生姜对复硝酚钠、DA-6的反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生姜(Zingiber officinale Rosc.)为多年生宿根作物,生长期长,养分需求量大,若栽培管理不当,极易造成植株早衰或徒长。因此,通过合理施用植物生长调节物质调控其生长发育进程,对提高生姜产量有重要的意义。为此,本文研究了新型植物调节剂复硝酚钠(Compound sodium nitrophenolate)、DA-6(N, N-diethyl aminoethyl hexanote)对生姜生长、产量及生理特性的影响,主要研究结果如下:
     1.采用二次饱和D-最优设计方法,建立了复硝酚钠、DA-6施用量与生姜产量之间的二元二次数学模型。通过对模型解析表明,复硝酚钠、DA-6均可显著提高生姜产量,但二者配施对生姜产量的交互效应为负值,表明复硝酚钠、DA-6不能混合施用。在本试验条件下,复硝酚钠、DA-6单施适宜用量分别为387和303 g/667m~2,其生姜产量分别达3118.60和3092.95 kg/667m~2,分别比对照增产26.59%和25.55%。
     2.土壤分别增施复硝酚钠400 g/667m~2、DA-6 300 g/667m~2,均具有显著促进生姜植株生长、提高生姜产量的效果。生姜生长前期以促根的效果最为显著,但随着生长的进行,植株各器官鲜质量均显著高于对照。生姜收获时,复硝酚钠、DA-6处理的株高分别比对照增加11.59%和14.02%,分枝数分别增加24.59%和28.69%,产量分别提高18.53%和22.30%,但复硝酚钠、DA-6处理间差异不显著。此外,复硝酚钠、DA-6还不同程度地提高了生姜根茎淀粉、可溶性蛋白质及氨基酸含量,改善了品质。
     3.增施复硝酚钠、DA-6,可显著提高生姜叶片叶绿素含量及光合速率,生姜旺盛生长期复硝酚钠、DA-6处理生姜叶片叶绿素含量分别比CK高4.58%、17.97%,光合速率分别提高了14.40%、20.45%。生姜根茎膨大后期,复硝酚钠、DA-6处理的根系活力分别比CK高51.2%,66.7%。生姜叶片的硝酸还原酶9月份达到最大值时,DA-6、复硝酚钠处理分别比CK高30.1%、20.8%。
     4.通过对生姜叶片黄化区姜田土壤分析,确定了生姜叶片黄化的主要原因是土壤养分不平衡,表现为有效养分总量偏低,微量元素特别是Zn元素匮乏,土壤有效锌含量仅1.4mg/kg左右,低于1.5 mg/kg的临界值,排除了人们普遍认为pH不适或盐分过高导致生姜叶片黄化的观点。黄化姜田生姜植株养分含量普遍较低,其中锌元素差异显著,根茎、茎、叶中锌含量分别比正常植株低85.2%、50.5%、15.9%。
     5.通过对生姜叶片黄化姜田增施不同肥料,不同程度的提高了叶片叶绿素含量,促进了生姜生长,增产幅度达24.1%-46.1%,其中增施硫酸锌6 kg/667m~2效果最好,增产率达46.1%,其次为15 kg/667 m~2硫酸镁,增产率达38.0%。
     复硝酚钠、DA-6也可显著减轻生姜黄化症状,通过增施复硝酚钠200、400 g/667m~2、DA-6 200、400 g/667m~2,叶绿素含量提高了3.24-3.93倍,类胡萝卜素含量提高了2.35-2.77倍,其中以400 g/667m~2效果最好,生姜叶片叶绿素含量几近正常生姜叶片。增施200、400 g/667m~2复硝酚钠、200、400 g/667m~2DA-6,产量分别达3050.5 kg/667m~2、3295.1 kg/667m~2、3303.8 kg/667m~2、3802.8 kg/667m~2、较对照分别增产32.0%、42.6%、42.9%、64.5%。
Ginger (Zingiber officinale Rosc.), perennial crops, is a kind of rhizome of products of vegetable crops, and its growing season length, nutrient demand, if cultivated properly managed, can easily result in premature aging or leggy plants. Thus, by proper application of plant growth regulators regulate its growth and development process to improve yield and quality of ginger has important significance. To this end, we study a new type of plant growth regulator compound sodium nitrophenolate and DA-6 (N, N-diethyl aminoethyl hexanote) on ginger growth, yield and physiological characteristics, the main results are as follows:
     1 Studied with the design of quadratic saturation D-optimal regression, and established a mathematical model, in which sodium nitrophenolate and DA-6 were independent variables and ginger yield was dependent variables. Through analysis of the model, the results showed that sodium nitrophenolate and DA-6 could significantly enhanced ginger yield, but the interaction of them was negative, which showed that sodium nitrophenolate and DA-6 could not be mixed to apply to ginger. In this experimental conditions, the appropriate amount of single application of sodium nitrophenolate and DA-6 were 387 and 303 g/667m~2, respectively, with the yield of ginger were 3118.60 and 3092.95 kg/667m~2, respectively, and the yield increased by 26.59% and 25.55% compared with the control, respectively.
     2. Adding the soil, respectively, sodium nitrophenolate 400 g/667m~2, DA-6 300 g/667m~2, were significant for the growth of ginger plants, ginger yield improved results. Ginger root growth early in order to promote the most significant effect, but as growth progresses, the fresh weight of plant organs were significantly higher than the control. Ginger harvest, the compound sodium nitrophenolate, DA-6 processing plant height was increased by 11.59% and 14.02% respectively, the number of branches increased by 24.59% and 28.69%, yield increased by 18.53% and 22.30%, but nitrophenolate sodium, DA-6 was no significant difference between the treatments. In addition, the compound sodium nitrophenolate, DA-6 also increased to varying degrees, ginger rhizome starch, soluble protein and amino acid content, and improved quality.
     3 Adding sodium nitrophenolate and DA-6, can significantly increase the ginger’s chlorophyll content and photosynthetic rate, in the ginger’s strong growth period, compound sodium nitrophenolate, DA-6 treatment, respectively, chlorophyll content ginger CK higher than 4.58%, 17.97%, photosynthetic rate increased by 14.40%, 20.45%. Ginger swollen late sodium nitrophenolate, DA-6 root activity were 51.2% higher than CK, 66.7%. Ginger leaf nitrate reductase in September reached the maximum when, DA-6, were treated with sodium nitrophenolate CK higher than 30.1%, 20.8%.
     4 By soil analysis of etiolated ginger’s region to determine the ginger etiolated leaf is mainly due to soil nutrient imbalances, manifested as lower the total available nutrient, trace element Zn in particular, lack of available zinc content of soil 1.4 mg/kg only about less than 1.5 mg/kg threshold, excluding the pH is generally accepted that high salt causes discomfort or etiolated ginger leaves the point of view. Etiolated ginger plant nutrient content is generally low, in which zinc significantly different roots, stems and leaves of plants of zinc content lower than the normal 85.2%, 50.5%, 15.9%.
     5 Through the etiolated ginger leaves applied field by different fertilizers, different degrees of increased leaf chlorophyll content, and promote the growth of ginger, an increase of 24.1%-46.1% range, of which zinc sulfate 6 kg/667m~2. Adding the best, yield rate of 46.1%, followed by 15 kg/667 m~2 ZnSO4, followed by 15 kg/667 m~2 MgSO4, an increase rate of 38.0%.
     Compound sodium nitrophenolate and DA-6 can significantly reduce the symptoms of etiolated ginger, by Adding Sodium nitrophenolate 200,400 g/667m~2, DA-6 200,400 g/667m~2, chlorophyll content increased 3.24-3.93 times and carotenoid content increased by 2.35-2.77 times, of which 400 g/667m~2 best, nearly normal chlorophyll content ginger leaves. Adding 200,400 g/667m~2 compound sodium nitrophenolate, 200,400 g/667m~2 DA-6, yields were up to 3050.5 kg/667m~2, 3295.1 kg/667m~2, 3303.8 kg/667m~2 and 3802.8 kg/667m~2, respectively, compared with the control 32.0%, 42.6%, 42.9% and 64.5%.
引文
艾希珍,崔志峰,曲静然,等.施肥水平对生姜品质的影响[J].山东农业大学学报,1998,29(2):183-188.
    白宝章.植物生理生化测试技术[M].北京:中国科学技术出版社. 1995.
    鲍士旦.土壤农化分析[M].北京:中国农业出版社,2007.
    蔡永萍,李玲,李合生,等.霍山石斛叶片光合速率和叶绿素荧光参数的日变化[J].园艺学报,2004(06):141-146.
    陈敏资.二烷氨基乙醇羧酸酯对紫罗兰生理活性的影响[J].园艺学报,1995,22(2):201-202.
    冯乃杰,阎秀峰,郑殿峰,等.两种植物生长调节剂浸种对大豆根系解剖结构的影响[J].植物生理学通讯,2010,46(7):687-692.
    高洪波,陈贵林,章铁军,等.施铁对萝卜芽生长、产量及品质的影响[J].园艺学报,2006,33(5):1096-1098.
    郭衍银,王秀峰,徐坤,等.根结线虫对生姜微量元素吸收特性的影响[J].西南农业学报,2004,127(2):185-188.
    韩金玲,马春英,杨晴,等.施锌对冬小麦品质性状的影响[J].麦类作物学报,2007,27(1):112-115.
    胡建明,郁继华,黄高宝,等.弱光或低温弱光下辣椒叶片类胡萝卜素含量与品种耐性的关系[J]. 2010,43(19):4036-4044.
    胡海涛,高月,兰大伟,等.余甘子下胚轴离体再生体系的优化[J].园艺学报,2007,34(3):609-614.
    蒋小军.植物生长调节剂对奈李叶片抗衰老性的影响[J].现代农业科技,2007,11:5-7.
    姜勇,梁文举,张玉革,等.蔬菜保护地土壤DTPA浸提态铁锰铜锌含量状况研究[J].中国环境科学学报,2003,22(6):700-703.
    赖寿鹏,倪晋山.吲哚乙酸对向日葵下胚轴质膜ATP酶活性促进的再研究[J].科学通报,1983(4):391- 401.
    李合生.现代植物生理学[M].北京:高等教育出版社,2006.
    李录久,郭熙盛,丁楠,等.不同品种生姜的营养特性和养分吸收规律[J].土壤通报, 2007, 38( 6 ) : 1237- 1239.
    李娘辉,陈汝民,黄群声,等.吡效隆对花生光合作用及产量的影响[J].植物学通报,1999,16(2):182-185.
    李瑞海,徐大兵,黄启为,等.叶面肥对苗期油菜生长特性的影响[J].南京农业大学学报,2008,31(3):91-96.
    李秀菊,朱坤华,张永军,等.营养元素与植物生长调节剂对油菜花粉萌发的影响[J].中国油料作物学报,1999,26(1):24-26.
    李伟华,张慎举,侯乐新.植物生长调节剂对减轻夏大豆发生荚而不实的效应[J].中国农学通报,2007,23(6):349-352.
    李银保,廖梅香,彭湘君,等.生姜、大蒜和辣椒中六种微量元素的测定[J].广东微量元素科学,2009,16(7):46-49
    梁广坚,李芸瑛,邵玲. DA-6和BR + GA3对菠菜生长和光合速率的影响[J].园艺学报,1998,25(4):356-360.
    廖飞雄,潘瑞炽,何晓明.菜薹茎尖培养中的激素与热激调控[J].园艺学报,2003,30(2):224-226.
    林萍,普晓兰.滇润楠的组织培养及快速繁殖研究[J].园艺学报,2003,30(2):239-241.
    刘峰峰,符云鹏,宋玉川,等植物生长调节剂GGR对香料烟根系发育及活力的影响[J].中国烟草科学,2010,31(3):49-53.
    刘洪展,郑风荣,唐学玺,等.外源生长素对半海水胁迫下玉米幼苗叶片衰老特性的影响[J].干旱地区农业研究,2010,28(2):104-108.
    梁广坚,李芸瑛,邵玲. DA-6和BR + GA3对菠菜生长和光合速率的影响[J].园艺学报,1998,25(4):356-360.
    良欢,孔向军.混合肥喷施对豌豆子粒铁、锌、可溶性糖和维生素C含量的影响[J].植物营养与肥料学,2006,12(2):245-249
    鲁坤存,李爱华,颜合洪.植物生长调节剂对烟苗生长发育及生理特性的影响[J].烟草科技,2004,11:33-39.
    吕双庆,李生秀.多效哇对旱地小麦一些生理、生育特性及产量的影响[J].植物营养与肥料学报,2005,11(1):92-98.
    苗鹏飞,刘国杰,李绍华,等. DA-6对秋季草莓叶片光合速率和植株生长的影响[J].应用生态学报,2007,18(12):2722-2726.
    聂乐兴,姜兴印,吴淑华,等.四种植物生长调节剂对高产玉米生理效应及产量影响[J].山东农业大学学报(自然科学版),2010,41(2):216-220.
    欧阳立明,张舜杰,陈剑锋,等.不同植物生长物质对水培黄瓜幼苗生长和根系发育的影响[J].中国农学通报,2010,26(3):161-166.
    潘瑞炽.植物生理学[M].北京:高等教育出版社,1995. 山东土壤肥料工作站.山东土壤[M].中国农业出版社,1994:391-413.
    单守明,刘国杰,李绍华,等. DA-6对草莓叶绿体光化学反应和Rubisco活性的影响[J]. 中国农业大学学报,2008,13(2):7-10.
    单守明,刘国杰,李绍华,等.二烷氨基乙醇羧酸酯对草莓光合作用和果实品质的影响[J]. 园艺学报,2008,35(4):587-590.
    施木田,陈如凯.锌硼营养对苦瓜叶片碳氮代谢的影响[J].植物营养与肥料学报2004,10 (2):198-201
    施晓明,李淑芹,许景钢,等.干旱胁迫下DA-6浸种对大豆苗期叶片保护酶活性的影响[J].东北农业大学学报,2009,40(9):48-51.
    宋莲芬,郝建平.二苯基脲磺酸钙对小麦苗期抗旱性的影响[J].植物研究,2001,21(3):416-419
    孙川川,姚银安,牟东岭.不同供锌水平对葡萄生理生化指标的影响[J].贵州农业科学,2010,38(7):55-57.
    孙红梅,谢佳,王春夏,等. GA3、IBA以及变温处理对东方百合鳞片扦插繁殖及淀粉降解的影响[J].园艺学报,2010,37(7):1109-1116.
    王道全,陈敬红. a-乙氧羧基环十二烷基羧酸酯的合成及其植物生长调节活性[J].中国农业大学学报,1999,4(1):1-4.
    王静,安忠民,冯学赞,等. CCC在马铃薯试管苗越夏中的作用.植物生理学通讯,2004,40(4):441-442.
    王静,丛日晨,王中华,等.不同供铁水平对油松幼苗光合特性的影响[J].河北农业大学学报,2010,33(3):57-61.
    王军民,龙飞,莫克,等.施用氯吡脲和多效唑改良山药的品质[J].基因组学与应用生物学,2010,29(2):344-348.
    王喜庆,武维华.植物细胞钙依赖型蛋白激酶参与ABA信号转导过程的实验证据[J].植物学报,1999,41(5): 556- 559.
    王衍安,李坤.铁锌互作对苹果锌、铁吸收分配的影响[J].中国农业科学,2007,40(7):1469-1478.
    王云莉,王成荣,王然,等.细胞分裂素类生长调节剂对青花菜采后衰老的影响[J].园艺学报,2009,36 (11):1619- 1626.
    项洪涛,冯乃杰,杜吉到,等.植物生长调节剂对马铃薯根系理化特性的影响[J].植物营养与肥料学报,2009,15( 6):1481- 1485
    谢建治,刘树庆,李博文,等.锌处理对白菜营养品质的影响[J].园艺学报,2004,31(5):668-669.
    谢甫绨,郭小红,包雪艳,等.多效唑对大豆不同叶型近等位基因系产量和品质的影响[J].大豆科学,2010,29(6):948-952.
    许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯,1997,33(4):241-244.
    许大全.光合速率、光合效率与作物产量[J].生物学通报,1999,34(8):8-10.
    徐立华,杨长琴,李国锋,等.缩节胺对高品质棉成铃与品质的影响[J].棉花学报,2006,18(5):294-298.
    徐坤,郑国生,王秀峰.施氮量对生姜群体光合特性及产量和品质的影响[J].植物营养与肥料学报,2001,7(2):189-193.
    徐坤,邹琦,郑国生.强光下姜叶片的光呼吸及叶黄素循环[J].园艺学报,2002,29(1):47-51.
    徐芹,贾赵东,刘金根.施用多效唑对荞麦生长发育及产量的影响研究[J].耕作与栽培,2006(4):22-23.
    鄢燕,张新全,张新跃.植物生长调节剂在牧草及草坪草上的研究进展[J].草原与草坪,2003(3):7-11.
    杨凤娟,刘世琦,王秀峰,等.锌对大蒜生理生化指标及营养品质的影响[J].土壤肥料,2005(1):35-38.
    杨秋生,温春锋,郭云红.缩节胺在一串红矮化栽培中的应用研究[J].河南农业科学,1991,7:26-27.
    永娥,王瑞良,靳绍菊,等.微量元素含量及其影响因素的研究[J].土壤肥料,2005(5):35-37.
    于彩莲,刘波,燕红,等.复硝酚钠及其组分对大豆种子萌发的影响[J].大豆科学,2010,29(3):440-443.
    于贤昌,徐坤,艾希珍,等.生姜群体及其光合作用与产量形成关系的研究[J].山东农业大学学报,1996,27(1):83-86.
    元明浩,孟广萍,朱阳阳.不同植物生长调节剂对大豆产量及生长形态的影响[J].安徽农业科学,2009,37(35):17447-17449.
    张春娟,冯乃杰,郑殿峰.叶面喷施植物生长调节剂对马铃薯产量及品质的影响[J].中国蔬菜,2009,14:43-48.
    张进,吴良欢,孔向军,等.混合肥喷施对豌豆子粒铁、锌、可溶性糖和维生素C含量的影响[J].植物营养与肥料学报,2006,12(2):245-249.
    张鹏,王飞,张列峰,等.丝氨酸内肽酶在黄瓜叶片衰老中的作用[J].植物生理与分子生物学学报,2006,32(5):593 -599.
    张立明,王庆美,何钟佩.脱毒和生长调节剂对甘薯内源激素含量及块根产量的影响[J]. 中国农业科学,2007,40(1):70-77.
    张幸福,韩栓,王伟,等. ABA和GA刺激的ROS代谢调节水稻幼根伸长分析[J].河南大学学报,2010,40(1):62-66.
    赵德婉,徐坤,艾希珍,等.生姜高产栽培[M].北京:金盾出版社,2011. 赵莉,余学杰. 3种植物生长调节剂对疏花早熟禾种子萌发的影响[J].种子,2010,29
    (12):66-68.
    赵建萍,蒋小满,柏新富,等. PP333、B9和CCC对脱毒马铃薯试管繁殖的影响[J].植物生理学通讯,2003,39(6):571-574.
    赵世杰.植物生理学实验指导[M].北京:中国农业科技出版社,1998.
    周云龙. .植物生物学[M].北京:化学工业出版社,1999.
    中国土壤肥力[M].北京:中国农业出版社,1998
    中华人民共和国农业部.中华人民共和国农业行业标准,2006.
    中华人民共和国药典委员会.中国人民共和国药典[M].广州:广东科技出版社,1995.
    支金虎,赵书珍,段黄金,等.锌素调节下棉花叶绿素和产量的协同响应[J].干旱地区农业研究,2010,28(3):137-144.
    Allen GJ, Chu SP, Harrington CL, et al. A defined rang of guard cell calcium oscillation parameters encodes stomatal movements[J]. Nature, 2001, 411: 1053- 1057.
    Arnon DJ. Copper enzymes in isolated chlorop lasts. Plant Physiology, 1949, 24: 1-15.
    Bartley G E, Scolnik P A. Plant carotenoids: pigments for photoprotection, visual attraction,and human health. The Plant Cell, 1995, 7: 1027-1038.
    Bol JF, Linthorst HJM. Cornelissen BJC Plant patho-genesis-related proteins induced by virus infection. Annu Rev Phytopathol , 1990, 28: 113-138.
    Britton G.. Structure and properties of carotenoids in relation to function. The FASEB Journal, 1995, 9: 1551-1558.
    Broadley M R. Zinc in plants. New Phytologist, 2007, 173: 677-702.
    Claussen M, Luthen H, Blatt M. Auxin-induced growth and its linkage to potassium channels[J]. Planta, 1997, 201: 227-234.
    Deng X, Woodward Fl. The growth and yield response of Fragaria ananassa to elevated CO2 and N supply[J]. Annals of Botany, 1998, 81: 67-71
    Du Y C, Kawamitsu Y, Nose A , et al. Effects of water stress on carbon exchange rate and activities of photosynthetic enzymes in leaves of sugarcane[J]. Australian Journal of Plant Physiology, 1996, 23(6):719-726.
    Farquhar GD, Sharkey TD. Stomatal conductance and photosynthetic. Ann. Rev. Plant Physiology, 1982, 33: 317-345.
    Flore JA, Lakso AN. Environmental and physiological regulation of photosynthesis in fruit crops. Horticultural Reviews, 1989, 11: 111-157.
    Freepons Dl. Enhancing food production with chitosan seed coating technology In : Donald Freepons(ed). Application of Chitin and Chitosan1 Lancaster : Technomic Publishing Company inc , 1997: 129-139
    Frost R. Membranes and senscence. In: processes and control of plant senescence[M]. Leshem Y Y(ed). Elsevier, 1986: 54-83.
    Gan S, Amasino RM. Making sense of senescence: molecular genetic regulation and manipulation of leaf senescence. Plant Physiology, 1997, 113: 313–319.
    Gausman HW, Burd JD, Quisenberry J et al. Effort of DCPTA on cotton plant growth and phenology. Bio-Technology, 1985, 3(3): 255-257
    Graham R D, Rengel Z. Genotypic variation in Zn uptake and utilization by plants. In: Robson AD (ed). Zinc in Soils and Plants.Kluwer Academic Publishers, Dordrecht, 1993: 107-114.
    Hacisalihoglu G, Hart JJ, Kochian LV. High- and low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiology, 2001, 125: 456-463.
    Hartz TK, Kies LJ, Baomeur A et al. DCPTA ineffective as a production acid on field grown tomato and pepper. Hot Science, 1995, 30(1): 78-79
    Ianpa M. Micronutrients and the nutrient status of soils: A global study. FAO Soils Bulletin, 1982: 48.
    Jenkins PD, Mahmood S. Dry matter production and partitioning in potato plants subjected to combined deficiencies of nitrogen, phosphorus and potassium [J]. Ann. App.l B io.l , 2003, 143, (2): 215-229.
    Kakuzo K, Hitoshi. Effects of zinc deficiency on the nitrogen metabolism of meristematic tissues of rice plants with reference to protein synthesis[J]. Soil Science and Plant Nutrition, 1986, 32 (3): 397- 405.
    Makino A, Mae T, Ohira K. Purification and storage of ribulose-1, 5-bisphosphate carboxylase from rice leaves[J]. Plant and Cell Physiology, 1983, 24(6): 1169-1173.
    Marschner H. Mineral nutrition of higher plants[M]. USA: Academic Press , 1995: 347- 364.
    Markus L, Alberto S, Peter S et al. Root development of maize as observed with minirhizotrons in lysimeters[J] . Crop Science, 2000, 40(6): 1665- 1672
    Memon SA, Hou XL, Zhu B, et al. Highfrequency adventitious shoots regeneration from leaf of non-heading Chinese cabbage (Brassica campestris ssp. chinensis) cultured in vitro. Acta Physiol Plant, 2009, 31: 1191–1196.
    Navarro C, Escobedo RM, Mayo A. In vitro plant regeneration from embryogenic cultures of a diploid and a triploid, Cavendish banana. Plant Cell Tissue Organ Cult 1997, 51: 17–25.
    Newell W R, Van Ameronger H, Barber J, et al. Spectroscopic characterization of the reaction center of photosystemⅡusing polarized light: evidence forβ-carotene excitons in PSⅡreaction centers. Biochim Biophys Acta, 1991, 1057(2): 232-238.
    Niyogi K K, Grossman A R, Bjorkman O. A rabidopsis mutants define a central role of the xanthophyⅡcycle in the regulation of photosynthetic energy conversion. Plant Cell, 1998, 10: 1121-1134.
    Okawa T, Naruoka Y, Sayama A, et al. Cytokinin effects on ribulose-1,5-bisphosphate carboxylase oxygenase and nitrogen partitioning in rice during ripening [J]. Crop Science, 2004, 44(6): 2107-2115
    Oserkowsky J, Hydrogen-ion concentration and iron content of tracheal sap from green andchlorotic pear trees[ J] . Plant Physiology, 1932(7): 253-259.
    Perkins-Veazie P. Growth and ripening of strawberry fruit. Horticultural Reviews, 1995, 17: 267- 297
    Ren Xuqin. Effects of different plant growth inhibitors on growth and flowing of narcissus. HuNan Agriculture science and technology newsletter, 2003, 4: 6-9.
    Robert HJ, Earl DV, Jeremy K G, et al. Economic effect of late irrigation on Mid-South cotton[J]. Summaries of Arkansas Cotton Research, 2004: 156-160.
    Setia R.C, Bhathal G., and Setia N. Influence of paclobutrazol on growth and yield of Brassica carinata A.Br., Plant Growth Regulation, 1995, 16(2): 121-127
    Sincik M, Turan ZM, Gksoy AT. Responses of potato (Solanum Tuberosum L. ) to green manure cover crops and nitrogen fertilization rates[J]. American Journal of Potato Research, 2008, 85: 150-158.
    Sommer AL, Lipman CB. Evidence of indispensable nature of zinc and boron for higher green plants. Plant Physiology, 1926(1): 231-249.
    Song H, Lou QF, Luo XD, et al. Regeneration of doubled haploid plants by androgenesis of cucumber (Cucumis sativus L.). Plant Cell Tissue Organ Cult, 2007, 90: 245–254.
    Tian SP, Chen ZL. Potential of induced resistance in postharvest diseases control of fruits and vegetables. Acta Phytopathologica, 2004, 34(5): 385-394.
    Van de Mortel JE, Villanueva LA, Schat H. Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant
    Physiology, 2006, 142: 1127-1147.
    Vose PB. Iron nutrition in plants: a world overview. Journal of Plant Nutrition, 1982, 5: 233-249. Von Wirén N, Marschner H, R?mheld V. Roots of iron-efficient maize also absorb phytosiderophore-chelated zinc. Plant Physiology, 1996, 111: 1119-1125.
    Wiren N, Gagarrini S, Frommer W B. Regulation of mineral nitrogen up take in plants[J]. Plant Soil, 1997, 96; 191- 199.
    White J G, Zasoski R J. Mapping soil micronutrients. Field Crops Research, 1999, 60: 11-26.
    Willekens H, Camp W V, Montagu M V, et al. Ozone, sulfur dioxide and ultraviolet-βhave similar effects on mRNA accumulation of antioxidant genes in Nicotiana plumbaginifoliaL. Plant Physiology, 1994, 106:1007-1014.
    Wojcik M, Skórzyńska-Polit E, Tukiendorf A. Organic acids accumulation and antioxidant enzyme activities in Thlaspi caerulescens under Zn and Cd stress. Plant Growth Regulation,, 2006, 48: 145-155.
    Yakushevska E, Jensen P E, Keegstra W. Supermo-lecular organization of photosystemII and its associat-ed light-harvesting antenna inArabidopsis thaliana[J]. Europe Journal of Biochemistry, 2001, 268(23): 6020-6028
    Zhang ZG,, Rui Q, Xu LL. Relationship between endopeptidase and H2O2 during wheat leaves aging. Acta Bot Sin, 2001, 43: 127–131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700