内耳结构异常的极重度感音神经性聋儿的人工耳蜗植入及相关基础和临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分内耳结构正常与异常的极重度感音神经性聋患者的影像学评估
     目的
     探讨高分辨率CT和MRI在内耳结构异常的极重度感音神经性聋患者中的诊断价值。
     资料与方法
     对386例申请人工耳蜗植入的先天性感音神经性耳聋儿童患者进行颞骨高分辨率CT和MRI检查,总结内耳结构异常患者的影像学资料以便选择适合的人工耳蜗接受者和植入耳侧。对于大前庭水管综合征患者和对照组,在CT图像上测量前庭水管中点最宽径及外口直径,在MRI图像上测量内淋巴囊骨内段部分中点及外口直径。对耳蜗转位组患者和对照组分别测量:①耳蜗底转平面和头部正中矢状面的夹角((?)α);②面神经垂直段中心和圆窗龛上缘的连线与头部正中矢状面的夹角((?)β);③圆窗平面中,面神经垂直段表面到外耳道后壁的垂直距离A。各组间CT或MRI测得的数据差异行t检验。
     结果
     45例内耳结构异常患者中有大前庭水管综合征30例,CT显示扩大的前庭水管,MRI显示扩大的内淋巴囊,与正常人有显著性差异。3例耳蜗转位畸形患者的(?)β值大于对照组,而且(?)α<(?)β。此外还发现4例Mondini畸形,2例不完全分隔Ⅰ型,1例Michel畸形,1例内听道狭窄及听神经发育不良,1例前庭畸形合(?)内听道底缺损,3例耳蜗骨化。
     结论
     MRI在大前庭水管综合征、耳蜗骨化及听神经发育不良的诊断方面比CT更具优越性。测量耳蜗底转平面和头部正中矢状面的夹角((?)α)和面神经垂直段中心和圆窗龛上缘的连线与头部正中矢状面的夹角((?)β),可用于评估耳蜗位置并有助于术中准确实施耳蜗开窗。CT及MRI对诊断内耳畸形具有各自的优点,结合两种方法为临床人工耳蜗植入提供了良好的保障。
     第二部分内耳畸形和结构正常的极重度感音神经性聋患者的分子病因研究
     研究目的
     对申请人工耳蜗植入的耳聋患儿进行GJB2、SLC26A4、线粒体12SrRNA基因突变的检测,探讨中国人极重度非综合征性聋患者的分子病因以及适合中国人的耳聋基因诊断策略。通过比较内耳结构正常和内耳畸形患者中常见致聋基因的基因型,探讨内耳畸形的遗传学病因。
     研究方法
     采集278名申请人工耳蜗植入的极重度感音神经性耳聋患者,其中有内耳畸形患者42例。对照组为100例听力正常者。提取所有受检者的基因组DNA,用耳聋基因芯片检测四个国人中常见的耳聋相关基因中的9个热点突变,包括GJB2(35delG、176del16bp、235delC及299delAT)、GJB3(538C>T)、SLC26A4(IVS7-2A>G、2168A>G)和线粒体DNA12SrRNA (1494CT、1555A>G)。然后用传统测序法对基因芯片检测结果进行验证。对基因芯片检测未发现突变或发现GJB2基因单杂合突变的患者行GJB2基因测序;对发现SLC26A4单杂合突变的患者分别行SLC26A4基因的测序。
     研究结果
     经测序的方法278例患者中发现98例携带有GJB2基因突变,阳性突变检出率约37.05%。测序法同应用基因芯片检测的结果一致,后者的阳性突变检出率为20.50%。两种方法对GJB2携带者的检出率有显著性差异。278例患者GJB2致病等位基因频率合计为29.32%(163/556)。共发现5种常见多态,10种已报道的致病突变。而其中235delC是最常见的致病突变类型,其次为109G>A,然后为299delAT。内耳结构正常组33.90%(160/472)患者发现GJB2基因致病突变,内耳结构异常组的GJB2基因等位基因突变频率7.14%(6/84),与正常听力对照组无显著差异。说明GJB2基因突变不是内耳畸形的主要病因。本研究发现极重度感音神经性聋患者线粒体DNA12SrRNA1494C>T及1555A>G突变检出率为分别为0.36%(1/278)及3.24%(9/278)。未发现1例GJB3(538CT)患者。在278名极重度感音神经性聋患者中,基因芯片检测出26例具有SLC26A4基因IVS7-2A>G和/或2168A>G的突变,其中25例为大前庭水管综合征患者。经过测序发现在30名大前庭水管综合征患者中,有28例携带有SLC26A4基因突变,发生率约93.33%。大前庭水管综合征患者组中,基因芯片对SLC26A4基因突变检出率为83.33%。测序法与基因芯片法比较,对SLC26A4基因检出率的差异无统计学意义。在本实验中共发现了16种SLC26A4突变类型,其中4种为新的突变类型(G368X, IVS8-1G>T, IVS13+9CT和Q696X)。在所有的突变中,IVS7-2A>G突变的发生率最高,其次为H723R和T410M。
     结论
     耳聋基因芯片适用于遗传性耳聋基因筛查。根据基因芯片快速检测结果,并结合相应基因的测序能很好地诊断极重度聋的分子病因。278例极重度聋患者中GJB2基因突变阳性检出率约28.24%,但GJB2基因突变不是内耳畸形的主要病因。SLC26A4基因突变是大前庭水管综合征的主要病因,本地区患者中IVS7-2A>G突变的发生率最高,其次为H723R和T410M。新发现的4种突变类型对于大前庭水管综合征的诊断和病因研究具有重要意义。
     第三部分内耳结构异常的极重度感音神经性患者的人工耳蜗植入
     研究目的
     探讨先天性内耳结构异常的极重度感音神经性聋患者行人工耳蜗植入的方法及其问题与对策。
     研究方法
     对2006-2011年在中南大学湘雅二医院中请行人工耳蜗植入的伴有内耳结构异常的45例极重度感音神经性耳聋患者进行回顾性分析。将伴有内耳结构异常的患者的耳科学和影像学资料,人工耳蜗植入手术要点,术后康复效果进行总结。
     研究结果
     45例内耳结构异常的患者中最常见的类型为大前庭水管综合征、耳蜗不全分隔Ⅱ型和耳蜗骨化。36例内耳结构异常患者接受了人工耳蜗植入,除1例耳蜗转位患者术中未能植入电极外,其余35人均成功植入电极。30例大前庭水管综合征患者术中开窗时出现外淋巴液波动;2例Mondini畸形患者行耳蜗开窗时出现脑脊液“井喷”。将电极插入耳蜗后用备好的筋膜和肌肉组织行前庭和耳蜗填塞并封闭开窗口,结合耳脑胶封闭,能有效控制脑脊液流出,术后恢复良好。35例成功接受人工耳蜗植入术的患者均无严重并发症,术后听力及言语康复效果良好。
     结论
     伴有轻度内耳结构异常的极重度感音性聋患者可以行人工耳蜗植入手术,与耳蜗结构正常患者的人工耳蜗植入效果基本一致。术前详细的影像学和听力学评估以及术中正确规范的处理是手术成功的基本条件。
Part I Image assessments in the patients with normal or abnormal inner ear and profound sensorineural hearing loss
     Objective
     To discuss the value of high resolution computer tomography (HRCT) and magnetic resonance imaging (MRI) in children with abnormal inner ear and profound sensorineural hearing loss.
     Materials and Methods
     HRCT and MRI were performed in386cochlear implantation (CI) applicants with congenital sensorineural hearing loss. The results were analyzed in order to select suitable cases and ears for cochlear implantation. For the cases with enlarged vestibular aqueduct and the control group, the largest diameter of the midpoint of vestibular aqueduct (VA) and the external aperture were measured on CT scan image, respectively. Meanwhile, the largest diameter of the midpoint and the external aperture of the bony part of endolymphatic sac (ES) were measured on MRI image. The normal children group, the normal cochlear position group and the cochlear position malformation group measured3parameters respectively:①the angle of the basal turn of the cochlea relative to the sagittal plane (∠α);②the angle of line from the vertical portion of facial nerve to round window niche relative to the sagittal plane (∠β);③the vertical distance from the vertical portion of facial nerve to the posterior wall of external auditory canal at the level of round window (Distance A). The data obtained from CT and MRI were statistically analyzed by correlation test and t test.
     Results
     Forty-five cases had inner ear anomalies, the remaining341cases had no any anomalies. In total of45cases,30cases with enlarged vestibular aqueduct showed by CT and MRI. Three cases were found to be with cochlear rotation,∠β of3cases of the cochlear position malformation group all exceed the upper limit of reference range. We found that∠α>∠β in the normal children group and the normal cochlear position group, by contrast,∠α<∠β in the cochlear position malformation group.
     Four patients were found to be with Mondini dysplasia, two with incomplete partition I, one with stenosis of internal auditory canal, one with vestibules malformations and defect of internal auditory canal bottom, three with cochlear ossification.
     Conclusion
     Accurate diagnosis of enlarged vestibular aqueduct syndrome, cochlear ossification and cochlear nerve dysplasia could be detected with MRI.∠α and∠β can be used to assess the cochlear position and help to open cochlear correctly in cochlear implantation. HRCT and MRI were complementary and helpful in surgical treatment planning and prognosis predicting. MRI was important in the evaluation of auditory nerve. Preoperative detailed radiological evaluations are essential factors for the successful operation.
     Part II Molecular epidemiology in the patients with abnormal or normal inner ear and profound sensorineural hearing loss
     Objective
     To explore the molecular epidemiology and effective genetic diagnostic method for the Chinese patients with nonsyndromic sensorineural hearing loss (NSHL), we reported our result of genetic examination based on DNA Microarray combining with DNA sequencing in the cochlear implantation (CI) applicants from China. A comparison of genotype between the cases with abnormal inner ear and the cases with normal inner ear was made to find the genetic cause of inner ear malformation.
     Methods
     278CI applicants with profound NSHL from our department, including42casess with malformation of inner ear, underwent genetic examination in our research. Genomic DNA from100health individuals was used as control group. The molecular pathogenesis of NSHL was analyzed with the DNA microarray which is able to perform mutation detection of9hot-spot mutations in4prevalent deaf-causing genes, including GJB2(35delG,176dell6bp,235delC and299delAT), GJB3(538C>T), SLC26A4(IVS7-2A>G,2168A>G) and mtDNA12SrRNA (1494C>T and1555A>G). Subsequently the results were confirmed with PCR and DNA sequencing. We stopped the examining process if homozygous or composite heterotic mutations were detected through DNA microarray, otherwise we examined the other exons until another mutation was found or examined all the rest exons.
     Results
     20.50%(57/278) of CI applicants were detected to have mutations in GJB2gene with DNA microarray. When DNA microarray combining with direct sequencing was applied,35.25%(98/278) cases were detected to have GJB2mutations. The difference between the two methods was statistically significant. Only11.90%(5/42) patients with inner ear malformation were detected to have GJB2mutations. The incidence of GJB2mutations in the278patients with NSHL is28.24%. The incidence of GJB2mutations of the NSHL patients with normal inner ears is28.24%, and it is5.95%in the cases with abnormal inner ears. The difference of the incidence in the NSHL patients between the group of abnormal inner ears and the control group was not statistically significant. A total of5polymorphism and10mutations of GJB2were detected in our research. The235delC is the most prevalent mutation detected, followed by109G>A and299delAT.9patients were found to carry mtDNA A1555G mutation and one found to carry1494C>T among278CI applicant.26cases were found to have SLC26A4mutation among278CI applicants with DNA microarray. Among30patients with large vestibular aqueduct,28cases were found to have mutations in SLC26A4gene with PCR and direct sequencing. A total of16SLC26A4mutations were identified in the study, including4novel mutations (G368X、 IVS8-1G>T、IVS13+9C>T and Q696X). IVS7-2A>G was the most common mutation in Chinese, H723R and T410M were also common.
     Conclusions DNA microarray can be used to generally screen hot spot mutation of common genes in CI applicants with profound hearing loss. DNA microarray combining with direct sequencing analysis allows us to get accurate outcome in the genetic examination on a large scale. The incidence of GJB2mutations of the NSHL patients with normal inner ears is28.24%. The GJB2mutation is not the main cause of malformation of inner ear. IVS7-2A>G is the most prevalent SLC26A4mutation in Chinese patients with EVAS, followed by H723R and T410M. The4novel mutations found in our research could further our understanding of the cause for EVAS and improve diagnostics method for EVAS.
     Part III Cochlear implantation in the patients with abnormal inner ear and profound sensorineural hearing loss
     Objective
     To evaluate the outcome and complications encountered in the patients with anomalous inner ear who underwent cochlear implantation.
     Method
     Retrospective analyses included45patients with anomalous inner ear and profound sensorineural hearing loss who applied for cochlear implant at the Second Xiangya Hospital of Central South University from2006to2011. Fifty NSHL patients with normal inner ear were used as controls. To explore effective methods for the diagnosis and treatment of inner ear malformation, we summarize the radiological and otological evaluation, treatment and outcome of cochlear implantation in the cases.
     Results The most common inner ear malformation we found were enlarged vestibular aqueduct (EVA), incomplete partition Ⅱ (Mondini dysplasia), and cochlear ossification. Thirty-six patients with abnormal inner ear underwent cochlear implantation, of this number,30patients presented EVA,2patients with incomplete partition Ⅱ,3with cochlear rotation and1with cochlear ossification. The electrodes were fully inserted into the scale tympani of the cochlea in35cases except for1case with cochlear rotation. Perilymphatic/cerebrospinal fluid fluctuation occurred in30cases with EVA during the implantation. Leakage of cerebral spinal fluid (Gusher) occurred in2patients with Mondini dysplasia. They were controlled by inserting the electrode array and sealing the vestibule and cochlea with temporal fascia or muscle. None of the recipients developed severe complications after implantation. We achieved an electrical stimulation of the neural elements in35cases who received implantation successfully.
     Conclusions No differences were found between patients with normal cochleas and those with minor malformations such as enlarged vestibular aqueduct and incomplete partition. Comprehensive pre-operative radiographic and audiological evaluation and intraoperative exactly performing are essential factors of the successful operation.
引文
[1]韩东一.中国聋病防治现状.中华耳科学杂志,2007,5:345-349
    [2]李玉华,朱铭,张忠阳,等.儿童先天性感音神经性耳聋的高分辨率CT和MRI研究.临床放射科杂志,2006,25(10):955-958
    [3]Valvassori G, Clemis J. The large vestibular aqueduct syndrome. Laryngoscope, 1978,88:273-278
    [4]Reussner LA, Dutcher PO, House WF. Large vestibular aqueduct syndrome with massive endolymphatic sacs. Otolaryngol Head Neck Surg,1995,113(5):606
    [5]Boston M, Halsted M, Meinzen-Derr J, et al. The large vestibular aqueduct:A new definition based on audiologic and computed tomography correlation. Otolaryngol Head Neck Surg,2007,136:972-977
    [6]Ozgen B, Oguz KK, Atas A, et al. Complete labyrinthine aplasia:clinical and radiologic findings with review of the literature. AJNR Am J Neuroradiol.2009, 30(4):774-780
    [7]Sennaroglu L.Cochlear implantation in inner ear malformations-a review article.Cochlear Implants Int,2010,11(1):4-41
    [8]Graham JM, Phelps PD, Michaels L. Congenital malformations of the ear and cochlear implantation in children:review and temporal bone report of common cavity. J Laryngol Otol Suppl,2000,25:1-14
    [9]Benton C, Bellet PS. Imaging of congenital anomalies of the temporal bone.Neuroimaging Clin N Am,2000; 10(1):35-53
    [10]韩德民主编.人工耳蜗.北京:人民卫生出版社,2003,146
    [11]Berrettini S, Forli F, Neri E, et al. Scala vestibuli cochlear implantation in patients with partially ossified cochleas. J Laryngol Otol,2002,116(11):946-950
    [12]黄金中,黄以乐,龚新茹.迷路骨化(附2例报告).听力及言语疾病杂志,1997,5:206-208
    [13]王轶,曹克利,黄颜,等.脑膜炎后全聋患者多通道人工耳蜗植入术.中国耳鼻咽喉颅底外科杂志,2003,9:136-138
    [14]Hodges AV, Balkany TJ, Gomez-Marin O, et al. Speech recognition after implantation of the ossified cochlea. Am J Otol,1999,20:453-456
    [15]Teissier N, Van Den Abbeele T, Sebag G, et al. Computed Tomography measurements of the normal and the pathologic cochlea in children. Pediatr Radiol, 2010,40(3):275-283
    [16]McClay JE, Booth TN, Parry DA, et al. Evaluation of pediatric sensorineural hearing loss with magnetic resonance imaging. Arch Otolaryngol Head Neck Surg, 2008,134(9):945-952
    [17]van Wermeskerken GK, Dunnebier EA, van Olphen AF, et al. Audiological performance after cochlear implantation:a 2-year follow-up in children with inner ear malformations. Acta Otolaryngol,2007,127(3):252-257
    [18]Jackler RK, Luxford WM, House WF. Congenital malformations of the inner ear: a classfication based on embryogenesis. Laryngoscope,1987,97
    [19]Schuknecht HF, Gulya AJ. Anatomy of the temporal bone with surgical implications. Philadelphia:Lea and Febiger,1986.
    [20]Harnsberger. Temporal bone top 100 diagnoses. Salt Lake City, Utah:Amirsys Inc, 2003:35-37,62-70.
    [21]Jackler RK, Luxford WM, House WF. Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope,1987; 97(3 Pt 2 Suppl 40): 2-14
    [22]Sennaroglu L, Saatci I. A new classification for cochleovestibular malformations. Laryngoscope,2002,112(12):2230-2241
    [23]王锦玲,孟美娟,宦怡,等.45例先天性内耳畸形的高分辨率CT特征.2003,17(10):583-585
    [24]鲜军舫,王振常,燕飞,等.MRI快速自旋回波T2WI三维重建技术在内耳病变中的应用.中华放射学杂志,1999,33(7):473-476
    [25]诸小侬,廉能静,蔡正华,等.内耳先天性畸形102例临床分析.中华耳鼻咽喉科杂志,1995,30(3):157-159
    [26]Valvassori GE. The large vestibular aqueduct and associated anomalies of the inner ear. Otolaryngol Clin North Am,1983; 16(1):95-101
    [27]Boston M, Halstead M, Meinzen-Derr J, et al. The large vestibular aqueduct:A new definition based on audiologic and computed tomography correlation. Otolaryngol Head Neck Surg,2007; 136:972-977
    [28]Okamoto K, Ito J, Furusawa T, et al. MRI of enlarged endolymphatic sacs in the large vestibular aqueduct syndrome. Neuroradiology,1998; 40(3):167-172
    [29]Tong KA, Harmsberger HR, Dahlen RT, et al. Large vestibular aqueduct. AJR, 1997,168:1097
    [30]Schuknecht HF. Mondini dysplsia:a clinical and pathologic study. Ann Otol Rhino Laryngol,1980,89 (Suppl 65):1
    [31]Ferreira T, Shayestehfar B, Lufkin R. Narrow, duplicated internal auditory canal. Neuroradiology,2003; 45(5):308-310
    [32]Baek SK, Chae SW, Jung HH, et al. Congenital internal auditory canal stenosis. J Laryngol Otol,2003,117:784
    [33]Egelhoff JC, Ball WS, Towbin RB, et al. Dural ectasia as a cause of widening of the internal auditory canal in patients with neurofibromatosis. Pediatr Radiol, 1989,17:79
    [34]Young NM, Hughes CA, Byrd SE, et al. Postmeningitic ossification in pediatric cochlear implantation. Otolaryngol Head Neck Surg,2000,122:183-188
    [35]Seidman DA, Chute PM, Parisier S. Temporal bone imaging for cochlear implantation. Laryngoscope,1994,104:562-565
    [36]Schmidt AM, Weber BP, Becker H. Functional magnetic resonance imaging of the auditory cortex as a diagnostic tool in cochlear implant candidates. Neuroimaging Clin N Am,2001; 11(2):297-304
    [1]Vasiliki K, Christine P.The fundamental and medical impacts of recent progress in research on hereditary hearing loss. Human Molecular Genetics,1998, 7(10):1589-1597
    [2]Cynthia C. Morton. Genetics, genomics and gene discovery in the auditory system Human Molecular Genetics,2002,11:1229-1240
    [3]Prezant TR, Agapian JV, Bohlman MC, et al. Mitochondrial ribosomal RNA mutation associated with both antibiotic-induced and non-syndromic deafness. Nat Genet,1993,4(3):289-294
    [4]GeneReviews. http://www.genetests.org/servlet/filename=/profiles/deafness-overview/index.htm
    [5]Xia JH, Liu CY, Tang BS, et al. Mutations in the gene encoding gap junction protein beta3 associated with autosomal dominant hearing impairment.Nat Genet, 1998,20 (4):370-373
    [6]Plum A, Winterhager E, Pesch J, et al. Connexin31 deficiency in mice causes transient placental dysmorphogenesis but does not impair hearing and skin differentiation. Dev Biol,2001,231 (2):334-347
    [7]Morell RJ, Kim HJ, Hood LJ, et al. Mutations in the connexin-26 gene(GJB2) among Ashkenazi Jews with nonsyndromic recessive deafness. N Eng J Med, 1998,339(21):1500-1505
    [8]Sinnathuray AR, Toner JG, Clarke-Lyttle J, et al. Connexin 26 (GJB2) gene-related deafness and speech intelligibility after cochlear implantation. Otol Neurotol,2004; 25(6):935-942
    [9]Kawasaki A, Fukushima K, Kataoka Y. et al. Using assessment of higher brain functions of children with GJB2-associated deafness and cochlear implants as a procedure to evaluate language development. Int J Pediatr Otorhinolaryngol,2006; 70(8):1343-1349
    [10]Cullen RD, Buchman CA, Brown Cl, et al. Cochlear implantation for children with GJB2-related deafness. Laryngoscope,2004,114 (8):1415-1419
    [11]Taitelbaum SR, Brownstein Z, Muchnik C, et al. Connexin-associated deafness and speech perception outcome of cochlear implantation. Arch Otolaryngol Head Neck Surg,2006; 132(5):495-500
    [12]Miyamoto RT, Bichey BG, Wynne MK. Cochlear implantation with large vestibular aqueduct syndrome. Laryngoscope,2002,112:1178-1182
    [13]Sinnathuray AR, Raut V, Awa A. A review of cochlear implantation in mitochondrial sensorineural hearing loss. Otol Neurotol,2003,24(3):418-426
    [14]Tono T, Ushisako Y, Kiyomizu K. Cochlear implantation in a patient with profound hearing loss with the A1555G mitochondrial mutation. Am J Otol, 1998;19(6):754-757
    [15]Gupta PK, Rustgi S, Mir RR. Array-based High-throughput DNA markers for crop improvement. Heredity,2008,35:5-18
    [16]Dai P, Yu F, Han B, et al. The prevalence of the 235de1C GJB2 mutation in a Chinese deaf population. Genet Med,2007,9:283-289
    [17]于飞,韩东一,戴朴,等.1190例非综合征性耳聋患者GJB2基因突变序列分析.中华医学杂志,2007,87:2814-2819
    [18]戴朴,朱秀辉,袁永一,等Pendred综合征基因热点突变筛查赤峰市聋哑学校大前庭水管综合征患者.中华耳鼻咽喉头颈外科杂志,2006,41:497-500
    [19]Park HJ, Shaukat S, Liu XZ, et al. Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians:global implications for the epidemiology of deafness. J Med Genet,2003,40:242-248
    [20]刘新,戴朴,黄德亮,等.线粒体DNA A1555G突变大规模筛查及其预防意义探讨.中华医学杂志,2006,86:1318-1322
    [1]戴朴,于飞,杨伟炎,等.线粒体DNA1555位点和GJB2基因及SLC26A4基因的诊断方法及临床应用.中华耳鼻咽喉头颈外科杂志,2005,10:769-773
    [2]http://www.genome.wi.mit.edu/cgi-bin/primer/primer3.cgi/
    [3]Cx26 mutation database:http://davinci.crg.es/deafness/
    [4]Al-Achkar W, Moassass F, Al-Halabi B, et al. Mutations of the Connexin 26 gene in families with non-syndromic hearing loss.Mol Med Report,2011; 4(2):331-335
    [5]Ma Y, Yang T, Li Y, et al. Genotype-phenotype correlation of two prevalent GJB2 mutations in Chinese newborn infants ascertained from the Universal Newborn Hearing Screening Program. Am J Med Genet A,2010; 152A(11):2912-2915
    [6]http://www.healthcare.uiowa.edu/labs/pendredandbor/slcMutations.htm)
    [7]Hu H, Wu L, Feng Y, et al. Molecular analysis of hearing loss associated with enlarged vestibular aqueduct in the mainland Chinese:a unique SLC26A4 mutation spectrum. J Hum Genet,2007; 52:492-497
    [8]Albert S, Blons H, Jonard L, et al. SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations. Eur J Hum Genet,2006; 14:773-779
    [9]Reyes S, Wang G, Ouyang X, et al. Mutation analysis of SLC26A4 in mainland Chinese patients with enlarged vestibular aqueduct. Otolaryngol Head Neck Surg, 2009;141:502-528
    [10]Jiang L, Feng Y, Chen H, et al. An investigation of SLC26A4 gene mutation in nonsydromic hearing impairment in Hunan province of China. Lin Chung Er Bi Yan Hou Tou Jing Wai Ke Za Zhi,2010; 24:587-591
    [11]Kelley PM, Harris DJ, Comer BC, et al. Novel mutations in the connexin 26 gene (GJB2) that cause autosomal recessive (DFNB1) hearing loss. Am J Hum Genet,1998,62:792-799
    [12]Zelante L, Gasparini P, Estivill X, et al. Connexin26 mutations associated with the most common form of non-syndromic neurosensory autosomal recessive deafness (DFNB 1) in Mediterraneans. Hum Mol Genet,1997,6:1605-1609
    [13]Murgia A, Orzan E, Polli R, et al. Cx26 deafness:mutation analysis and clinical variability. J Med Genet,1999,36:829-832
    [14]Morell RJ, Kim HJ, Hood LJ, et al. Mutations in the connexin 26 gene (GJB2)among Ashkenazi Jews with nonsyndromic recessive deafness. N Engl J Med,1998,339:1500-1505
    [15]Abe S, Usami S, Shinkawa H, et al. Prevalent connexin 26 gene (GJB2) mutations in Japanese. J Med Genet,2000,37:41-43
    [16]Liu XZ, Xia XJ, Ke XM, et al. The prevalence of connexin 26(GJB2) mutations in the Chinese population. Hum Genet,2002,111:394-397
    [17]Brobby GW, Miiller-Myhsok B, Horstmann RD. Connexin 26 R143W mutation associated with recessive nonsyndromic sensorineural deafness in Africa. N Engl J Med,1998,338:548-549
    [18]Hao Hu, Lingqian Wu, Yong Feng, et al. Molecular analysis of hearing loss associated with enlarged vestibular aqueduct in the mainland Chinese:a unique SLC26A4 mutation spectrum. J Hum Genet,2007,52:492-497
    [19]赵亚丽,李庆忠,翟所强,等.95例前庭水管扩大核心家系SLC26A4基因特异突变图谱.听力学及言语疾病杂志,2008,16(3):171-177
    [20]朱运华,能玲玲,李梅生,等.河南地区不明原因感音神经性耳聋95例SLC26A4基因热点突变筛查.临床耳鼻咽喉头颈外科杂志,2008,22(22):1026-1031
    [21]Yang T, Vidarsson H, Rodrigo-Blomqvist S, et al. Transcriptional control of SLC26A4 is involved in Pendred syndrome and nonsyndromic enlargement of vestibular aqueduct (DFNB4). Am J Hum Genet,2007; 80:1055-1063
    [22]刘新,戴朴,黄德亮,等.线粒体DNAA1555G突变大规模筛查及其预防意义探讨.中华医学杂志,2006,86:1318
    [23]Tang HY, Hutcheson E, Neill S, et al. Genetic susceptibility to aminoglycoside ototoxicity:how many are at risk? Genet Med,2002; 4 (5):336-345
    [24]Nadol JB Jr, Young YS, Glynn RJ. Survival of spiral ganglion cells in profound sensorineural hearing loss:implications for cochlear implantation. Ann Otol Rhinol Laryngol,1989; 98 (6):411-416
    [1]Gantz BJ, McCabe BF, Tyler RS. Use of multichannel cochlear implants in obstructed and obliterated cochleas. Otolaryngol Head Neck Surg,1988; 98(1):72-81
    [2]Loundon N, Leboulanger N, Maillet J, et al. Cochlear implant and inner ear malformation. Proposal for an hyperosmolar therapy at surgery. Int J Pediatr Otorhinolaryngol,2008,72(4):541-547
    [3]韩东一,武文明,郗听,等.先天性内耳畸形的人工耳蜗植入.中华耳鼻咽喉科杂志,2004,39(2):85-88
    [4]Sennaroglu L, Saatci I. A new classification for cochleovestibular malformations. Laryngoscope,2002,112:2230-2241
    [5]戴慧,漆剑频,周义成,等.多层CT对先天性内耳畸形的诊断价值.中国医学计算机成像杂志2008,14(1):23-27
    [6]Valvassori GE, Clemis JD. The large vestibular aqueduct syndrome. Laryngoscope, 1978,88:723
    [7]Davidson HC, Harnsberger HR, Lemmerling MM, et al. MR evaluation of vestibulocochlear anomalies associated with large endolymphatic duct and sac. AJNR Am J Neuroradiol.1999,20(8):1435-1441
    [8]Papsin BC. Cochlear implantation in children with anomalous cochleovestibular anatomy. Laryngoscope,2005,115(106):1-26
    [9]李永新,韩德民,赵啸天,等Mondini畸形多道人工耳蜗植入的效果分析.中华耳鼻咽喉科杂志,2004,39(2):89-92
    [10]王轶,曹克利,陈晓巍,等.耳蜗骨化患者人工耳蜗植入术.中华耳鼻咽喉头颈外科杂志,2006,41(12):904-907
    [11]Baek SK, Chae SW, Jung HH. Congenital internal auditory canal stenosis. J Laryngol Otol,2003; 117(10):784-787
    [12]Cho YS, Na DG, Jung JY, et al. Narrow internal auditory canal syndrome: Parasaggital reconstruction. J Laryngol Otol,2000,114:392
    [13]Jackler RK, Luxford WM, House WF. Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope,1987; 97 (3 Pt 2 Suppl 40):2-14
    [14]Sennaroglu L, Saatci I. A new classification for cochleovestibular malformations. Laryngoscope,2002,112:2230-2241
    [15]Valvassori GE, Clemis JD. The large vestibular aqueduet syndrome. Laryngoscope,1978,88:723-728.
    [16]Aschendorff A, Marangos N, Laszig R. Large vestibular aqueduct syndrome and its implication for cochlear implant surgery. Am J Otol,1997; 18(6 Suppl):S57
    [17]Lee KH, Lee J, Isaacson B, et al. Cochlear implantation in children with enlarged vestibular aqueduct. Laryngoscope,2010; 120(8):1675-1681
    [18]韩德民,赵啸天,李永新,等.人工耳蜗在前庭水管扩大患者中的应用.中华耳鼻咽喉科杂志,2003;38(2):108-110
    [19]李为民,韩东一,杨伟炎Mondini畸形伴脑脊液耳漏的外科治疗.临床耳鼻咽喉科杂志,2006;20(16):
    [20]Kursten R, Cozzarini W, Eisenwort B. The Vienna cochlear implant in patients with obliteration of the cochlea. Laryngoscope,1994,104:79
    [21]Rauch SD, Herrmann BS, Davis LA,et al. Nucleus 22 cochlear implantation results in postmeningitic deafness. Laryngoscope,1997,107:1609
    [22]余力生,孙怡君,丁国玉,等.迷路纤维化的诊断及人工耳蜗植入3例分析.临床耳鼻咽喉科杂志,2003,17(07):394-395
    [23]Mack KF, Kempf HG, Lenarz T. Patients with trauma induced deafness rehabilitation using a cochlear implant. Wien Med Wochenschr,1997,147:249
    [24]Balkany T, Gantz B, Nadol JB. Multichannel cochlear implants in partially ossified cochlears. Ann Otol Rhinol Laryngol Suppl,1988,135:3-7
    [25]Kumakawa K, Takeda H, Mutoh N, et al. Image analysis of the inner ear with CT and MR imaging:pre-operative assessment for cochlear implant surgery. Nippon Jibiinkoka Gakkai Kaiho,1992; 95(6):817-824
    [26]Kemink JL, Zimmerman-Phillips S, Kileny PR, et al. Auditory performance of children with cochlear ossification and partial implant insertion. Laryngoscope, 1992; 102(9):1001-1005
    [27]韩德民,李永新,赵啸天,等.不同内耳畸形人工耳蜗植入效果分析.中华耳鼻咽喉科杂志,2004;39(10):589-593
    [28]张道行,胡宝华,董明敏.内耳畸形患儿的人工耳蜗植入.临床耳鼻咽喉科杂志,2003,17:391
    [1]Jackler RK, Luxford WM, House WF. Congenital malformations of the inner ear: a classification based on embryogenesis. Laryngoscope,1987,97(3 Pt 2 Suppl 40):2-14
    [2]Sennaroglu L, Saatci I. A new classification for cochleovestibular malformations. Laryngoscope,2002,112(12):2230-2241
    [3]Sennaroglu L, Saatci I. Unpartitioned versus incompletely partitioned cochleae: radiologic differentiation. Otol Neurotol,2004,25(4):520-529
    [4]姜泗长.耳解剖学与颞骨组织病理学.第1版. 北京:人民军医出版社,1999:32-42
    [5]Jackler RK, De La Cruz A.The large vestibular aqueduct syndrome. Laryngoscope, 1989,99:1238-1243
    [6]Levenson MJ, Parisier SC, Jaeobs M, etal.The large vestibular aqueduct syndrome in children. A review of 12 cases and the description of a new clinical entity. Arch Otolaryngol Head Neck Surg,1989,115:54-1158
    [7]Okamoto K, Ito J, Furusawa T, etal. MRI of enlarged endolymphatic sacs in the large vestibular aqueduct syndrome. Neuroradiology,1998,40(3):167-172
    [8]Gussen R. The endolymphatic sacs in the Mondini disorder. Arch Otorhinolayngol, 1985,242(1):71-76
    [9]能玲玲.不明原因感音神经性聋SLC26A4基因热点突变与EVAS的研究.郑州大学硕士学位论文,2007
    [10]Pickles JO, Chir B. Roles of fibroblast growth factors in the inner ear.Audiol Neurootol,2002,7(1):36-39
    [11]Hadrys T, Braun T, Rinkwitz-Brandt S, et al. Nkx5-1 controls semicircular canal formation in the mouse inner ear. Development,1998,125(1):33-39
    [12]Torres M, Gomez-Pardo E, Dressler GR, Gruss P.Pax-2 controls multiple steps of urogenital development. Development,1995,121(12):4057-4065
    [13]Griffith AJ, Arts A, Downs C, et al. Familial large vestibular aqueduct syndrome. Laryngoscope,1996,106:960-965
    [14]Nowal KC, Messner AH. Isolated large vestibular aqueduct syndrome in a family. Ann Otol Rhinol Laryngol,2000,109:40-44
    [15]Abe S, Usami S, Shinkawa H. Three familial cases of hearing loss associated with enlargem ent of the vestibular aqueduct. Ann Otol Rhinol Laryngol,1997, 106:1063-1069
    [16]Tong KA, Harnsberger HR, Dahlen RT, et al. Large vestibular aqueduct syndrome:a genetic disease? AJR Am J Roentgenol,1997,168:1097-1101
    [17]Usami S, Abe S, Weston MD, et al. Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations. Hum Genet,1999,104: 188-192
    [18]Hulander M, Wurst W, Carlsson P, et al. The winged helix Transcription factor Fkh10 is required for normal development of the inner ear. Nat Genet,1998,20: 374-376
    [19]Yang T, Vidarsson H, Rodrigo-Blomqvist S, et al. Transcriptional control of SLC26A4 is involved in Pendred syndrome and nonsyndromic enlargement of vestibular aqueduct (DFNB4). Am J Hum Genet,2007,80:1055-1063
    [20]Yang, T., Gurrola, J. G., II, Wu, H., Chiu, S. M., Wangemann, P., Snyder, P. M., Smith, R. J. H. Mutations of KCNJ10 together with mutations of SLC26A4 cause digenic nonsyndromic hearing loss associated with enlarged vestibular aqueduct syndrome. Am. J. Hum. Genet.84:651-657,2009. [PubMed: 19426954]
    [21]Everett LA,Glaser B,Beck JC,et al.Pendred syndrome is caused by mutations in a putative sulphate transporter gene (PD S).Nature Genet,1997,17:411-422.
    [22]Campbell C, Cucci RA, Prasad S, et al. Pendred Syndrome, DFNB4 and PDS/SLC26A4 identification of eight novel mutations and possible genotype2phenotype correlations. Hum Mutat,2001,17 (5):4032411.
    [23]Bidart JM, Mian C,Lazar V,et al.Expression of pendrin and the Pendred syndrome (PDS) gene in human thyroid tissues. J. Clin.Endocr.Metab. 2000,85:2028-2033.
    [24]Royaux IE, Suzuki K, Mori A, etal.Pendrin, the Protein encoded by the Pendred syndrome gene(PDS), is an apical porter of iodide in the thyroid and is regulated by thymoglobulin in FRTL-5 cells.Endocrinology,2000,141(2):839-845.
    [25]Everett LA, Morsli H, Wu DK, et al. Expression pattern of the mouse ortholog of the Pendred's syndrome gene (PDS) suggests a key role for pendrin in the inner ear.Proc.N at.A cad.Sci.1999,96:9727-9732.
    [26]CooPer DN, Ball EV, Stenson PD, etal. The human gene mutation database [EB/OL] [2006].http:www.hgmd.ef.ac.uk/ac/search.php.
    [27]Albert S, Blons H, Jonard L, Feldmann D, Chauvin P, Loundon N, et al. SLC26A4 gene is frequently involved in nonsyndromic hearing impairment with enlarged vestibular aqueduct in Caucasian populations. Eur J Hum Genet 2006 Jun;14(6):773-9.
    [28]Van Hauwe P,Everett LA,Coucke P,et al.Two frequent missense mutation in Pendred syndrome. Hum. M olec. G enet.1998,7:1099-1104.
    [29]Coyle B,Reardon W,Herbrick JA,et al.Molecular analysis of the PDS gene in Pendred syndrom e (sensorineural hearing loss and goitre).Hum.Molec.G enet.1998,7:1105-1112.
    [30]Reardon W, Omahoney CF, Trem bath R,et al.Enlarged vestibular aqueduct:a radiological marker of Pendred syndrome, and mutation of the PDS gene.Q J M ed.2000,93:99-104.
    [31]Cam pbell C, Cucci RA,Prasad S,etal.Pendred syndrome,DFNB4,and PDS/SLC26A4 identification of eight novel mutations and possible genotype-phenotype correlations. H um. M utat.2001,17:403-411.
    [32]Scott DA,W ang R,K rem an TM,et al.Functional differences of the PDS gene product are associated with phenotypic variation in patients with Pendred syndrome and non-syndromic hearing loss(DFNB4).Hum.Molec.G enet.2000,9: 1709-1715.
    [33]Prasad S, K olln KA, Cucci R A, et al. Pendred syndrome and DFNB4-mutation screening of SLC26A 4 by denaturing high -perform ance liquid chrom atography and the identification of eleven novel mutations. Am J M ed G enetA.2004,124:1-9.
    [34]Tsukamoto K, Suzuki H, Harada D, Namba A, Abe S, Usami S, et al. Distribution and frequencies of PDS (SLC26A4) mutations in Pendred syndrome and nonsyndromic hearing loss associated with enlarged vestibular aqueduct:a unique spectrum of mutations in Japanese. Eur J Hum Genet 2003; 11(12):916-22.
    [35]H-J Park, S Shaukat, X-Z Liu, S H Hahn, S Naz, M Ghosh, et al. Origins and frequencies of SLC26A4 (PDS) mutations in east and south Asians:global implications for the epidemiology of deafness. J Med Genet 2003;40:242-248
    [36]Wang Q-J, Zhao YL, Rao SQ, Guo, YF, Yuan H, Zong L, et al. A distinct spectrum of SLC26A4 mutations in patients with enlarged vestibular aqueduct in China. Clin Genet.2007; 72:245-254.
    [37]Hu H, Wu L, Feng Y, et al. Molecular analysis of hearing loss associated with enlarged vestibular aqueduct in the mainland Chinese:a unique SLC26A4 mutation spectrum. J Hum Genet 2007; 52(6):492-7.
    [38]赵亚丽,李庆忠,翟所强,等.95例前庭水管扩大核心家系SLC26A4基因特异突变图谱.听力学及言语疾病杂志,2008,16(3):171—177.
    [39]Yang T, Gurrola JG II, Wu H, et al. Mutations of KCNJ10 together with mutations of SLC26A4 cause digenic nonsyndromic hearing loss associated with enlarged vestibular aqueduct syndrome. Am. J. Hum. Genet.84:651-657,2009.
    [40]Malin Hulander, Amy E, Kiernan, et al. Lack of Pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxil null mutant mice Department,2003,130(9):2013-2025.
    [41]Zheng Y, Schachern PA, Cureoglu S, et al. The shortened cochlea:Its classification and histopathologic features[J].Int J Pediatr Otorhinolaryngol,2002, 63:29.
    [42]Sennaroglu L, Saatci I.A new classification for cochleovestib-ular malformations [J]. Laryngoscope,2002,112:2230.
    [43]Arellano B, Ramirez Camacho R. Sensorineural hearing loss and Mondini dysplasia caused by a deletion at locus DFN3[J]. Arch Otolaryngol Head Neck Surg,2000,126:1065.
    [44]Wieland I, Muschke P, Jakubiczka S, et al. Refinement of the deletion in 7q21.3 associated with split hand/foot malformalion type 1 and Mondini dysplasia[J].J Med Genet,2004,41:e54.
    [45]Yang JJ, Tsai CC, Hsu HM, et al. Hearing loss associated with enlarged vestibular aqueduct and Mondini dysplasia is caused by splice 2 site mutation in the PDS gene[J].Hear RES 2005,199:22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700