化.镇江医学院学报,1998,3(8):291-292
    49.罗鹏,邱德全.凡纳滨对虾血淋巴、类淋巴细胞培养.海洋通报,2005,24:27-30
    50. 罗日祥.中药制剂对中国对虾免疫性物的诱导作用.海洋与湖沼,1997,28(6):573-578
    51.孟凡伦,张玉臻,孔健.甲壳动物中的酚氧化酶原激活系统研究评价.海洋与湖沼,1999,30:110-116
    52.穆长征,崔士英,王晓梅,席焕久.大鼠肝细胞线粒体三维结构的观察与重建.锦州医学院学报,1999,20(1):6-7
    53.聂立红.谷胱甘肽硫-转移酶研究进展.中国病理生理杂志,2000,16(11):1240-1243
    54.潘洪志,石刚,陈文华,王德才.番茄红素对大鼠体内抗氧化系统功能的影响.卫生研究,2003,5(32):441-442
    55.乔顺风,刘恒义,靳秀云.养殖水体氨氮积累危害与生物利用.河北渔业,2006,1:20-22
    56.舒红.还原型谷胱甘肽的临床应用.黑龙江医学,2007,31(11):840-841
    57.斯佩克特,莱因万德.细胞实验指南(上、下册).北京:科学出版社,2001
    58.宋理平,黄旭雄,周洪琪,刘兴国.Vc、β-葡聚糖和藻粉对中国对虾幼虾生长成活率及免疫酶活性的影响.上海水产大学学报,2005,11(3):276-281
    59.宋善俊.临床医师手册.上海:上海科学技术出版社,1997
    60.宋增廷.谷胱甘肽对肉羊瘤胃发酵-生长及肉质调控作用的研究.[硕士学位论文].黑龙江:黑龙江八一农垦大学图书馆,2008
    61.孙存普,张建中,段绍瑾.自由基生物学导论.合肥:中国科技大学出版社,1999,120-128
    62.孙虎山,李光友.免疫多糖对栉孔扇贝血淋巴中氧化酶活力的影响.高技术通讯,2001,11(5):11-12
    63.孙虎山,李光友.栉孔扇贝血淋巴中酚氧化酶和髓过氧化物酶活性.中国水产科学,1999,6(2):9-13
    64.孙虎山,李光友.栉孔扇贝血淋巴中超氧化物歧化酶和过氧化氢酶活性及其性质的研究.海洋与湖沼,2000,31(3):259-265
    65.汪德耀.细胞生物学实验指导.上海:上海第二军医大学出版,1981
    66.王斌.谷胱甘肽代谢及其在肝脏疾病中的应用.国外医学临床生物化学与检验学分册,1997,11(2):82-84
    67. 王宏伟,林瑞年,张晨,张振强.日本对虾肝胰腺的细胞培养.河北大学学报(自然科学版),2004,24(2):175-179
    68.王宏伟,孟翠丽,刘晋,齐小强,张毅.不同pH值条件下日本对虾肝胰腺及血的细胞培养.动物学杂志,2005,40(1):88-91
    69. 王宏伟,王安利,王维娜,刘瑞兰. Ca2+和Mg2+对培养日本对虾肝胰腺细胞的影响.东海海洋,2003,6:37-42
    70.王宏伟.日本对虾肝胰腺及血细胞的培养.[博士学位论文].保定:河北大学图书馆,2001
    71.王军霞,王维娜,王安利.日本对虾血淋巴和肌肉的原代培养.海洋科学,2003,27(3):61-63
    72. 王雷,李光友,毛远兴.口服免疫药物后中国对虾某些血淋巴因子的测定及方法研究.海洋与湖沼,1994,26(5):486-490
    73.王雷,李友光,毛远兴.中国对虾血淋巴中溶菌酶活力与酚氧化酶活力的测定及其特性研究.海洋与湖沼,1995,26(2):179-185
    74.王立新,杨朝霞.动物细胞培养及应用.黄牛杂志,2000,26(3):45-48
    75. 王伟庆,李爱杰,兰翠霞.用免疫消浊比浊法测定中国对虾血清中的免疫因子.水产学报,1988,22:170-174
    76.魏红芳,张长兴,昝林森,徐照学.谷胱甘肽(GSH)对牛卵母细胞体外受精胚胎发育的影响.安徽农业科学,2009,37(33):16398-16404
    77. 吴觉文.谷胱甘肽对黄羽肉鸡的促生长作用及其机制.[硕士学位论文].广州:华南农业大学图书馆,2003
    78.谢成侠.家畜繁殖原理.南京:江苏科学技术出版社,1983
    79. 徐海胜,徐步进.甲壳动物细胞及体液免疫机理的研究进展.大连水产学院学报,2001,16(1):49-56
    80.徐立红,张雨元,陈宜瑜.分子生态毒理学研究进展及其在水环境保护中的意义.水生生物学报,1995,19(2):171-185
    81.许平.超氧化物歧化酶活力测定.中华医学检验杂志,1987,10(4):299
    82.杨海灵,聂力嘉,朱圣庚,周先碗.谷胱甘肽硫转移酶结构与功能研究进展.成 都大学学报:自然科学版,2006,25(1):19-23
    83.杨志民.组织工程,北京:化学工业出版社,2002,153
    84.詹勇,李进昌,杨贤强.茶多酚(TP)对家禽免疫功能的影响.浙江农业大学学报,1992,18(4):74-76
    85. 张昌颖.生物化学.第二版.北京:人民卫生出版社,1978:520-521
    86. 张国良,赵会宏,周志伟,何志交,郭慧,陈静,刘丽.还原型谷胱甘肽对罗非鱼生长和抗氧化性能的影响.华南农业大学学报,2007,28(3):90-93
    87.张宏,刘文操.谷胱甘肽对内毒素致大鼠急性肺损伤的保护作用.广东医学,2007,28(5):701-703
    88.张辉,张海莲.碱性磷酸酶在水产动物中的作用.河北渔业,2003,131:12-14
    89.张健.谷胱甘肽注射液联合间断扩容利尿治疗慢性肾衰竭疗效观察.医学研究通讯,2004,33(10):45-46
    90. 张菁,王敏哲.还原型谷胱甘肽治疗糖尿病肾病50例近期疗效观察.第三军医大学学报,2004,26(21):1982-1983
    91.张文举,杨军祥,黄全成.谷胱甘肽提高牛冻精活力及受胎率的研究.甘肃畜牧兽医,1997,133(2):12-14
    92.张先平,才秀莲,王乾兴,刘华庆.谷胱甘肽对锰染毒大鼠抗氧化能力的影响.环境与健康杂志,2008,25(3):221-223
    93.张甬元,徐立红,周炳升,徐盈,原田健一.鱼体中谷胱甘肽对微囊藻毒素的解毒作用的初步研究.水生生物学报,1996,20(3):284-286
    94.赵红霞,曹俊明,朱选,陈水春,张海涛,蓝汉冰.日粮添加谷胱甘肽对草鱼生长性能、血清生化指标和体组成的影响.动物营养学报,2008,20:540-546
    95.赵君庸,贾锡安,洪建设,李丽华.分离时间对线粒体活性的影响.生物化学与生物物理进展,1989,4:319-320
    96.赵振山,林可椒.用RNA/DNA比率评定鲤鱼的生长状况及其配合饲料的营养价值.水产学报,1994,18(4):257-264
    97.郑建仙.功能性食品.北京:中国轻工业出版社,1995
    98.郑云郎.GSH的生物学功能.生物学通报,1995,30(5):22-24
    99.周玫,陈瑗.谷胱甘肽过氧化物酶.生物化学与生物物理进展,1985,(3):27-30
    100.周顺伍,喻将辉.生物化学实验方法与技术.北京:科学出版社,1985
    101.朱选,曹俊明,赵红霞,张海涛.饲料中添加谷胱甘肽对草鱼组织中谷胱甘肽沉 积和抗氧化能力的影响.中国水产科学,2008,15(1):160-166
    102.Adam S, lech W. Mitochondria as a pharmacological target. Pharmacol Rev,2002, 54(1):101-127
    103.Addison J. Evidence for active transport of dipeptide glycylsarcosine by hamster jejunum in vitro.Clin. Sci,1972,43,907-971
    104.Albina J E, Cui S, Mateo R B, Reichner J S. Nitric oxide-mediated apoptosis in murine peritoneal macrophages. Immunol,1993,150(11),5080-5085
    105.Allen R G. Oxidatixe stress and superoxide dismutase in development, aging and gene regulation. Age,1998,21 (2):47-76
    106.Andreas K and Paul O B. The generation of DNA single-strand breaks during the reduction of chromate by ascorbic acid and/or glutathione in vitro. Environ Health Perspect,1994,102(suppl 3):237-241
    107.Atroshi F, Sandiholm M. Red blood cell glutathione as a marker of milk production in Finn sheep. Research in Veterinary Science,1982,33:256-259
    108.Aw T Y. Cellular redox:a modulator of intestinal epithelial cell proliferation. News Physiol Sci,2003,18:201-204
    109.Bala G, Czerwionka-Szaflarska M, Drewa G. An evaluation of the impact of supplementation with antioxidant vitamins on oxidation stress parameters in children with chronic recurrent gastroduodenitis. Med Sci Monit,2002,8(1):14-18
    110.Bandyopadhyay S, Starke D W, Mieyal J J, Gronostajski R M. Thioltransferase (Glutaredoxin) Reactivates the DNA-binding Activity of Oxidation-inactivated Nuclear Factor I. Biol Chem,1998,271(1):392-397
    111.Banerjee B D, Seth V, Bhattachary A. Biochemical effects of some pesticides on lipid peroxidation and freeradical scavengers. Toxicol Lett,1999,107(1):3347
    112.Berlett B S, Stadtman E R. Protein Oxidation in Aging, Disease, and Oxidative Stress. Biol Chem,1997,272(33):20313-20316
    113.Biosvieux Ulrich E, Sourdeval M, Mamno F. CD437, a synthetic retinoid, induces apoptosis in human respiratory epithelial cells via caspase-independent mitochondrial and caspase-8-dependent pathways both up-regulated by JNK signaling pathway. Exp Cell Res,2005,307(1):76-90
    114.Bounous G, Gervais F, Amer V, Batist G, Gold P. The influence of dietary whey protein on tissue glutathione and the diseases of aging. Clin Invest Med,1989,12: 343-349
    115.Buhl R, Holroyd K J, Mastrangeli A. Systemic glutathione deficiency in symptom-free HIV-seropositive individuals, Lancet,1989,11:1294-1298
    116.Bullow F J. RNA/DNA ration as indicator of recent growth rates of a fish. Ibid,1970, 27(12):2343-2349
    117.ButtkeT M, Sandstorm P A. Oxidative stress as a mediator of apoptosis. Immunology today,1994,15(1):7-10
    118.Calvin H I, Medvedovsky C, Worgul B V. Near-total glutathione depletion and age-specific cataracts induced by buthionine sulfoximine in mice. Science,1986,28: 553-555
    119.Ceriello A. Hyperglycaemia:the bridge between non-enzymatic glycation and oxidative stress in the pathogenesis of diabetic complications. Diabetes Nutr Metab, 1999,12(1):42-46
    120.Chanson M, Spray D C. Gating and single channel properties of gap junction channels in hepatopancreatic cells of Procambarus clarkii. Biol Bull,1992,183,341-342
    121.Chaplin A E, Hugginst A K, Aunday K A. The distribution of L-a-aminotransferas in Carcinus maenas. Comp Biochem Physiol,1967,20,195-198
    122.Chen J C, Nan F H. Effect of ambient ammonia on ammnia- N excretion and ATPase activity of Penaeus chinensis. Aquat Toxicol,1992,23(2):1-10
    123.CHENG W, CHEN J C. Efects of environmental factors on the immune responses of freshwater prawn Macrobrachium rosenbergii and other decapod crustaceans. Fish Soc Taiwan,2002,29(1):1-19
    124. Chien Y H, Pan C H, Hunter B. The resistance to physical stress by Penaeus onodon juveniles fed diets supplemented with astaxanthin. Aquaculture,2003,216,177-191
    125.Chinnayya B. Efect of heavy metals on oxygen consumpition by the shrimp, Caridina rajadhari(Bouviey Indian).Exp Biol,1971,9:277-278
    126.Chow C K. Vitamin E and oxidantive stress. Free Rad Biol Med,1991,11:215-232
    127.Chung C S. Etherton T D, Wiggins J P. Stimulation of swine growth by porcine growth hormone. J of Animal Science,1985,60:118-130
    128.Cighetti G, Duca L, Bortone L. Oxidative status and malondialdehyde in beta-thalassaemia patients. Eur J Clin Invest,2002,32(Suppl):55-60
    129.Clark R G, Jansson J O, Isakson O, Robinson I. Intravenous growth hormone: growth responses to patterned infusions in hypophysectomized rats. Journal of Endocrinol,1985,104:53-61
    130.Cochran T, Stefanko J, Moore C, Saik R. Dimethylsuloxide protection against gastric stress ulceration. Current Surgery,1983,40:435-437
    131.Colt J E, Armstrong D A. Nitrogen toxicity to crustaceans, fish, and mollusks. In: Allen, L J, Kinney E C (Eds), Proceedings of the bio-Engineening Sympostum for Fish Culture. Fish Culture Section, American Fisheries Society. Northeast Society of Conservation Enginneers, Bethesda, MD,1981, pp,34-37
    132.Coma J, Carrion D, Zimmeman D R. Use of plasma urea nitrogen as a rapid response criterion to determine the lysine requirement of pigs. J of Animal Science,1995,73: 472-481
    133.Conte A, Ottaviani E. Nitric oxide synthase activity in molluscan hemocytes. FEBS Letters,1995,365:120-124
    134.Cotgreave I A, Robert G G. Breakthroughs and view:Recent trends in glutathione biochemistry--glutathione-protein interactions:A molecular link between oxidative stress and cell proliferation? Bioch and Bioph Res Comm,1998,242:1-9
    135.D'Apollonia S, Anderson P D. Optimal assay conditions for serum and liver glutamate oxalacetate transaminase, glutamate pyruvate transaminase, and sorbitol dehyddrogenase from rainbow trout, Salmo gairdneri. Can J Fish Aquat Sci,1980, 37:163-169
    136.Daniel L R, Chew B P, Tanaka T S. In Vitro Effects of Pcarotene and Vitamin A on Peripheral Blood Mononuclear Cell Proliferation. Dairy Sci,1990,74:911-915
    137.Daosukloc, Kiningham, Kasarakis. Tamoxifen enhancement of TNF-a induced Mn-SOD expression. Oncogene,2002,21(22):3-10
    138.Day C P. Pathogenesis of steatohepatitis. Best Pract Res Clin Gastroenterol,2002,16: 663-678
    139.Deneke S M, Barry L F. Regulation of cellular glutathione. Am J Physiol Lung Cell Mol Physiol,1989,257:L163-L173
    140.Digby P S B. Calcification in Crustacean:The fundamental process. Physiologist, 1980,23:105
    141.Djuric Z, Coles B, Filer E K, Ketterer B. In vivo and in vitro formation of glutathione conjugates from the K-region epoxides of 1-nitropyrene. Carcinogenesis,1987, 8:1781-1786
    142.Dobkin E. Determination of Catlase in Blood. Clin Chem,1978,24:1749
    143.Ebadi M, Srinivasan S K, Baxi M D. Oxidative stress and antioxidant therapy in Parkinson's disease. Prog Neurobiol,1996,48:1-19
    144.Edoardo G, Giannini R T. Liver enzyme alteration:a guide for clinicians.Can Med Assoc,2005,172(3):367-379
    145.Fidelus R K, Tsan M E. Glutathione and lymphocyte activation:A function of aging and auto-immune disease. Immunology,1987,61:503-508
    146.Fieury C, Mignotte B, Vayssiere J I. Mitochondrial reactive oxygen species in cell death signaling. Biochimie,2002,84(2-3):131-141
    147.Flohe L, Brigelius R, Saliou C, Traber M G, Packer L. Redox regulation of NF-kappa B activation. Free Radic Biol Med,1997,22:1115-1126
    148.Flohe L. Glutathione peroxidase:fact and fiction. In:Ciba Founction Symposium 65, New Series. Oxygen Free Radicals and Tissue Damage. New York:Excerpta Medica, 1979:95-122
    149.Galindo-Reyes J G, Venezia L D, Lazcano-Alvarez G, Rivas-Mendoza H. Enzymatic and osmoregulative alterternations in white litopenaeus vannamei exposed to pesticides. Chemosphere,2000,40:233-237
    150.Gebiciki J M. Juan D, James C, Helen T. Peroxidation of protein and lipids in suspensions of liposomes, in blood serum, and in mouse myeloma cells. Acta Bioch Polonica,2000,47(4):901-911
    151.Gibson R, Barber P L.The decapod hepatopancreas. Oceanogr Mar Biol,1979,17, 285-346
    152.Gracia A, Gomez-Anduro, Rogerio R S M, Adriana M A, Gloria, Yepiz-Plascencia. Tissue-specific expression and molecular modeling of cytosolic manganese superoxide dismutases from the white shrimp Litopenaeus vannamei. Develo Comp Immu,2007,31:783-789
    153.Haddad J J, Land S C. Redox signaling-mediated regulation of lipopolysaccharide-induced proinflammatory cytokine biosynthesis in alveolar epithelial cells. Antioxid Redox Signal,2002,4(1):179-193
    154.Hagen T M, Wierzbicka G T, Bowman B B, Jones D P. Bioavailability of dietary glutathione:disposition in the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol,1990a,259:G524-G535
    155.Hazelton G A, Lang C A. Glutathione contents of tissues in the aging mouse. Biochem J,1980,188:25-30
    156.Henrique M M F, Gomes E F, Gouillou-Coustans M F. Influence of supplementation of practical diets with vitamin C on growth and response to hypoxic stress of seabream, Sparus aurata. Aquacture,1998,161:415-426
    157.Henschke P N, Ejlioll S J. Oxidation glutathione decrease Iuminal Ca2-content of the endothelinl cell in S (1,4,5) P1-sensitive Ca2+ store. Biochem J,1995,312:485-489
    158.Hfirtel C, Strunk T, Bucsky P, Schultz C. Effects of vitamin C on intracytoplasmic cytokine production human whole blood monocytes and lymphocytes. Cytokine, 2004,27:101-106
    159.Hoensch H, Morgenstern I, Petereit G, Siepmann M, Peters W H, Roelofs H M, Kirch W. Influence of clinical factors, diet, and drugs on the human upper gastrointestinal glutathione system. Gut,2002,50(2):235-240
    160.Hsu Y L. Development of an in vitro subculture system for the Oka organ of Penaeus monodon. Aquaculture,1995,136:43-55
    161.Hum S, Koski J G, Hoffer L J. Varied protein intake alters glutathione metabolism in rats. J Nutr,1992,122:2110-2118
    162.Hum S, Robitaille L, Hoffer L J. Plasma glutathione turnover in the rat:effect of fasting and buthionine sulfoximine. Can J Physiol Pharmacol,1991,69:581-587
    163.Hunjan M K, Evered D F. Absorption of glutathione from the gastro-intestinal tract. Biochim Biophys Acta,1985,14;815(2):184
    164.Hussain S, Slikker J W, Ali S F. Role of metallothionein and other antioxidants in scavenging superoxidant radicals and their possible role in neuronprotection. Neurochem Int,1996,29(2):145-152
    165.Itoh M, Guth P H. Role of oxygen-derived free radiacals in hemorrhagic shock-induced gastric lesion in the rats. Gastroenterology,1985,88:1162-1167
    166.Jagneshwar D, Gagan B N. Chainy K, Janardhana Rao. Dietary vitamin-E modulates antioxidant defence system in giant freshwater prawn, Macrobrachium rosebergii,. Comp Bioch and Physi (C),2000,127:101-115
    167.Jeandel C, Nicolas M B, Dubois F, Nabey-Belleville F. Lipid peroxidation and free radical scavengers in Alzheimer's disease. Gerontology,1989,35:275-282
    168.Kanjanapruthipong J. Supplementation of milk replacers containing soy protein with threoninc, methionine, and lysine in the diets of calves. J of Dairy Science,1998,81 (11):2912-2915
    169.Kannan R, Yi J R, Tang D, Li Y, Zlokovic B V, Kaplowitz N. Evidence for the existence of a sodium-dependent glutathione(GSH) transporter. Expression of bovine brain capillary mRNA and size fractions in Xenopus laevis ocytes and dissociation from gamma-glutamyltranspeptidase and facilitative GSH transporters.J Biol Chem, 1996,271(16):9754-9758
    170.Kaplowitz N, Aw T Y, Okhtens M. The regulation of hepatic glutathione. Ann Rev Pharmacol Toxicol,1985,25:715-744
    171.Kehrer J P, Lund L G. Cellular reducing equivalents and oxidative stress. Free Rad Biol Med,1994,17:65-75
    172.Kidd P M. Glutathione:systemic protectant against oxidative and free radical damage. Altern Med Rev,1997,1:155-176
    173.Kreamer B, Staecher J, Sawada N. Use of a low speed isodensity percoll centrifugation method to increase the vixbility of isolation rat hepatocyte preparations. In Vitro Cell Dev Biol,1986,22(4):201
    174. Kuzuya M, Naito M, Funaki C, Hayahi T Asai K, Kuzuya E. Protective role of intracellular glutathione against oxidized low density lipoprotein in cultured endothelial cells. Biochem Biophys Res Commun,1989,163:1466-1472
    175.Ladenstein R, Epp O, Bartels K, Jones A, Huber R, Wendel A. Structure analysis and molecular model of the selenonenzyme:glutathione peroxidase of 2.8 A resolution. Mol Biol,1979,134(2):199-218
    176.Lai Fonk J. The structure of the haemocytes of Calpodes ethlius(Lepidoptera). J of Morphology,1973,139:79-88
    177.Lang C A, Naryshkin S, Schneider D L, Mills B J, Lindeman R D. Low blood glutathione levels in healthy aging adults. Lab Clin Med,1992,120:720-725
    178.Lang C A, Richie J P, Chen T S. Differential glutathione and cysteine levels in the brain of the aging mouse. Fed Am Soc Exp Biol,1988, [Abstract 8327]
    179.Lantomasi T, Favilli F, Marraccini P, Magaldi T, Bruni P, Vincenzini M T. Glutathione transport system in human small intestine epithelial cells. Biochem Biophys Acta,1997,1330(2):272-283
    180.Lawrence J E, Dean P J. Secretion of cysteine and glutathione from mucosa to lumen in rat small intestine. Am J Physiol,1994, G293-G300
    181.Lawrence J E, Lamm S H, Pino S, Richman K, Braveman L E. The effect of Short-Term Low-Dose Perchlorate on Various Aspects of Thyroid Function. THYROID, Mary Ann Libert. Inc.2000,10(8):659-663
    182.Lertratanangkoon K, Savaraj N, Scimeca J M, Thomas M L. Glutathione depletion-induced Thymidylate insufficiency for DNA repair synthesis. Biochem. Biophys Res Commun,1997,234:470-475
    183.Linder M, Burlet G D, Sudaka P. Transport of glutathione by intestinal brush border membrance vesicle. Biochem Biophy Res Comm,1984,123(3):929-936
    184.Liu C H, Chen J C. Effect of ammonia on the immune response of white shrimp litopenaeus vannamei and its susceptibility to Vibrio alginolyticus. Fish and Shell Immuno,2004, (16):321-333
    185.Liu C H, Tseng M C, Cheng W. Identification and cloning of the antioxidant enzyme, glutathione peroxidase, of white shrimp, Litopenaeus vannamei, and its expression following Vibrio alginolyticus infection. Fish & Shellfish Immunology,2007,23: 34-45
    186.Liu M, Mars W, Zarnegar R. Collagenase pretreatment and the mitogen effect of hepatocyte growth factor and transforming growth factor ainadult rat liver. Hepatology,1994,19(6):1521
    187.Lomaestro B M, Malone M. Glutathione in health and disease:pharmacotherapeutic issues. Ann Pharmacother,1995,29(12):1263-1273
    188.Lowry O H, Resebrough N J, Farr A L. Protein measurement with the Folin phenol reagent. Biol Chem,1951,193,265-275
    189.Lu S C, Sun W M, Yi J, Ookhtens M, Sze G, Kaplowitz N. Role of two recently cloned rat liver GSH transporters in the ubiquitous transport of GSH in mammalian cells. J Clin Invest,1996,97(6):1488-1496
    190.Luperchio S, Tamir S, Tannenbaum S R. NO-induced oxidative stress and glutathione metabolism in rodent and human cells. Free Radic Biol Med,1996,21(4):513-519
    191.Machlin J L. Effect of porcine growth hormone on growth and carcass composition of the pig. Animal Science,1972,5:794-800
    192.Marcelo Muoz, Ricardo Cedeo, Jenny Rodrguez. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp, Penaeus vannamei. Aquaculture,2000,191:89-107
    193. Maria I, Amores S, Miguel A M. Glutamine, as a precursor of glutathione, and oxidative stress. Mole Gene and Metab,1999,67(2):100-103
    194.Martenssen J, Goodwin C W, Blake R. Mitochondrial glutathione in hypermetabolic rats selective effect on brain glutathione by burn injury metabolism. Metabolism, 1992,41(3):273-277
    195.Mason L M, Hogan S A, Lynch A, Sullivan K O, Lawlor P G, Kerry J P. Effects of Restricted Feeding and Antioxidant Supplementation on pig Performance and Quality Characteristics of Longissimus Dorsimuscle from Landrace and Duroc pigs. Meat Science,2005,70(2):307-317
    196.McNeill L, Allen M, Estrada C R, Cook P. Pyrazinamide and rifampin vs isoniazid for the treatment of latent tuberculosis: improved completion rates but more hepatotoxicity.Chest,2003,123:102
    197.Meister A and Anderson M E. Increased Capacity for Glutathione Synthesis Enhances Resistance to Radiation in Escherichia coli:A Possible Model for Mammalian Cell Protection. Ann Rer Biochem,1983, (52):711-760
    198.Meyer M, Pahl H L, Baeuerle P A. Regulation of the transcription factoers NF-κB and AP-1 by redox changes. Chem Biol Interactions,1994,91:91-100
    199.Monks T J, Anders M W, Dekant W. Glutathione conjugate mediated toxicities. Toxicol Appl Pharmacol.1990,106(1):1-19
    200.Monterio H P, Stern A. Redox regulation of tyrosine phosphorylation-dependent signal transduction pathways. Free Radic Biol Med,1996,21(3):323-333
    201.Mourente G, Diaz-Salvago E, Bell J G. Increased activities of hepatic antioxidant defense enzymes in juvenile gilthead sea bream(Sparus aurata L)fed dietary oxidized oil:attenuation by dietary vitamin E. Aquaculture,2002,214:343-361
    202.Munoz M, Cedeno R, Rodriguez J. Measurement of reactive oxygen intermediate production in haemocytes of the penaeid shrimp Penaeus vannamei. Aquaculture, 2000,191:89-107
    203.Niyogi S, Biswas S, Sarker S. Seasonal variation of antioxidant and biotransformation enzymes in barnacle, Balanus balanoids, and their relation with polyaromatic hydrocarbons. Mar Environ Res,2002,52:13-26
    204.Noelle R J, Lawrence D A. Determination of glutathione in lymphocytes and possible association of redox state and proliferative capacity of lymphocytes. Biochem J, 1981,198(3):571-579
    205.Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem,1979,95:351-358
    206.Olsvik P A, Kristensen T, Waagb R, Rosseland B O, Tollefsen K E, Baeverfjord G, Berntssen M H G. mRNA expression of antioxidant enzymes (SOD, CAT and GSH-Px) and lipid peroxidative stress in liver of Atlantic salmon(Salmo salar) exposed to hyperoxic water during smoltification, Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2005,7:314-323
    207.Pan C H, Chien Y H, Hunter B. Alterations of Antioxidant Capacity and Hepatopancreatic Enzymes in Penaeus monodon (Fabricius) Juveniles fed diets supplemented with astaxanthin and exposed to Vibrio damsela Challenge. Fish Soc Taiwan,2003b,30(4):279-290
    208.Pan C H, Chien Y H, Hunter B. The resistance to ammonia stress of Penaeus monodon Fabricius juvenile fed diets supplemented with astaxanthin. Exp Mar Biol Ecol,2003a,29(7):107-118
    209.Parola M, Robino G. Oxidative stressrelated molecules and liver fibrosis. J Hepatol, 2001,35:297-306
    210.Patel S, Pachter H L, Yee H. Topical hepatic hypothermia attenuates pulmonary injury after hepatic ischemia and reperfusion. J Am Coll Surg,2000,191:650-656
    211.Pocius P A, Clark J H, Baumrucker C R. Glutathione in bovine blood:Possible source of amino acids for milk protein sythesis. J Dairy Sci.1981,64:1551-1554
    212.Rego A C, Olivera C R. Dual effects of lipid peroxidation on the membrane order of retinal cells in culture. Arch Biochem Biophys,1995,321:127-136
    213.Rice-Evans C A, Diplock A T. Curent status of antioxidant therapy. Free Radic Biol Med,1993,15(1):77-96
    214.Richard A F, Yong M L, Sean A, Keith W K, Glutathione augments in vitro proliferative responses of lymphocytes to concanavalin A to a greater degree in old than in young rats. J. nutrition and Immunology,1990,7:1710-1717
    215.Richie J P. The role of glutathione in aging and cancer. Exp Gerontol,1992,27: 615-626
    216.Riederer P, Sofic E, Rausch W D, Schmidt B, Bruno S, Gavin P, Reynolds G P, Jellinger K,Youdim M B H. Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brains. J Neurochem,1989,52(2):515-520
    217.Rowley A F, Ratelife N A. An ultrastructural and cytochemical study of the interaction between latex particlea and the haemocytes of the wax moth. Calleria mellonella,in vitro. Cell and Tissue Research,1979,199:127-138
    218.Schauer R J, Gerbes A L, Vonier D, Meissner H, Michl P, Leiderer R, Schildberg F W, Messmer K, Bilzer M. Glutathione protects the rat liver against reperfusion injury after prolonged warm ischemia. Ann Surg,2004,239:220-231
    219.Sen C K, Packer L. Antioxidants and redox regulation of gene transcription. FASEB J, 1996,10:709-720
    220.Shelly L U. Regulation of hepatic glutathione synthesis:current concepts and controversies. FASEB J,1999,13:1169-1183
    221.Shigenaga M K, Hagen T M, Ames B N. Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci US A,1994,91:10771-10778
    222.Sies H. Role of reactive oxygen species in biological processes. Biochemistry of oxidative stress. J Mol. Med.1991,69:965-968
    223.Smith S M, Grisham M B, Manci E A, Granger D N, Kvietys P R. Gastric mocosal injury in the rat:role of iron and xanthine oxidase. Gastroenterology,1987,92(4): 950-956
    224.Sritunyalucksana K, Sithisarn P, Withayachumnrnkul B. Activation of prophenol- oxidase, agglutinin and antibacterial activity in haemolymph of the Black tiger prawn, Penaeus monodon, by immunostimulants. Fish and Shellfish Immunology,1999,9: 21-30
    225.Staal F J T, Roederer M, Israelski D M, Bubp J. Intracellular glutathione levels in T cell subsets decreases in HTV-infected individuals. AIDS Res and Hum Retroviruses, 1992,8:305-311
    226.Steven T, Jillian E L, Vicky H. Use of comet assay to investigate the role of superoxide in glutathione-induced DNA damage. Biochem and Bioph Res Comm, 1998,243:241-245
    227.Strasser A, O'Connor L, Dixit V M. Apopotosis signaling. Annu Rev Biochem,2000, 69(1):217-245
    228.Stuck K C, Watts S A, Wang S Y. Biochemical responses during starvation and subsequent recovery in postlarval Pacific white shrimp, Penaeus vannamei. Marine Biology,1996,125:33-45
    229.Suraki Y J, Forman H J, Sevanian A. Oxidants as stimulators of signal transduction. Free Rad Biol Med,1997,22:269-285
    230.Torreilles J, Gueurin M C. Production of peroxynitrite by zynlosan stimulation of Mytilus galloprovincialis haemocytes in vitro. Fish & Shellfish Immunology,1999,9:509-518
    231.Towel D W. Role of Na+-K+-ATPase in ionic regulation by marine and estuarine animals. Mar Biol Lett,1981,2(1):107-122
    232.Tumura K, Aotsuka T. Rapid Isolation Method of Animal mitochondrial DNA by the Alkaline lysis procedure. Bioehem Genet,1988,26(11-12):815-819
    233.Usberti M, Gerardi G, Micheli A, Tira P, Bufano G, Gaggia P, Movilli E, Cancarini G C, De Marinis S, D'Avolio G, Broccoli R, Manganoni A, Albertin A, Di Lorenzo D. Effects of a vitamin E-bonded membrane and of glutathione on anemia and erythropoietin requirements in hemodialysis patients. J Nephrol,2002,15(5):558-564
    234.Vedel N E, Korsgaard B, Jensen F B. Isolated and combined exposure to ammonia and nitrite in rainbow trout(Oncorhynchus mykiss):effects electrolyte status, blood respiratory properties and brain glutamine/glutamate concentration. Aquat Toxicol, 1998,41:325-342
    235.Vincenzini M T, Favilli F, Iantomasi T. Intestinal uptake and transmembrane transport systems of intact GSH:Charasteristic and possible biological role. Biochem Biophys Acta,1992,1113:13-23
    236.Wagner A M. A role for active oxygen species as a second messengers in the induction of alternate oxidase genen expression in Petunia hybrid cells. FEBS Lett, 1995,368:339-342
    237.Webb K E J, Matthews J C, Dirienzo D B. Peptide absorption:A review of current concepts and future Perspectives. Anim Sci,1992,70:3248-3257
    238.Wei M C, Zong W X, Cheng E H. Proappoptotic BAX and BAK:a requisite gateway to mitochondfial dysfunctionand death. Science,2001,292(5517):727-730
    239.Wei-Na Wang, Hong Liang, An-Li Wang, Tong Chen, Shao-En Zhang, Ru-Yong Sun. Effect of pH and Zn on subcultured muscle cells from Macrobrachium nipponense. Methods in Cell Science,2001 (C),22:277-284
    240.White A C, Thannickal V J, Fanburg B L. Glutathione deficiency in human disease. J Nutr Biochem,1994,5:218-226
    241.White S R, Dorscheid D R. Cortieosteroid induced apoptosis of air way epithelium: a potential mechanism for chronic airway epithelial damage in asthma. Chest,2002, 122(6):278-284
    242.Winston G W, DiGiulio R T. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol,1991,19:137-161
    243.Winston G W. Oxidants and antioxidants in aquatic animals. Comp Biochem Physiol C,1991, (100C):173-176
    244.Winterbourn C C. Free radical toxicology and antioxidant defence. Clin Exp Pharmacol Physiol,1995,22:877-880
    245.Witschi A, Reddy S, Stofer B, Lauterburg B H. The systemic availability of oral glutathione. Eur J Clin Pharmacol,1992,43(6):667-669
    246.Wu G, Flynn N E, Flynn S P. Dietary protein or arginine deficiency impair constitutive and inducible nitric oxide synthesis by young rats. J Nutr,1999, 129:1347-1357
    247.Wu G, Meininger C J. Regulation of nitric acid synthesis by dietary factors. Annu Rev Nutr,2002,22:61-86
    248.Yallampalli S, Micci M A, Taglialatela G. Ascorbic acid prevents beta-amyloid-induced intracellular calcium increase and cell death in PC12 cells. Neurosci Lett, 1998,251:105-108
    249.Zambohino J, Cahu C, Peres A. Partial substitution of di-and tripeptides for native proteins in sea bass diets improve dicentrarchus labras larval development. Nutrition, 1997,127:608-614
    250.Zhang L, Yu L, Yu C A. Generation of supemxide anion by succinate-cytoehmme c reductase. Biol Chem,1998,273:33972-33976
    251.Zhao W, Wei H, Jia J, Lu D. Effects of cadmium on transaminase activities and structures of tissues in freshwater giant prawn(Macrobrachium rosenbergii). J Fish China,1995,19:21-27
    252.Zlokovic B C, Mackic J B, Mccomb J G. Evidence for trancapillary transport of reduced glutathione in vascular perfused guinea-pig brain. Biochem Biophys Res Commun,1994,201 (1):402-408

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700