猪BMP7基因启动子多态性及其与繁殖性状关联性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨形态发生蛋白7(BMP7)是BMP家族成员之一,具有多方面的生物学活性,对动物繁殖机能具有重要的调控作用。因目前尚未见猪BMP7基因遗传多态性分析的文献报道,所以本研究首次对猪BMP7基因启动子部位的遗传变异特性及其与猪繁殖性状相关性进行了分析。首先提取猪毛囊基因组DNA,选取不同品种极端性状的个体100头,构建极端性状混合DNA池,通过测序的方法,对猪BMP7基因启动子的遗传变异位点进行筛选。在此基础上,应用PCR-RFLP技术,对3个品种255头猪BMP7基因启动子区的4个SNP位点T-3722C、A-3684G、C-3522G、A-1027G进行群体遗传学分析,并用SPSS16.0分析这4个SNP位点对猪繁殖性状的影响。主要研究结果如下:
     (1)应用猪毛囊提取的基因组DNA池,通过测序,首次发现启动子区存在39个多态位点。
     (2)以猪BMP7基因测序结果为基础,应用PCR-RFLP技术首次检测启动子区4个SNP位点T-3722C、A-3684G、C-3522G和A-1027G。测序结果表明4个SNP位点分别为T/C突变、A/G突变、C/G突变和A/G突变,4个位点都有2个等位基因,3种基因型。遗传变异分析发现,T-3722C位点T是优势等位基因(0.67),优势基因型为TC型(0.48),该位点处于Hardy-Weinberg平衡状态,多态信息含量(PIC)、杂合度(He)、有效等位基因数(Ne)分别为0.34、0.44、1.80,属中度多态。A-3684G位点G是优势等位基因(0.84),优势基因型为GG型(0.76),该位点处于Hardy-Weinberg非平衡状态,PIC、He、Ne分别为0.23、0.27、1.36,属低度多态。C-3522G位点C是优势等位基因(0.71),优势基因型为CG型(0.48),该位点处于Hardy-Weinberg非平衡状态,PIC、He、Ne分别为0.33、0.41、1.70,属中度多态。A-1027G位点A是优势等位基因(0.81),优势基因型为AA型(0.67),该位点处于Hardy-Weinberg平衡状态,PIC、He、Ne分别为0.26、0.31、1.44,属中度多态。
     (3)将检测到的4个SNP位点与繁殖性状相关的生产数据进行关联分析。结果显示,A-3684G位点与猪繁殖性状进行关联分析均表现无显著关联(P>0.05)。T-3722C位点与产活仔数、出生窝重及21日龄窝重显著相关(P<0.05);TT和TC型产产活仔数、出生窝重及21日龄窝重均极显著高于CC型。C-3522G位点与21日龄窝重极显著相关(P<0.01),CC和CG型极显著低于GG型。A-1027G位点与产活仔数及出生窝重显著相关(P<0.05),AA和AG型显著高于GG型。应用TFsearch等在线程序对猪BMP7启动子进行分析,预测到3个与繁殖性状显著关联的SNP位点均正好位于或靠近某些重要转录因子结合位点,而与繁殖性状无关联的位点则不在可能的转录因子结合位点区域。
     基于以上结果,可得出如下结论:
     (1)对猪BMP7基因启动子区域多态位点进行了筛选,发现了39个位点。
     (2)猪BMP7基因启动子区域遗传变异性丰富,可能对基因表达乃至表型产生较大的影响。
     (3)4个位点中T-3722C、C-3522G和A-1027G 3个位点与猪若干繁殖性状显著关联,它们可能通过改变启动子的转录活性而影响BMP7基因表达及相应的表型。这些多态位点可望作为分子标记用于育种中的辅助选择。
Bone morphogenetic protein 7 is a member of the family of bone morphogenetic proteins. The multifunctional protein also plays an important role in formation of bone and cartilage, and is also involved in the regulation of mammalian reproduction. No reports on the genetic diversity analysis have been found so far in the studies of porcine BMP7 gene, thus the present study took this gene as a target gene for the pig reproductive traits. First, a DNA pool was build using DNA samples from 100 sows of different breeds, and sequenced to screen the putative SNPs occurred in the promoter region. Then after, the PCR-RFLP was employed to genotype the total 255 sows and gilts including 26 Landrace, 147 Largewhite, 82 Doroc at the 4 loci (T-3722C, A-3684G, C-3522G, A-1027G). The main results are as follows:
     (1) A total 39 polymorphic loci, including of 3 deletes and 36 signal nucleotide polymorphisms, were pick out for the first time in the studies of this gene.
     (2) The genotyping for the 4 variations found reveled that each of these loci occurred in the population studied with the full 3 genotypes. Of 4 sites, T-3722C was dominated by the allele T and genotype TC, with an allele frequency and genotype frequency of 0.67 and 0.48, respectively. The further examination showed that this locus coincided with the Hardy-Weinberg equilibrium, with a polymorphic information content(PIC) ,heterozygosity (He)and effective allele number(Ne) of 0.34,0.44 and 1.80 in the population of interest, respectively. At the locus A-3684G, the dominated allele and genotype were G (0.84) and GG (0.76), respectively. Whereas, this locus was not in the balance of Hardy-Weinberg, and PIC, He and Ne were 0.23, 0.27 and 1.36, respectively. For another locus C-3522G, the dominances were C and CG, with the frequencies of 0.71 and 0.48, respectively. The locus C-3522G was also not consistent to the Hardy-Weinberg equilibrium, and the PIC was 0.33, the He 0.41 and Ne 1.70. At the fourth locus A-1027G, the allele A was dominant to G, while the AA was dominant to the remaining genotypes. The frequencies of A and AA were 0.81 and 0.67, respectively. As the immediate 2 loci, the locus A-1027G did not meet the balance of Hardy-Weinberg, and PIC, He and Ne were 0.26, 0.31 and 1.44, respectively.
     (3) The subsequent association analysis of these 4 loci with the corresponding reproductive traits demonstrated that the locus A-3684G was absolutely unrelated to the all characters examined. However, the SNP T-3722C showed significant correlation with some traits, such as the live litter size and litter weight at birth, as well litter weight at the weaning of 21 day of homozygote TT and heterozygote TC were higher than those of homozygote CC, respectively. For the locus C-3522G, the homozygote CC and heterozygote CG were lower than homozygote GG in the weaning litter weight. For the locus A-1027G, the homozygote AA and heterozygote AG were found super than homozygote GG in the live birth litter size and birth litter weigh. The bioinformatics analysis employed tfsearch and the other online program for transcriptional factors demonstrated that the 3 SNP sites highly related to the reproductive traits were all in or closely near the putative transcriptional factor binding sites located in the promoter region, while the remaining SNP unrelated to the phenotypes was located beyond any predicted TF binding sites.
     Therefore, it can be reasonably concluded as follows:
     (1)Swine BMP7 gene promoter region polymorphism was screened and found 39 sites.
     (2) The promoter region of porcine BMP7 is rich in the genetic variations, implying a great role in the regulation of this gene as well as the phenotypes related to the reproduction.
     (3) Though the further assertion is needed, the loci T-3722C, C-3522G and A-1027G may affect the reproductive traits of sows by modulating the transcription activity of swine BMP7. These polymorphism sites can be expected to develop possible molecular markers for the selection of corresponding traits in the swine breeding.
引文
[1]Urist M R. Bone formation by autoinduction [J]. Science,1965,150(698):150-899.
    [2]Chang H,Brown CW, Matzuk MM, et a1. Genetic analysis of the mammalian transforming growth factor-βsuperfamily[J]. Endocr Rev,2002,23:787-823.
    [3]Chen D, Zhao M, Mundy GR.Bone morphogenetic proteins[J]. Growth Factors,2004,22(4):233-241.
    [4]Ozkaynak E, Rueger D C, Drier E A, et a1.OP-1 cDNA encodes an osteogeneic protein in the TGF–βfamily[J]. EM BOJ,1990,9(7):2085-2093.
    [5]Celeste A,James A,Robin C,et a1.Identification of transforming growth factorβfamily members present in bone inductive protein purified from bovine bone[J]. Proc Natl Acad Sci ,1990,87 (24): 9843-9847.
    [6]Wozney J M.Overview of bone morphogenetic proteins[J].Spine ,2002,27(16):S2 -S8.
    [7]Fairlie W D, Zhang H P, Wu W M, et a1. The propeptide of the transforming growth factor-? superfamily member, macrophage inhibitory cytokine-1 (MIC-1), is a multifunctional domain that can facilitate protein folding and secretion[J]. J Biol Chem ,2001,276: (20): 16911 -16918.
    [8]王雪,宋长征.骨形态发生蛋白7的研究进展[J].生命的化学,2003,23(6): 401-403.
    [9]Vitt UA, Hsu SY, Hsue AJ. Evolution and classification of cystine knot -containing hormones and related extracellular signaling molecules [J]. Mol Endocrinol, 2002,15(5):681-694.
    [10]Groppe J, Greenwald J, Wiater E, et a1. Structural basis of BMP signaling inhibition by Noggin, a novel twelve-membered cystine knot protein[J].J Bone Joint Surg Am,2003,85-A Suppl 3:52-58.
    [11]Petra Seemann, Anja Brehm, et a1. Mutations in GDF5 Reveal a Key Residue Mediating BMP Inhibition by NOGGIN PLoS Genet[J].2009 November,5(11): e1000747. Published online 2009 November 26.doi: 10.1371/journal.pgen.1000747.
    [12]赵甜娜,韩金祥,王世立.骨形态发生蛋白7的研究进展[J].药物生物技术,2005,32(5): 328-333.
    [13]Israel D I , Nove J , Kerris K M , et a1. Heterodimeric bonemorphogenetic protein show enhanced activity in vitro and iv vivo[J]. Growth Fattors ,1996,13:291-300.
    [14]Service R F. Tissue engineers build new bone[J]. Science,2000,289 (5484) : 1498-1500.
    [15]Yonemori K , Imamura T , Ishidou Y, et a1. Bone morphogenetic protein receptors and activin receptors are highly expressed in ossified ligament tissues of patients with ossifica2tion of the posterior longitudinal ligament[J]. Am J Pathol ,1997,150 : 1335-1347.
    [16]Yeh L C, Zavala M C, Lee J C. Osteogenic protein1 and interleukin-6 with its soluble receptor synergistically stimulate rat osteoblastic cell differentiation[J]. J Cell Physiol ,2002,190 (3):322-331.
    [17]Paralkar VM, Grasser WA, Mansolf AL,et a1. Regulation of BMP-7 expression by retinoic acid and prostaglandin E(2)[J]. J Cell Physiol, 2002,190:207–217.
    [18]Yoshida M, Tomita H,et a1. Auto iris pigment epithelial cell transplantation in patients with age-related macular degeneration:short-term results[J]. Tohoku J Exp Med,2000,191:7-20.
    [19]Amthor H, Christ B, Rashid-Doubell F, et a1.Follistatin regulates bone morphogenetic protein-7(BMP-7) activity to stimulate embryonic muscle growth[J].Dev Biol, 2002 Mar 1,243(1):115-127.
    [20]Lee W S, Otsuka F, Moore R K, et a1. Effect of bone morphogenetic protein27 on folliculogenesis and ovulation in the rat[J]. Biol Reprod ,2001,65 (4):994-999.
    [21]Asahina I, Sampath T K, Hauschka P V. Human osteogenic protein -1 induces chondroblastm , osteogenic and or clonal murine target cells[J]. Exp Cell Res,996 ,222 (1):38-47.
    [22]Chang, C.F., Lin, S.Z., Chiang, Y H,et a1.Intravenous Admininstration of Bone Morphogenetic Protein-7 after Ischemia Improves Motor Function in Stroke Rats[J]. Stroke, 2003,34(2):558-564.
    [23]Esquenazi S, Monnerie H, Kaplan P,et a1. BMP-7 and excess glutamate: opposing effects on dendrite growth from cerebral cortical neurons in vitro[J].Exp Neurol 2002,176(1):41-54.
    [24]Simon M, Feliers D, Arar M, et a1.Cloning of the 5’flanking region of the murine bone morphogenetic protein7 gene [J]. Mol Cell Biochem ,2002,233 (1-2):31-37.
    [25]Yanagita M.Balance between bone morphogenetic proteins and their antagonists in kidney injury [J].Ther Apher Dial. 2007 Oct,11 Suppl 1:S38-43.
    [26]Archdeacon P ,Detwiler RK.Bone morphogenetic protein 7(BMP7):a critical role in kidney development and a putative modulator of kidney injury[J].Adv Chronic Kidney Dis,2008 Jul,15(3):314-320.
    [27]Hruska K A, Guo G ,Wozniak M , et a1. Osteogenic protein1 prevents renal fibrogenesis associated with ureteral obstruction[J]. Am J Physiol Renal Physiol ,2000,279 (1):F130-143.
    [28]Klahr S, Morrissey J, Hruska K, et a1. New approaches to delay the progression of chronic renal failure[J]. Kidney Int Suppl , 2002 ,(80):23-26.
    [29]Lund R J , Davies M R , Hruska K A. Bone morphogenetic protein7: an anti-fibrotic morphogenetic protein with therapeutic importance in renal disease[J]. Kidney Int , 2002,61(1):351-362.
    [30]Davies M R , Lund RJ , Hruska KA. BMP7 is an efficacious treatment of vascular calcification in a murine model of atherosclerosis and chronic renal failure[J].J Am Soc Nephrol ,2003,14 (6):1559-1567.
    [31]Masuda H , Fukabori Y, Nakano K, et a1.Expression of bone morphogenetic protein7 (BMP7) in human prostate[J].Prostate ,2004,59(1):101-106.
    [32]Dai J,Kitagawa Y, Zhang J,et a1.Vascular endothelial growth factor contributes to the prostate cancer-induced osteoblast differentiation mediated by bone morphogenetic protein[J].Cancer Res ,2004,64 (3):994-999.
    [33]Shimasaki S, Moore RK, Ootsuka F, et a1. The bone morphogenetic protein system in mammalian reproduction[J].Endocrine Rev, 2004,25(1):72-101.
    [34]GE Yan, ZHANG Jia-Hua. Progess on bone morphogenetic proteins on animal reproduction[J]. China Academic Journal Electronic Press,2006,27(6):33-37.
    [35]Huang HJ, Wu JC, Su P, et a1. A novel role for bone morphogenetic progeins in the synthesis of follicle-stimulating hormone[J]. Endocrinology, 2001,142(6):2275-2283.
    [36]Shimasaki S, Zachow RJ, Li D, et a1. A functional bone morphogemetic protein system in the ovary[J].Proc Natl Acad Sci USA, 1999,96(6):7282-7287.
    [37]Erickson GF, Fuqua L, Shimasaki S. Analysis of spatial and temporal espression pattenrns of bone morphogenetic protein family members in the rat uterus over the estrous cycle[J]. Endocrinology, 2004,182(2):203-217.
    [38]Ying Y, Zhao GQ. Detection of multiple bone norphogenetic protein messenger ribonucleic acids and their signal transducer, SmadⅠ, during mouse decidualization[J]. Biol Reprod,2000,63(6):1781-1786.
    [39]Chen MY, Carpenter D, Zhao GQ. Expression of bone morphogenetic protein 7 in murine epididymis is developmentally regulated[J]. Biol Reprod ,1999,60(6):1503-1508.
    [40]Yan Ling,Wei-feng Lu,Fan Lu,et a1. PCR-RFLP and AP-PCR of rbcL and ITS of rDNA Show That×Taxodiomeria peizhongii (Taxodium×Cryptomeria) Is not an Intergeneric. Hybrid[J].Journal of Integrative Plant Biology,2006,48(4):468-472.
    [41]徐莉,赵桂仿.微卫星DNA标记技术及其在遗传多样性研究中的应用[J].西北植物学报, 2002,22(3):714-722.
    [42]曹宗富,马传香,王蕾,蔡斌.随机SNP在全基因组关联研究人群分层分析中的应用[J].遗传,2010,32(9):921-928.
    [43]黄耀江,人类基因组中单核苷酸多态性的检测技术[J].生物学通报, 2007,42(6).
    [44]Altshuler, D., et a1. An SNP map of the human genome generated by reduced representation shotgun sequencing[J]. Nature, 2000,407(6803):513-516.
    [45]Saiki, R.K., et a1.Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia[J]. Science, 1985,230(4732):1350-1354.
    [46]邢晋袆,帅素容. RFLP与PCR-RFLP技术与猪分子育种[J].畜禽业,2001(7):24-25.
    [47]Vincent AL, Wang L, Tuggle CK, et a1. Prolactin receptor maps to Pig chromosome16[J].Manmm Genome,1997,8(10):793-794.
    [48]张浩,强巴央宗,彭俊飞等.藏猪肥胖基因多态性研究[J].中国畜牧兽医,2009,36(8):47-48.
    [49]Harvey M B,Leco K J,Arcellana-Panlilio M Y,et a1. Roles of growth factors during peri-implantation development[J].Mol.Human Reprod,1995,10:712-718.
    [50]李宁.动物遗传学[M].第二版,北京:中国农业出版社,2003:125-127.
    [51] Kijas, J.M, J.C. Fowler, M.R. Thomas. An evaluation of sequence tagged microsatellite site markers for genetic analysis within Citrus and related species[J]. Genome, 1995,38(2): 349-355.
    [52]储明星.数量遗传学导论[M].第二版.北京:中国农业科技出版社,2000:85-86.
    [53]刘益平.分子遗传标记在家禽育种中的应用[J].四川畜牧兽医, 1999(1).
    [54]Litt M, Luty JA.Dinucleotide repeat polymorphism at the D6S89 locus.Nucleic Acids Res[J]. 1990Jul 25,18(14):4301.
    [55]Litt M, Kramer P, Hauge XY, et a1.A microsatellite-based index map of human chromosome 11.HumMol Genet[J]. 1993 Jul,2(7):909-913.
    [56]罗文永,胡骏,李晓方.微卫星序列及其应用[J].遗传, 2003,25(5).
    [57]黄耀江,人类基因组中单核苷酸多态性的检测技术[J].生物学通报,2007,42(6).
    [58]Mullikin JC, Hunt SE, Cole CG . An SNP map of human chromosome 22[J]. Nature, 2000, 407 (6803) : 516.
    [59]Mills RE, Luttig CT, Larkins CE, et a1.An initial map of insertion and deletion(INDEL)variation in the human genome[J].Genome Res,2006,16(9):1182—1190.
    [60] Scherer SW, Lee C, Birney E, et a1.Challenges and standards in integrating surveys of structural variation[J]. Nat Genet,2007, 39(7 Suppl.): S7–S15.
    [61] The Human Genome Structural Variation Working Group. Completing the map of human genetic variation. A plan to identify and integrate normal structural variation into the human genome sequence[J]. Nature, 2007, 447(10): 161–165.
    [62]吴志俊,金玮.拷贝数变异:基因组多样性的新形式[J].遗传,2009,31(4):339-347.
    [63] Brouillette,J.A., J.R. Andrew,et a1.Venta, Estimate of nucleotide diversity in dogs with a pool-and-sequence method[J]. Mamm Genome, 2000,11(12):1079-1086.
    [64] Carmi, R., et a1. Use of a DNA pooling strategy to identify a human obesity syndrome locus on chromosome 15[J]. Hum Mol Genet, 1995,4(1): 9-13.
    [65]李树珍,万慧荣,杨光. DNA池结合DHPLC和直接测序技术在江豚SNPs检测中的应用[J].兽类学报,2009,29(2):185-190.
    [66]陈凌.福建汉族人群PDCD1基因多态性与系统性红斑狼疮相关性研究[J].中华风湿病学杂志, 2008,12(3).
    [67]孙延晓,曾勇庆,陈其美,等.八个猪种PRLR和RBP4基因PCR-RFLP检测及群体遗传特性研究[J].山东农业大学学报(自然科学版),2008,39(4):544-548.
    [68]彭勇波,李奎,樊斌等.猪SLA-DQA一个新SNP的发现及其遗传效应的研究[J].中国农业科学,2005,38(12):2526-2530.
    [69] Li, M., et a1. Characterization and expression of bone morphogenetic protein 4 gene in postnatal pigs. Mol Biol Rep, 2009.
    [70] Ebara, S., et a1. Transcriptional regulation of the mBMP-4 gene through an E-box in the 5'-flanking promoter region involving USF. Biochem Biophys Res Commun, 1997. 240(1): p. 136-141.
    [71] van den Wijngaard, A., et a1. Antiestrogens specifically up-regulate bone morphogenetic protein-4 promoter activity in human osteoblastic cells. Mol Endocrinol, 2000. 14(5): p. 623-633.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700