促性腺激素释放激素在饲饵性高脂妊娠大鼠胰腺和肠道中表达的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多项临床研究证实促性腺激素释放激素(gonadotropin-releasing hormone;GnRH)与糖代谢关系密切,同时妊娠期母体内的GnRH发生明显变化,且有研究显示接受长效GnRH类似物治疗的体外受孕妇女中妊娠糖尿病的发病率显著增高。结合本课题组既往发现胰腺外分泌部和肠道存在GnRH及其受体,提示胰腺和肠道的GnRH可能在妊娠期生理性胰岛素抵抗或妊娠糖尿病中起重要作用。此研究拟从肠道激素的角度探讨GnRH在高脂妊娠状态时的变化,以期阐明胰肠系统的GnRH在妊娠糖尿病发生发展中的作用。
     目的:
     1.明确高血脂妊娠状态下,胰腺和不同肠段GnRH的表达水平。
     2.了解胰腺和不同肠段GnRH的变化与胰高血糖素、胰岛素及糖代谢变化之间的相关性。
     方法:
     1.采用免疫组织化学方法观察了高血脂妊娠大鼠胰腺GnRH及其受体蛋白的表达及分布特点。
     2.采用放免法测定高血脂妊娠大鼠及正常妊娠大鼠OGTT和进餐试验各点胰岛素水平;并对胰岛素敏感性进行评估。
     3.采用实时荧光定量PCR方法,观察高血脂妊娠大鼠及正常妊娠大鼠GnRH及其受体、胰高血糖素原和GLP-1受体的mRNA在胰腺和不同肠段表达的差异。
     4.采用ELISA法测定高血脂妊娠大鼠及正常妊娠大鼠GnRH在胰腺蛋白质水平的表达。
     5.采用Western Blot测定高血脂妊娠大鼠及正常妊娠大鼠胰高血糖素在胰腺蛋白质水平的表达。
     结果:
     1.胰腺GnRH及其受体、胰高血糖素、GLP-1受体表达及GnRH与高血糖素的相关性研究
     A. OGTT结果显示各组大鼠的血糖最高点均在服糖后30min,Control组胰岛素分泌最高点在15min ,而Hch组、Gestation组和Hch+Gestation组胰岛素分泌高峰为30min;说明高脂和妊娠两种状态均导致胰岛素高峰分泌延迟。Gestation组空腹胰岛素高于Control组(21.68±2.55 vs 14.35±0.86 mIU/L,P<0.05),而胰岛素AUC等与Control组无区别,说明妊娠中期胰岛素抵抗以基础胰岛素增高为主。Hch组胰岛素AUC高于Control组(230.25±13.19 vs 129.71±11.33 mIU/L, P<0.05);ISI低于Control组(2.84±0.52 vs 4.95±0.56, P<0.01),说明高脂血症时存在胰岛素抵抗。Hch+Gestation组的空腹胰岛素高于Control组(25.76±3.31 vs 14.35±0.86 mIU/L,P<0.01),而与Hch组的空腹胰岛素相比无差异,其血糖AUC低于Hch组(29.01±1.40 vs 35.49±2.06mmol/L,P<0.01);同时Hch+Gestation组的胰岛素AUC高于Control组( 204.60±27.95 vs129.71±11.33mIU/L,P<0.05),ISI低于Control组(2.21±0.32 vs 4.95±0.56, P<0.01)和Gestation组(2.21±0.32 vs 4.64±0.90, P<0.01);提示高脂妊娠中期已存在高胰岛素血症和胰岛素抵抗。
     B.胰腺GnRH组织化学染色显示Hch+Gestation组胰腺细胞GnRH阳性率高于Control组(P<0.01)。
     C. Hch+Gestation组胰腺GnRH mRNA相对表达量高于Control组1.76倍(P<0.01),高于Hch组1.4倍(P<0.05),高于Gestation组1.53倍(P<0.01)。Hch+Gestation组胰腺GnRH蛋白质表达高于Control组(7.06±0.28 vs 5.40±0.41 mg/L,P<0.05),Gestation组(7.06±0.28 vs 5.95±0.38mg/L,P<0.05)和Hch组(7.06±0.28 vs 5.97±0.30 mg/L,P<0.05)。
     D. Hch+Gestation组胰腺PG mRNA相对表达量高于Control组1.77倍(P<0.01),高于Hch组1.54倍(P=0.01),同时Gestation组PG mRNA相对表达量高于Control组1.46倍(P<0.05)。Hch+Gestation组胰高血糖素蛋白质表达量高于Control组3.44倍(P<0.01),高于Hch组2.9倍(P<0.01),与Gestation组表达量无差异;Gestation组胰高血糖素高于Control组2.57倍(P<0.01)。
     E.大鼠胰腺GnRH mRNA相对表达量与PGmRNA相对表达量呈正相关,相关系数r =0.521,P=0.01。
     2.肠道GnRH mRNA的表达及其与PG mRNA的相关性研究
     A.进餐试验提示进餐后各组大鼠血糖最高点和胰岛素分泌最高点均在60min;说明进餐试验时胰岛素高峰晚于OGTT。
     B. Hch+Gestation组空肠GnRH mRNA相对表达量高于Control组2.68倍(P<0.01),高于Hch组1.49倍(P<0.05),高于Gestation组1.45倍(P<0.05);同时Hch组高于Control组1.86倍(P<0.05)。而其PG mRNA相对表达量高于Control组1.78倍(P<0.05),高于Gestation组1.53倍(P<0.05),同时Hch组高于Control组1.52倍(P<0.05)。Gestation组空肠GnRHR mRNA相对表达量高于Control组1.85倍(P<0.05)。各组空肠GLP-1R mRNA相对表达量均未见差异。大鼠空肠GnRH mRNA相对表达量与PG mRNA相对表达量呈正相关,相关系数r =0.699,P<0.01。
     C. Hch+Gestation组回肠GnRH mRNA相对表达量高于Control组2.18倍(P<0.05)。各组间回肠PG mRNA相对表达量均未见差异。大鼠空肠GnRH mRNA相对表达量与PG mRNA相对表达量呈正相关,相关系数r =0.755 ,P<0.01。
     D.各组间结肠GnRH mRNA相对表达量均未见差异。Hch+Gestation组PG mRNA相对表达量高于Control组2.07倍(P<0.05),Gestation组高于Control组2.06倍(P<0.05);Hch组高于Control组2.11倍(P<0.05)。大鼠结肠GnRH mRNA相对表达量与PG mRNA相对表达量呈正相关,相关系数r =0.513,P<0.01。
     结论:
     高脂妊娠大鼠的胰腺GnRH增加,同时其胰岛素抵抗较高脂大鼠和正常妊娠大鼠加重,尽管这两种变化的关系和机制有待深入研究,但本研究中实验大鼠的胰腺GnRH与PG具有良好的正相关性,提示胰腺GnRH可能与胰腺胰高糖素样多肽的调节有关。另一方面,各组大鼠GnRH mRNA和PG mRNA在各肠段表达变化不同,但在各肠段GnRH mRNA和PGmRNA表达量均呈正相关性,说明肠道GnRH和PG表达水平存在相同的变化趋势,提示肠道GnRH也可能与相应部位胰高糖素样多肽的调节有关。
Some clinical data confirm that the GnRH analogues are related to glucose metabolism. GnRH proceed a radical change during gestation, and studies showed treatment with long-acting triptorelin acetate made the prevalence of gestational diabetes mellitus (GDM) increased significantly in women who was undergoing vitro fertilization pregnancies. GnRH and its receptor showed widespread expression in digestive system, including exocrine pancreas, jejunum, ileum, colon and so on. Whether GnRH secreted by pancreas and intestine is changed during gestation? Whether the change is related to glucoregulation during gestation, and whether it plays a critical role in insulin resistance and GDM during gestation by acting on GnRH receptor in pancreas and intestine through effecting the secreting of islet hormones, intestinal absorption and motor function, or regulating secretion of other gastro-intestinal hormones, such as glucagon, glucagons like peptid-1, all these issues need to be investigated. The aim of this study is to explor the function of GnRH secreted by pancreas and intestine in the pathophysiology mechanism of GDM. OBJECTIVE:
     The purposes of this study were to identify the changes of the expression of GnRH, GnRH receptor, proglucagon and GLP-1 receptor in pancreas and intestine in gestational rat with diet-induced hyperlipidia, and to seek the relationships among the expression of GnRH, GnRH receptor, proglucagon and GLP-1 receptor in pancreas and intestine.
     METHOD:
     1. Immunohistochemical method was used to show the protein expression and the distribution of GnRH and its receptor in pancreas in gestational rat with diet-induced hyperlipidia at the time of 14 days after gestation.
     2. RIA was used to identify insulin during OGTT/meal test in gestational rat with diet-induced hyperlipidia at the time of 13 or 14 days after gestation.
    
     3. Real-time quantitative PCR was used to detect the changes of the mRNA expressions of GnRH, GnRH receptor, proglucagon and GLP-1 receptor in pancreas, jejunum, ileum and colon in gestational rat with diet-induced hyperlipidia at the time of 14 days after gestation.
     4. ELISA was used to detect the changes of the protein expression of GnRH in pancreas in gestational rat with diet-induced hyperlipidia at the time of 14 days after gestation.
     5. Western Blot was used to detect the changes of the protein expression of glucagon in pancreas in gestational rat with diet-induced hyperlipidia at the time of 14 days after gestation.
     RESULTS:
     1. The expression of GnRH in pancreas in hyperlipidemic gestational rats
     A. OGTT showed insulin AUC in Hch+Gestation rats and Hch rats was higher than that in Control rats(204.60±79.06 vs 129.71±11.33mIU/L , P<0.05 ),(230.25±13.19 vs 129.71±11.33 mIU/L , P<0.05 ). ISI in Hch+Gestation rats was lower than that both in Control rats(2.21±0.32 vs 4.95±0.56, P<0.01)and Gestation rats(2.21±0.32 vs 4.64±0.90, P<0.01), while ISI in Hch rats was lower than Control rats (2.84±0.52 vs 4.95±0.56, P<0.01). Fasting insulin in Hch+Gestation rats was no difference with that in Hch rats. Fasting insulin in Gestation rats was higher than that in Control rats(21.68±2.55 vs 14.35±0.86,P<0.05).
     B. Immunohistochemical staining showed there are GnRH and GnRH receptor expressed in rat pancreas. The percentage of GnRH positive cell in Hch+Gestation rats was higher than in Control rats(P<0.05).
     C. In pancreas, GnRH relative mRNA level in Hch+Gestation rats was 1.76 fold higher than that in Control rats(P<0.01), 1.53 fold higher than that in Gestation rats (P<0.01)and 1.4 fold higher than that in Hch rats(P<0.05). GnRH protein in Hch+Gestation rats was higher than that in Control rats (7.06±0.28 vs 5.40±0.41 mg/L,P<0.05),higher than that in Gestation rats (7.06±0.28 vs 5.95±0.38 mg/L,P<0.05) and higher than that in Hch rats (7.06±0.28 vs 5.97±0.30 mg/L,P<0.05).
     D. PG relative mRNA level in Hch+Gestation was 1.77 fold higher than that in Control rats(P<0.01),1.54 fold higher than that in Hch rats(P=0.01),PG relative mRNA levels in Gestation rats was 1.46 fold higher than that in Control rats ( P<0.05 ) . The glucagon in Hch+Gestation rats was 3.44 fold higher than in that Control rats(P<0.01)and 2.9 fold higher than that in Hch rats (P<0.01), the glucagon in Gestation rats was 2.57 fold higher than in that Control rats(P<0.01).
     E. A significant positive correlation between the expression of GnRH mRNA and PG mRNA was observed in rat’s pancreas, r =0.521,P=0.01.
     2. The expression of GnRH in intestine in hyperlipidemic gestational rats
     A. Meal test showed Hch+Gestation rats insulin AUC was higher than that in Control rat(s213.88±8.51 vs 155.87±12.39 mIU/L,P<0.01 )and that in Gestation rats (213.88±8.51 vs 169.27±6.55 mIU/L,P<0.01). Insulin AUC in Hch rats was higher than that in Control rats(188.52±16.70 vs 155.87±12.39 mIU/L,P<0.05 ); HOMA-IR in Hch+Gestation rats was higher than that in Control rats(7.66±0.93 vs 4.14±0.47,P<0.01), HOMA-IR in Hch rats was higher than that in Control rats(6.59±0.33 vs 4.14±0.47,P<0.01).
     B. In jejunum, GnRH relative mRNA level in Gestation rats was 2.68 fold higher than in Control rats (P<0.01), 1.45 fold higher than in Gestation rats(P<0.05)and 1.49 fold higher than in Hch rats(P<0.05). GnRH relative mRNA level in Hch rats was 1.86 fold higher than in Control rats(P<0.05). PG relative mRNA level in Hch+Gestation rats was 1.78 fold higher than in Control rats(P<0.05),1.53 fold higher than in Gestation rats(P<0.05). PG relative mRNA level in Hch rats was 1.52 fold higher than in Control rats (P<0.05), GnRHR relative mRNA level in Gestation rats was 1.85 fold higher than in Control rats(P<0.05). A significant positive correlation between the expression of GnRH mRNA and PG mRNA was observed in rat’s jejunum, r =0.699,P<0.01.
     C. In ileum, GnRH relative mRNA level in Hch+Gestation rats was 2.18 fold higher than in Control rats(P<0.05). PG relative mRNA level was no difference among rats. A significant positive correlation between the expression of GnRH mRNA and PG mRNA was observed in rat’s ileum, r =0.755,P<0.01.
     D. In Colon, GnRH relative mRNA level was no difference among rats. PG relative mRNA level in Hch+Gestation rats was 2.07 fold higher than in Control rat(sP<0.05),PG relative mRNA level in Gestation rats was 2.06 fold higher than in Control rats(P<0.05). PG relative mRNA level in Hch rats was 2.11 fold higher than in Control rats(P<0.05). A significant positive correlation between the expression of GnRH mRNA and PG mRNA was observed in rat’s colon, r =0.513,P<0.01.
     CONCLUSION:
     Pancreatic GnRH level in Hch+Gestation rats was higher than that in Control and Hch rats, while insulin resistance was more severe than Hch rats and Gestation rats. The mechanisms of these changes were unclear. But a significant positive correlation between the expression of GnRH mRNA and PG mRNA was observed in rat’s pancreas, which might suggest pancreatic GnRH might influence glucagon secretion in hyperlipidemia rat during gestation. Significant positive correlations between the expression of GnRH mRNA and PG mRNA were observed in rat’s jejunum, ileum and colon. These might also suggest intestinal GnRH may interact with intestinal PG, which influence glucose metabolism.
引文
1. Khodr GS, Siler-Khodr T. Localization of luteinizing hormone-releasing factor in the human placenta. Fertil Steril, 1978, 29:523–526.
    2. Oikawa M, Dargan C, Ny T, Hsueh AJ. Expression of gonadotropin- releasing hormone, prothymosin- messenger ribonucleic acid in the ovary. Endocrinology, 1990, 127: 2350–2356.
    3. Clayton RN, Eccleston L, Gossard F, Thalbard JC, Morel G. Rat granulosa cells express the gonadotrophin-releasing hormone gene: evidence from in-situ hybridization histochemistry. J Mol Endocrinol, 1992, 9: 189–195.
    4. Ikeda M, Taga M, Vonderhaar BK, et al. Detection of messenger RNA for gonadotropin- releasing hormone(GnRH) but not for GnRH receptors in mouse mammary glands. Biochem. Biophys Res.Commun, 1995, 207: 800-806.
    5. Seeburg PH, Adelman JP. Characterization of cDNA for precursor of human luteinizing hormone releasing hormone. Nature, 1984, 311: 666–668.
    6. Chatzaki E,. Bax CM, Eidne KA, Anderso L, Grudzinskas JG., Gallagher CJ. The expression of gonadotropin-releasing hormone and its receptor in endometrial cancer, and its relevance as an autocrine growth factor. Cancer Research, 1996, 9: 2059–2065.
    7. Lau HL, Zhu XM, Leung PC, Chan LW, Chen G.F, Chan PS, Yu KL, Chan FL. Detection of mRNA expression of gonadotropin- releasinghormone and its receptor in normal and neoplastic rat prostates. International Journal of Oncology, 2001, 19: 1193–1201.
    8. Friess H, Buchler M, Kiesel L. LH-RH receptors in the human pancreas. Basis for antihormonal treatment in ductal carcinoma of the pancreas. Int J Pancreatol, 1991, 10:151-159.
    9. Weesner GD, Becker BA, Matteri RL. Expression of luteinizing hormone- releasing hormone and its receptor in porcine immune tissues. Life Sci, 1997, 61: 1643.
    10. Wilson TM, Yu-Lee LY, Kelley MR. Coordinate gene expression of luteinizing hormone-releasing hormone(LHRH) and the LHRH-receptor after prolaction stimulation in the rat Nb2 T-cell line: implications for a role in immunomodulation and cell cycle gene expression. Mol Endocrinol, 1995, 9: 44.
    11. Peng C, Fan NC, Vaananen J. Expression and Regulation of Gonadotropin-Releasing Hormone (GnRH) and GnRH Receptor Messenger Ribonucleic Acids in Human Granulosa-Luteal Cells. Endocrinology, 1994, 135: 1740-1746.
    12. Kottler ML, Starzec A, Carre MC, Lagarde JP, Martin A, Counis R. The genes for gonadotropin—releasing hoemone and its receptor are expressed in human breast with fibrocysfic disease and cancer. Int J Cancer, 1997, 71: 596-599.
    13. Miller GM, Alexander IM、Klibanski A. Gonadotropin-releasing hormone messenger RNA expression in gonadot roph tumor and normal human pituitary. J Clin Endocrinol Metab, 1996, 81: 80-83.
    14. Nechushian A,Yarkoni S, Marianovsky L, Adenocarcinoma cells or targeted by the GnRH-PF69 chimeric toxin through specificgonadotropin-releasing hormone binding sites. J Biol Chem. 1997, 272: 11597—116038.
    15. Chen A, Ganor Y, Rahimipour S, Ben-Aroya N, Koch Y, Levite M The neuropeptides GnRH-II and GnRH-I are produced by human T cells and trigger laminin receptor gene expression, adhesion, chemotaxis and homing to specific organs. Nat Med, 2002, 8: 1421–1426.
    16. Jacobson JD, Crofford LJ, Sun L. Cyclical expression of GnRH and GnRH receptor mRNA in lymphoid organs. Neuroendocrinology, 1998, 67: 117.
    17. Smith MR, Lee H, Nathan DM. Insulin sensitivity during combined androgen blockade for prostate cancer. J Clin Endocrinol Metab, 2006, 91: 1305-1308.
    18. Smith MR. Osteoporosis and obesity in men receiving hormone therapy for prostate cancer. J Urol, 2004, 172: S52-56.
    19. Palomba S, Russo T, Orio F Jr, Sammartino A, Sbano FM, Nappi C, Colao A, Mastrantonio P, Lombardi G, Zullo F. Lipid, glucose and homocysteine metabolism in women treated with a GnRH agonist with or without raloxifene. Hum Reprod, 2004; 19: 415-21.
    20. Mayer A, Lunenfeld E, Wiznitzer A, Har-vardi I, Bentov Y, Levitas E. Increascd prevalence of gestational diabetes mellitus in vitro fertilization pregnancies inadvertently conceived during treatment with Long-acting triptorelin acetate. Fertil Steril, 2005, 84: 789-792.
    21. Huang WQ, Ji QH, Yao B, Sun L, Zhang RQ, Wang L. Immunohistochemical and in situ hybridization studies of GnRH receptor in guila pig pancreas. J American Comprehensive Medicine, 2000, 2: 309-313.
    22. Wang L, Xie LP, Huang WQ, Yao B, Pu RL,, Zhang RQ. Presence of gonadotropin-releasing hormone (GnRH) and its mRNA in rat pancreas. Molecular and Cellular Endocrinology, 2001, 172: 185–191.
    23.黄威权,张宗理. GnRH免疫活性细胞和神经在大鼠胃肠胰系统的初步研究。解剖学报,1990,21:20-30.
    24.黄威权,向正华,孟琳.促性腺激素释放激素mRNA阳性的上皮细胞和神经细胞在大鼠胃肠胰系统分布的研究。解剖学报,1996,27:35-37.
    25.姬秋和,黄威权,孙岚,赵伯钦。豚鼠胰腺GnRH和胰高血糖素的免疫组化双标记研究。第四军医大学学报,1998,19:34-37.
    26.蒲若蕾,黄威权,姬秋和。大鼠胰腺GnRH受体mRNA的原位杂交。第四军医大学学报,2001,22:8-11.
    27. Steven G, GabbleMD, Cornelia R. Management of diabetes mellitus complicating pregnancy. Obstet Gynecol, 2003, 102: 857-868.
    28. Langer O,Mazze R.The relationship between large for gestational age infants glycemic control in women with gestational diabetes.Am J Obstet Gynecol, l988, 159: l 478-1483.
    29. Catherine Kim, Diana K. Berger, Shadi Chamany .Recurrence of Gestational Diabetes Mellitus: A systematic review. Diabetes Care, 2007, 30: 1314–1319.
    30. Homko C, Sivan E, Chen X. Insulin secretion during and after pregnancy in patients with gestational diabetes melltus. J chin Endocrinol Metab, 2001, 86: 568-731.
    31. Lesser KB, CarpenterMW. Metabolic changes associated with normal pregnancy and pregnancy complicated by diabetes mellitus. Semin Perinatol, 1994, 18: 399-406.
    32. Catalano PM, Tyzbir ED, Roman NM. Longitudinal changes in insulin release and insulin resistance in non-obese pregnant women. Am J Obstet Gynecol, 1991, 165: 1667-1672.
    33. Buchanan TZ, Metzer BE, Frienkel N, et al. Insulin sensitivity andβcell responsiveness to glucose during late pregnancy in lean and moderately obese women with normal glucose tolerance or mild gestational diabetes. Am J Obstet Gynecol, 1990, 162: 1008-1014.
    34. Rizza RA, Mandariono LJ, Gerich JE, et al. Cortisol-induced insulin resistance in man: impaired supp ression of glucose production and stimulation of glucose utilization due to a postreceptor defect of insulin action. Clin Endocrinol Metab, 1982, 54: 131-138.
    35. Beck P, DaughdayWH. Human placental lactogen: studies of its acute metabolic effects and disposition in normal man. J Clin Invest, 1967, 46: 103-110.
    36. Brelje TC, Scharp DW, Lacy PE, et al. Effect of homologous placental lactogens, prolactins, and growth hormones on isletβcell division and insulin secretion in rat, mouse, and human islet: implication for placental lactogen regulation of islet function during pregnancy. Endocrinology, 1993, 132: 879-887.
    37. Nelson T, Schulman G, GraingerD, et al. Progesterone administration induced impaired of insulin suppression of hepatic glu2cose production. Fertil Steril, 1994, 62: 491-496.
    38. Kirwan JP, Hauguel2deMS, Lepercq J, et al. TNFαis a predictor of insulin resistance in human pregnancy. Diabetes, 2002, 51: 2207-2213.
    39. SalvatoresM, Gennarelli G, Menato G. Lep tin as a possible marker of augmented metabolic risk during pregnancy.Minerva Ginecol, 2006, 58:1-10.
    40. Mordad AH, Bowman BA, Ford ES. The continuing epidemics of obesity and diabetes in the United States. JAMA, 2001, 286: 1195-1200.
    41. Cheng TO. The changing face and implications of childhood obesity. N Engl J Med, 2004, 350: 2414-2416.
    42.赵曼林,冯玉昆,祁文瑾。人类白细胞抗原Ⅱ类基因与妊娠期糖尿病的相关性研究。中华妇产科杂志,2005,40:673-675.
    43. Benedetto A, Russo GT, Corrado F, Di Cesare E, Alessi E, Nicocia G, D’Anna R, Cucinotta D 2005 Inflammatory markers in women with a recent history of gestational diabetes mellitus. J Endocrinol Invest, 28: 34–38
    44. Myles W, Karen H, Laura S. First trimester C-reactive protein and subsequent gestational diabetes. Diabetes Care, 2003, 26(3): 819-824.
    45. Wenzer C,Wagner O, Festa A. Plasma adiponectin, insulin sensitivity and subclinical inflammation in women with prior gestational diabetes mellitus. Diabetes Care, 2004, 27: 1721-1727.
    46. Dunger DB, Ong KK, Sandhu MS. Serum insulin-like growth factor-1 levels and potential risk of type 2 diabetes. Horm Res, 2003, 60(Suppl 3): 131-135.
    47. Kalabay L, Cseh K, Pajor A. Correlation of maternal serum fetuin/ alpha2-HS-glycoprotein concentration with maternal insulin resistance and anthropometric parameters of neonates in normal pregnancy and gestational diabetes. Eur J Endocrinol, 2002, 147: 243-248.
    48. Kimura A, Ohmichi M, Kurachi H, Ikegami H, Hayakawa J, Tasaka K. Role of mitogen-activated protein kinase/extracellular signal-regulated kinase cascade in gonadotropin-releasing hormone-induced growthinhibition of a human ovarian cancer cell line. Cancer Res, 1999, 59: 5133–5142.
    49. Nishimura F,Lwanoti Y,Mineshiba J. Periodontal disease and diabetes mellitus: the role of tumor necrosis factor-alpha in a 2-way relationship.J Periodontol, 2003, 2: 97-102.
    50. Straczkowski M,Kowalska I.Dzienis-Strackowska S. Changes in tumor nerosis factor—a system and insulin sensitivity during an exercise training program in obese women with normal and impaired glucose tolerance. Eur J Endocrinol, 200l, 145: 273-280.
    51. WangJL, QianX, ChinookoSN .Polyethylene glycolatedre combinant TNF ReceptorI improves insulitis and reduces incidence of spontaneous and cyclophosphamide accelerated diabetes in nonobese diabetic mice. Endocrinology, 2002,143: 3490-3497.
    52. BarbourLA, McCurdyCF, HernandyTL. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care, 2007, 30(2): 113-114.
    53. RubinDA, McMurrayRG, HarrellJS. The association between insulin Resistance and cytokines in adolescents: the role of weight status and exercise. Metabolism, 2008, 57(5): 683-690.
    54. Ranheim T, Haugen F,Staf A. Adiponectin is reduced in gestational diabetes mellitus in normal weight women. Acta obstet Gynecol Scand, 2004, 83: 34l-347.
    55. Ruan H,Lodish HF. Insulin resistance in adipose tissue direct and indirect effects of tumor necrosis factor-alpha.Cytokine Growth Factor Rev, 2003, 14: 447-455.
    56. Catalano PM, Hoegh M, Minium J, Huston-Presley L, Bernard S, Kalhan S,Hauguel-De Mouzon S. Adiponectin in human pregnancy: implications for regulation of glucose and lipid metabolism. Diabetologia, 2006, 49: 1677-1685.
    57. Thyfault J P , Hedberg EM , Anchan RM.. Gestational diabetes is associated with depressed adiponectin levels.. J Soc Gynecol Investig, 2005, 12: 41-45.
    58. Teppa RJ , Ness RB, Crombleholme WR. Free leptin is increased in normal pregnancy and further increased in preeclampsia. Metabolism, 2000, 49(8): 1043-1048.
    59. Lappas M, Yee K, Permezel M. Release and regulation of leptin, resistin and adiponectin from human placenta, fetal membranes, and maternal adipose tissue and skeletal muscle from normal and gestational diabetes mellitus-complicated pregnancies. J Endocrinol, 2005, 186(3): 457-465.
    60. Hauguel-de Mouzon S, Guerre-MilloM. The placenta cytokine network and inflammatory signals. Placenta, 2006, 27: 794-798
    61. Muse ED , Obici S , Bhanot S. Role of resistin in diet- induced hepatic insulin resistance . J Clin Invest, 2004, 114 (2) :232–239.
    62. Rothenberg PL, Willison LD, Simon J, Wolf BA. Glucose-induced insulin receptor tyrosine phosphorylation in insulin-secreting ?-cells. Diabetes, 1995, 44: 802–809
    63. Damm P, Handberg A, Kuhl C. Insulin receptor bingding and tyrosine kinase activity in skeletal muscle from normal pregnant women and women with gestational diabetes. Am J Obstet Gynecol,1993, 82: 251-259.
    64. SaadMJ,Meada L,Brenelli SL. Defect in insulin signal transduction inliver and muscle of pregnant rats. Diabetologia, 1997, 40(2): 179-186.
    65. Scaglia L, Smith FE, Bonner-Weir S. Apoptosis contributes to the involution of beta cell mass in the post partum rat pancreas. Endocrinology, 1995, 136: 5461–5468.
    66. Sorenson RL, Brelje TC. Adaptation of islets of Langerhans to pregnancy: beta-cell growth, enhanced insulin secretion and the role of lactogenic hormones. Horm Metab Res, 1997, 29: 301–307.
    67. Bernard-Kargar C, Ktorza A. Endocrine pancreas plasticity under physiological and pathological conditions. Diabetes, 2001, 50: S30–35.
    68. Gautier JF, Fetita S, Sobngwi E, Salaun-Martin C. Biological actions of the incretins GIP and GLP-1 and therapeutic perspectives in patients with type 2 diabetes. Diabetes Metab, 2005, 31: 233-242.
    69. Bojanowska E. Physiology and pathophysiology of glucagon-like peptide-1 (GLP-1): the role of GLP-1 in the pathogenesis of diabetes mellitus, obesity, and stress. Med Sci Monit. 2005, 11(8): RA271-278.
    70. Nauck MA, Heimesaat MM, Behle K. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers. J Clin Endocrinol Metab, 2002, 87(3): 1239-1246
    71. Abraham EJ, Leech CA, Lin JC, Zulewski H, Habener JF. Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology, 2002, 143(8): 3152-3161.
    72. Moore B, Eille E, Abram JH. On the treatment of diabetes mellitus by acid extract of Dusdenal Mucous Membrane. Biochem J, 1906, 1: 28-38.
    73. Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, Ebert R, Creutzfeldt W. Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab, 1986, 63(2): 492-498.
    74. Nauck M, Stockmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2(non-insulin-dependent) diabetes. Diabetologia, 1986, 29(1): 46-52.
    75. McAnuff-Harding MA, Omoruyi FO, Asemota HN. Intestinal disaccharidases and some renal enzymes in streptozotocin-induced diabetic rats fed sapogenin extract from bitter yam (Dioscorea polygonoides). Life Sci, 2006, 21.
    76. Lally S,Tan CY,Owens D,Tomkin GH. Messenger RNA levels of genes involved in dysregulation of postprandial lipoproteins in type 2 diabetes: the role of Niemann-Pick C1-like 1, ATP-binding cassette, transporters G5 and G8, and of microsomal trglyceride transfer protein. Diabetologia, 2006, 40: 4.
    77. Weickert MO, Mohlig M, Koebnick C, Holst JJ, Namsolleck P, Ristow M, Osterhoff M, Rochlitz H, Rudovich N, Spranger J, Pfeiffer AF. Impact of cereal fibre on glucose-regulating factors. Diabetologia, 2005, 48(11): 2343-2353.
    78. Adachi T, Tanaka T, Takemoto K, Koshimizn TA, Hirasawa A, Tsujimoto G.. Free fatty acids administered into the colon promote the secretion of glucagons-like peptide-1 and insulin. Biochem Biophys Res Comun, 2006, 340(1): 332-337.
    79. Partriti A, Facchiano E, Annetti C, Aisa MC, Galli F, Fanelli C, Donini A. Early improvement of glucose tolerance after ileal transposition in anon-obese type 2 diabetes rat model. Obes Surg, 2005, 15(9): 1258-1264.
    80. Rubino F. Is Type 2 Diabetes an Operable Intestinal Disease? A rovocative yet reasonable hypothesis. Diabetes Care, 2008, 31: S290- S296.
    81. Service GJ, Thompson GB, Service FJ, Andrews JC, Collazo-Clavell ML, Lloyd RV. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med, 2005, 353: 249–254.
    82. Lynn FC, Pamir N, Ng EH, McIntosh CH, Kieffer TJ, Pederson RA. Defective glucose-dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats. Diabetes, 2001, 50: 1004–1011.
    83. Holst JJ, Gromada J, Nauck MA. The pathogenesis of NIDDM involves a defective expression of the GIP receptor. Diabetologia, 1997, 40: 984–986.
    84. Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K, Schoelles K. Bariatric surgery: a systematic review and meta-analysis. JAMA, 2004, 292: 1724–1737.
    85. Scopinaro N, Marinari GM, Camerini GB, Papadia FS, Adami GF. Specific effects of biliopancreatic diversion on the major components of metabolic syndrome: a long-term follow-up study. Diabetes Care, 2005, 28: 2406–2411.
    86. Schauer PR, Ikramuddin S, Gourash W, Ramanathan R, Luketich J. Outcomes after laparoscopic roux-en-Y gastric bypass for morbid obesity. Ann Surg, 2000, 232: 515–529.
    87. Rubino F, Marescaux J. Effect of duodenal-jejunal exclusion in a non-obese animal model of type 2 diabetes: a new perspective for an old disease. Ann Surg, 2004, 239: 1–11.
    88. Noya G, Cossu ML, Coppola M, Tonolo G, Angius MF, Fais E, Ruggiu M. Biliopancreatic diversion preserving the stomach and pylorus in the treatment of hypercholesterolemia and diabetes type II. results in the first 10 cases. Obes Surg, 1998, 8: 67–72.
    89. Cohen R, Pinheiro JS, Correa JL, Schiavon CA. Laparoscopic Roux-en-Y gastric bypass for BMI < 35 kg/m(2): a tailored approach. Surg Obes Relat Dis, 2006, 2: 401–404.
    90. Castagneto M, De Gaetano A, Mingrone G, Capristo E, Benedetti G, Tacchino RM, Greco AV, Gasbarrini G.. A surgical option for familial chylomicronemia associated with insulin-resistant diabetes mellitus. Obes Surg, 1998, 8: 191–198.
    91. Friedman MN, Sancetta AJ, Magovern GJ. The amelioration of diabetes mellitus following subtotal gastrectomy. Surg Gynecol Obstet, 1955, 100: 201–204.
    92. Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, Barakat HA, deRamon RA, Israel G, Dolezal JM, Lynis Dohm. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann Surg, 1995, 222: 339–350.
    93. Strader AD, Vahl TP, Jandacek RJ, Woods SC, D'Alessio DA, Seeley RJ. Weight loss through ileal transposition is accompanied by increased ileal hormone secretion and synthesis in rats. Am J Physiol Endocrinol Metab, 2005, 288: E447–E453.
    94. Mason EE. Ileal transposition and enteroglucagon/GLP1 in obesity and diabetic surgery. Obes Surg, 1999, 9: 223–228.
    95. Paula AL, Macedo AL, Prudente AS, Queiroz L, Schraibman V, Pinus J. Laparoscopic sleeve gastrectomy with ileal interposition ("neuroendocrinebrake"): pilot study of a new operation. Surg Obes Relat Dis, 2006, 2: 464–467.
    96. Blandine Laferrère, Julio Teixeira, James McGinty, Hao Tran, Joseph R. Egger, Antonia Colarusso, Betty Kovack, Baani Bawa, Ninan Koshy, Hongchan Lee, Kimberly Yapp, Blanca Olivan. Effect of Weight Loss by Gastric Bypass Surgery Versus Hypocaloric Diet on Glucose and Incretin Levels in Patients with Type 2 Diabetes. J Clin Endocrinol Metab, 2008, 93(7): 2479-2485.
    97. Mason EE. The mechanism of surgical treatment of type 2 diabetes. Obes Surg, 2005, 15: 459–461.
    98. Patriti A, Facchiano E, Sanna A, Gulla L, Donini A. The enteroinsular axis and the recovery from type 2 diabetes after bariatric surgery. Obes Surg, 2004, 14: 840–848.
    99. Pories WJ, Albrecht RJ. Etiology of type II diabetes mellitus: role of the foregut. World J Surg, 2001, 25: 527–531.
    100.Rubino F, Gagner M. Potential of surgery for curing type 2 diabetes mellitus. Ann Surg, 2002, 236: 554–559.
    101.Rubino F, Forgione A, Cummings D, Vix M, Gnuli D, Mingrone G, Castagneto M, Marescaux J. The mechanism of diabetes control after gastrointestinal bypass surgery reveals a role of the roximal small intestine in the pathophysiology of type 2 diabetes. Ann Surg, 2006, 244: 741–749.
    102.Schwarz A, Buchler M, Usinger K, Rieger H, Glasbrenner B, Firess H, Kunz R, Beger HG.. Importance of the duodenal passage and pouch volume after total gastrectomy and reconstruction with the Ulm pouch: prospective randomized clinical study. World J Surg, 1996, 20: 60–67.
    103.Service GJ, Thompson GB, Service FJ, Andrews JC, Collazo-Clavell ML, Lloyd RV. Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. N Engl J Med, 2005, 353: 249–254.
    104.Rubino F, Zizzari P, Tomasetto C, Bluet-Pajot MT, Forgione A, Vix M, Grouselle D, Marescaux J. The role of the small bowel in the regulation of circulating ghrelin levels and food intake in the obese Zucker rat. Endocrinology, 2005, 146: 1745–1751.
    105.Adler G, kern HF. Regulation of exocrine pancreatic secretary process by insulin in vivo. Horm Metab Res, 1975, 7: 290-296.
    106.Gelfa1d RA, Barrett E. Effect of physiologic hyperinsulinemia on skeletalmuscle protien synthesis and break dow in man. J Clin Invest , l987, 80: 1-6.
    107.Saito A. Potentiation of cholecystokinin-induced exocrine secretion by both exogenous and endogenous insulin in isolated and perused rat pancreas. J Clin Invest, 1980, 65: 777-782.
    108.Lahaie G. Translation controI of protein synthesis in isolated rat pancreatic acini. Gastroenterology, 1984, 86: 1149.
    109.Weyer C, Tataranni PA, Bogardus C, Pratley RE. Insulin resistance and insulin secretory dysfunction are independent predictors of worsening of glucose tolerance during each stage of type 2 diabetes development. Diabetes Care, 2001, 24(1): 89-94.
    110.Hardt PD, Kloer HU, Brendel MD, Bretzel RG. Is pancreatic diabetes (type 3c diabetes) underdiagnosed and misdiagnosed? Diabetes Care, 2008, 31(suppl. 2): s165-s169.
    111.Seicean A, Griqorescu M, Seicean R. Autoimmune chronic pancreatitis. Rom J Intern Med, 2006, 44(1): 17-24.
    112.Taniguchi T, Okazaki K, Okamoto M, Seko S, Tanaka J, Uchida K, Nagashima K, Kurose T, Yamada Y, Chiba T, Seino Y. High prevalence of autoantibodies against carbonic anhydraseⅡand lactoferrin in type 1 diabetes: concept of antoimmune exocrinopathy and endocrinopathy of the pancreas. Pancreas, 2003, 27: 26-30.
    113.Chey WY, Shay H, Shuman CR. External pancreatic secretion in diabetes mellitus. Ann Intern Med, 1963, 59: 812-821.
    114.姬秋和,胡绍文,李恒泽,杨麦贵,陈名声。NIDDM患者中胰岛素分泌与胰腺外分泌功能关系的初步探讨。中华内分泌代谢杂志,1993,9:231-232.
    115.Lankisch PGl. Exocrine pancreatic function in insulin-dependent diabetes mellitus. Digestion, 1982, 25: 211-216.
    116.Frier BM. Serum trypsin concentration and pancreatic trypsin secretion in insulin-dependent diabetes mellitus. Clin Chem Acta, 1980, 105: 297-300.
    117.Raeder H, Johansson S, Holm PI, Haldorsen IS, Mas E, Sbarra V, Nermoen I, Eide SA, Grevle L, Bj?rkhaug L, Sagen JV, Aksnes L, S?vik O, Lombardo D, Molven A, Nj?lstad PR. Mutations in the CELVNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat Genet, 2006, 38: 54-62.
    118.Klein P,Engelhardt W, Stolte M, Schwille PO, Neidhardt J. Pancreatic duct occlusion in the rat-short–term effects on oral glucose tolerance and short- and long-term effects on hormone content of the pancreas. Eur Surg Res, 1984, 16: 15-22.
    119.Catala J, Daumas M, Chanh AP, Lasserre B, Hollande E. Insulin and glucagon impairments in relation with islet cells morphological modifications following long term pancreatic duct ligation in therabbit—a model of non-insulin-dependent diabetes. Int J Exp Diabetes Res, 2001, 2: 101-112.
    120.Weksler-Zangen S, Raz I, Lenzen S, J?rns A, Ehrenfeld S, Amir G, Oprescu A, Yagil Y, Yagil C, Zangen DH, Kaiser N. Impaired glucose-stimulated insulin secretion is coupled with exocrine pancreatic lesions in the Cohen diabetic rat. Diabetes, 2008, 57: 279-287.
    121.Huang WQ, Yao B, Sun L, Pu RL, Wang L, Zhang RQ. Immunohistochemical and in situ hybridization studies of gonadotropin releasing hormone (GnRH) and its receptor in rat digestive tract. Life Science, 2001, 15: 1727–1734.
    122.Yao B, Huang WQ, Huang Y, Chui Y, Wang Y, Li H, Pu RL, Wan L,, Zhang R., A study on the localization and distribution of GnRH and its receptor in rat submaxillary glands by immunohistochemical, in situ hybridization and RT-PCR. Life Science, 2003, 25: 2895–2904.
    123.Lei Chen, Xu-De Sun, Jing Zhao, An-Gang Yang, Wei-Quan Huang. Distribution, cloning and sequencing of GnRH, its receptor, and effects of gastric acid secretion of GnRH analogue in gastric parietal cells of rats. Life Science, 2005, 12: 1351–1365.
    124.Ansari MA, Dhar M, Spieker S. Modulation of diabetes with gonadotropin- releasing hormone antagonists in the nonobese mouse model of autoimmune diabetes. Endocrinology, 2004, 145: 337-342.
    125.Matthew, Smith. Osteoporosis, obesity in men perceiving hormone therapy for prostate cancer. The Journal of Urology, 2004, 172: S52-S57.
    126.高彬,姬秋和,黄威权。GnRH类似物对大鼠回肠组织胰高血糖素释放的影响。解剖学杂志,2004,27(5):476-478.
    127.高彬,姬秋和,黄威权。大鼠消化道促性腺激素释放激素受体和胰高血糖素的免疫组织化学。解剖学杂志,2004,27(4):377-379.
    128.Diamond MP, Simonson DC, DeFronzo RA. Menstrual cyclicity has a profound effect on glucose homeostasis. Fertil Steril, 1989, 52: 204– 208.
    129.Yki-Jarvinen H. Insulin sensitivity during the menstrual cycle. J Clin Endocrinol Metab, 1984, 59: 350–353.
    130.Ehrmann DA. Polycystic ovary syndrome. N Engl J Med, 2005, 352: 1223-1236.
    131.Richard S, Legro, Huiman X. Barnhart, William D. Clomiphene, Metformin, or Both for Infertility in the Polycystic Ovary Syndrome. N. Engl. J. Med, 2007, 356: 551– 566.
    132.Everest HM, Hislop JN, Harding T, Uney JB, Flynn A, Millar RP, McArdle CA. Signaling and antiproliferative effects mediated by GnRH receptors after expression in breast cancer cells using recombinant adenovirus. Endocrinology, 2001, 142: 4663–4672.
    133.Sarah Kraus, Zvi Naor, Rony Seger. Gonadotropin-releasing hormone in apoptosis of prostate cancer cells. Cancer Letters, 2006, 234: 109-123.
    134.Mulvaney JM., Roberson MS. Divergent signaling pathways requiring discrete calcium signals mediate concurrent activation of two mitogen-activated protein kinases by gonadotropin-releasing hormone. J Biol Chem, 2000, 275: 14182.
    135.Naor Z, Benard O, Seger R. Activation of MAPK cascades by G-protein coupled receptors: the case of gonadotropin-releasing hormone receptor. Trends Endocrinol Metab, 2000, 11: 91.
    136.Botte MC, Chamagne AM, Carre MC, Counis R, Kottler ML. Fetal expression of GnRH and GnRH receptor genes in rat testis and ovary. J Endocrinol, 1998, 159:179.
    137.Reiss N. Mechanism of mitogen-activated protein kinase activation by gonadotropin-releasing hormone in the pituitary of alphaT3-1 cell line: differential roles of calcium and protein kinase C. Endocrinology, 1997, 138: 1673–1682.
    138.Weck.Differential gonadotropin-releasing hormone stimulation of rat luteinizing hormone subunit gene transcription by calcium influx and mitogen-activated protein kinase-signaling pathways. Mol. Endocrinol, 1998, 12: 451–457.
    139.Benard O, Naor Z, Seger R. Role of dynamin, Src, and Ras in the protein kinase C-mediated activation of ERK by gonadotropin-releasing hormone. J Biol Chem, 2001, 276: 4554.
    140.Levi NL. Stimulation of Jun N-terminal kinase (JNK) by gonadotropin- releasing hormone in pituitary alpha T3-1 cell line is mediated by protein kinase C, c-Src, and CDC42. Mol Endocrinol, 1998, 12: 815–824.
    141.Kraus S, Benard O, Naor Z, Seger R. C-Src is activated by the epidermal growth factor receptor in a pathway that mediates JNK and ERK activation by gonadotropin-releasing hormone in COS7 cells. J Biol. Chem. 2003, 278: 32618–32630.
    142.Kraus S, Levy G., Hanoch T, Naor Z, Seger RM. Gonadotropin- releasing hormone induces apoptosis of prostate cancer cells: role of c-Jun NH2-terminal kinase, protein kinase B, and extracellular signal-regulated kinase pathways. Cancer Res, 2004, 64: 5736–5744.
    143.Kimura A, Ohmichi M, Kurachi H, Ikegami H, Hayakawa J, Tasaka K. Role of mitogen-activated protein kinase/extracellular signal-regulated kinase cascade in gonadotropin-releasing hormone-induced growth inhibition of a human ovarian cancer cell line. Cancer Res, 1999, 59:5133–5142.
    144.Kim KY, Choi KC, Park SH, Chou CS, Auersperg N, Leung PC. Type II gonadotropin-releasing hormone stimulates p38 mitogen-activated protein kinase and apoptosis in ovarian cancer cells. J. Clin. Endocrinol. Metab, 2004, 89: 3020–3026.
    145.Imai A, Takagi A, Horibe S, Takagi H, Tamaya T. Fas and Fas ligand system may mediate antiproliferative activity of gonadotropin-releasing hormone receptor in endometrial cancer cells. Int. J Oncol, 1998, 13: 97–100.
    146.Bifulco G., Miele C, Pellicano M, Trencia A, Ferraioli M, Paturzo F. Molecular mechanisms involved in GnRH analogue-related apoptosis for uterine leiomyomas. Mol. Hum. Reprod, 2004, 10: 43–48.
    147.Ramos P, Herrera E. Reversion of insulin resistance in the rat during late pregnancy by 72-h glucose infusion. Am J Physiol, 1995, 269: E858–E863.
    148.Ramos MP, Crespo-Solans MD, del Campo S, Cacho J, Herrera E. Fat accumulation in the rat during early pregnancy is modulated by enhanced insulin responsiveness. Am J Physiol Endocrinol Metab, 2003, 285: 318– 328.
    149.Mello MAR, Souza T, Braga LR, Santos W, Ribeiro IA, Gobatto CA. Glucose tolerance and insulin action in monosodium glutamate (MSG) obese exercise-trained rats. Physiology Chemical Physical & Medicine, 2001, 33: 63–71.
    150.Tai MM. A mathematical model for the determination of total area under glucose tolerance and other metabolic curves. Diabetes Care, 1994, 17: 152–154.
    151.Haffner SM, Kennedy E, Gonzalez C, Stern MP, Miettinen H A prospective analysis of the HOMA model. The Mexico City Diabetes Study Diabetes Care, 1996, 9: 1138–1141.
    152.Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care, 1999, 22: 1462–1470.
    153.Koch Y, Baram T. Convenient procedure for extraction of gonadotropin releasing hormone and thyrotropin-releasing hormone. FEBS Letters, 1976, 67: 186-189.
    154.Mu?oz C, López-Luna P, Herrera E. Glucose and insulin tolerance tests in the rat on different days of gestation. Biol Neonate, 1995, 68(4): 282-91.
    155.Holemans K, Caluwaerts S, Poston L, Van Assche FA. Links Diet-induced obesity in the rat: a model for gestational diabetes mellitus. Am J Obstet Gynecol, 2004,190(3): 858-65.
    156.Kamgang R, Mboumi RY, N'dilléGP, Yonkeu JN.Cameroon. local diet- induced glucose intolerance and dyslipidemia in adult Wistar rat. Diabetes Res Clin Pract, 2005, 69(3): 224-30.
    157.Jesper Gromada, Isobel Franklin, Claes B. Wollheim. a-Cells of the Endocrine Pancreas: 35 Years of Research,but the Enigma Remains. Endocrine Reviews, 2007, 28(1): 84–116.
    158.Ehrmann DA. Polycystic ovary syndrome. N Engl J Med, 2005, 352: 1223-1236.
    159.Richard S. Legro, Huiman X. Barnhart, William D. et al. Clomiphene, Metformin, or Both for Infertility in the Polycystic Ovary Syndrome. N. Engl. J. Med, 2007, 356: 551–566.
    160.Jeannet Lauenborg, Elisabeth Mathiesen, Torben Hansen, CharlotteGlümer, Torben J?rgensen, Knut Borch-Johnsen, Peter Hornnes, Oluf Pedersen,, Peter Damm. The Prevalence of the Metabolic Syndrome in a Danish Population of Women with Previous Gestational Diabetes Mellitus Is Three-Fold Higher than in the General Population. J. Clin. Endocrinol. Metab, 2005, 90: 4004-4010.
    161.Klier M, Schusdziarra V, Pfeiffer EF. Effect of luteinizing hormone- releasing hormone upon insulin release from rat islets in vitro. FEBS Letters, 1980, 121: 363-364.
    162.Bojanowska E. Physiology and pathophysiology of glucagon-like peptide-1 (GLP-1): the role of GLP-1 in the pathogenesis of diabetes mellitus, obesity, and stress. Med Sci Monit. 2005,11(8): RA271-278
    163.Gautier JF, Fetita S, Sobngwi E, Salaun-Martin C. Biological actions of the incretins GIP and GLP-1 and therapeutic perspectives in patients with type 2 diabetes. Diabetes Metab, 2005, 31: 233-242.
    164.Francesco Rubino Is Type 2 Diabetes an Operable Intestinal Disease? A provocative yet reasonable hypothesis. Diabetes Care, 2008, 31: S290- S296.
    165.Chen L, Sun XD, Zhao J, Yan AG, Huang WQ. Distribution, cloning and sequencing of GnRH, its receptor, and effects of gastric acid secretion of GnRH analogue in gastric parietal cells of rats. Life Sciences, 2005, 76(12): 1351-1365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700