粉末冶金法制备TiC/316L复合材料及其致密化与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiC/316L不锈钢复合材料综合了TiC颗粒的低密度、高硬度和高耐磨性的优点,同时保留了不锈钢基体高的强韧性和优良的抗蚀性能,因而在机械、化工、石油、海洋等工业领域有着巨大的应用潜力。与其他制备方法相比,粉末冶金法具有成分比例准确、处理温度低、生产效率高等优点,因而被认为是最适合颗粒增强不锈钢复合材料的制备方法。但对于采用粉末冶金法制备的复合材料而言,其产品孔隙率较高,致密化程度不够,因而,如何提高粉末冶金材料的致密化程度成为研究者十分关心的问题。为此,本文对采用粉末冶金法制备的TiC/316L不锈钢复合材料的致密化和性能展开研究,为提高粉末冶金法制备不锈钢复合材料的致密化程度,探讨了粉末冶金TiC/316L不锈钢复合材料新的致密化工艺和方法。
     实验采用扫描电子显微镜观察了在不同球磨方式下获得的TiC/316L复合粉末的微观形貌,并依据黄培云双对数方程和相关烧结模型分别对该粉末的压制特性及烧结行为进行了研究和分析。结果表明,采用先干磨再湿磨的球磨方式得到的复合粉末具有粒度小、混合均匀的特点,并且该粉末活性大、烧结激活能低,有利于后续的压制成形和烧结致密化。
     为了探讨粉末冶金TiC/316L不锈钢复合材料致密化的影响因素,研究了常规压制和温压成形对复合粉末致密化的影响,结果表明温压工艺可以提高TiC/316L复合粉末的塑性变形能力,促进压制过程中粉末颗粒的重排,从而实现压坯的致密化。在此基础上提出采用温压成形和微波烧结的复合方法制备TiC/316L不锈钢复合材料,实验结果表明,与常规粉末冶金法相比,采用该复合方法可以获得较高相对密度的复合材料试样,并且TiC颗粒分布更为均匀,减少了增强体颗粒在基体中的聚集。
     采用ANSYS软件模拟了增强体颗粒形状不同的复合材料的应力应变行为,结果表明,与正方形、六边形颗粒相比,采用圆形增强体颗粒,有利于复合材料应力应变的均匀分布,圆形颗粒表现出较好的强化效果。
     论文考察了TiC/316L不锈钢复合材料拉伸力学性能、耐磨性能和高温氧化行为的影响因素,研究发现:TiC颗粒的引入,能有效提高复合材料的抗拉强度、耐磨性能和抗氧化性能;增加压制过程中的压制压力也可以在一定程度上提高夏合材料的抗拉强度和耐磨性能。结果显示,添加10wt.%TiC的复合材料抗拉强度最高、抗氧化性能最好,添加5wt.%TiC的复合材料的耐磨性能最好;压制压力为500MPa时,复合材料具有良好的拉伸性能,压制压力为400MPa时,复合材料的耐磨性能较好。
     对TiC/316L不锈钢复合材料的摩擦磨损行为研究表明,提高复合材料的致密化程度和TiC颗粒在基体中的分散性,可以促进TiC颗粒在摩擦磨损过程中有效承载,阻止磨损变形,减少体积磨损量。与采用常规粉末冶金法相比,采用温压成形和微波烧结制备的复合材料因致密化程度的提高,其硬度较高,耐磨性较好。对复合材料的高温氧化行为研究表明,采用温压成形和微波烧结的复合方法获得的复合材料因为改善了TiC增强体颗粒在基体中的分布,促进了材料的致密化,较明显的降低了材料的氧化速率
     论文还研究了Mo添加对TiC/316L不锈钢复合材料致密化和性能的影响,研究显示,Mo的添加可以促进TiC/316L不锈钢复合材料的烧结致密化,从而有利于TiC/316L复合材料抗拉强度和耐磨性能的提高,同时,添加Mo叮以改善TiC/316L不锈钢复合材料在3.5wt.%NaCl溶液中的抗点蚀能力,也有助于降低复合材料在15wt.%H2SO4溶液中的腐蚀速率。
TiC is responsible for the hardness and abrasive resistance increase while 316L stainless steel ensures the toughness and better corrosion resistance. Such combination of properties make the TiC/316L stainless steel composites very attractive for numerous applications like in mechanical, chemical, petroleum and oceanic fields. Compared with other preparation methods, powder metallurgy (P/M) is thought to be a more suitable preparation technique for particles reinforced stainless steel composites because it has many advantages, such as accurate component proportion, lower process temperature, and higher production efficiency. However, P/M materials have relatively high porosity and low densification. Thus, how to improve the densification of P/M materials is the problem that is concerned by the researchers. Therefore, this thesis researches on the densification and properties of TiC/316L stainless steel composites obtained by P/M technology. In order to improve the densification of P/M stainless steel composites, new densification methods were also investigated.
     In this study, microstructure characteristics of the TiC/316L composite powders obtained through different ball-milling modes were performed by means of scanning electron microscopy (SEM). Huang Pei-yun’s log-log powder compacting theory and relevant sintering theory were used to analyze the compactability and sintering behavior of those powders, respectively. The results indicated that TiC/316L composite powders prepared by the ball-milling mode of dry ball milling and then wet grinding exhibited a more small grain size, lower activation energy of sintering, and it has a beneficial effect on their subsequent compression and sintering.
     In order to discuss the P/M composites densification factors, a study on effect of conventional compaction and warm compaction on densification of composite powder was performed. The analysis show that warm compaction process results in the increased the plastic deformation capability of TiC/316L composite powder, which had helped to improve the particle rearrangement. As a result, the densification increases. And based on this, a new densification method for TiC/316L composites by using warm compaction and microwave sintering (WM) is put forward. It is found that the composites prepared by WM not only has high relative density, but also better distributing of TiC particles in matrix, and diminishing agglomeration of the particles than the composites prepared by conventional P/M.
     The effects of reinforcement particles of different shapes on the stress and strain behaviors of composites were investigated by using the ANSYS software. The simulation results indicated that the composites in which the particles are assumed all in round shape produce a better strengthening for its more uniform dispersions of stress and strain, as compared with the composites which adopt the hexagon or square particles.
     The factors affecting the tensile properties, abrasion resistance and high temperature oxidation behavior of TiC/316L composites were analyzed in this paper. The results show that the addition of TiC is effective in improving the tensile properties, abrasion resistance and high temperature oxidation resistance of the composites. Furthermore, the tensile strength and abrasion resistance of TiC/316L composites were increased with the increase of the pressing pressure. The experimental results demonstrate that the composites with 10wt.%TiC addition exhibited a higher tensile strength and better oxidation resistance; 5wt.% TiC/316Lcomposites exhibited a better abrasion resistance. The tensile property of the composites is better under the pressure of 500MPa than other case. A better abrasion resistance property was obtained when the pressure was 400MPa.
     Research on the friction and wear behavior of TiC/316Lcomposites suggests that improving the densification of composites and dispersion of TiC particles in matrix can effectively promote the loading of TiC particles during wear sliding, resist the wear deformation, and reduce volume loss of composites. The sample prepared by warm compaction and microwave sintering exhibited significantly superior densification, higher hardness and better abrasion resistance when compared with conventionally processed counterpart. Research on the high temperature oxidation behavior of TiC/316L composites show that the composites obtained by MW because of the improving of TiC particles dispersion, and thereby increment of the densification, which causes a decrease in oxidation rate.
     The thesis also discusses the effect of Mo content on the densification and properties of TiC/316L composites. Results show that Mo addition contributes to enhancing the densification of the composites during sintering and thus to promoting the tensile strength and abrasion resistance of the composites. Moreover, the addition of Mo is beneficial to improve the resistance to pitting in 3.5wt.%NaCl solution, and the corrosion rate of composites could appreciably decrease.
引文
[1]Samanta S K, Mitra S K, Pal T K. Effect of rare earth elements on microstructure and oxidation behaviour in TIG weldments of AISI 316L stainless steel[J]. Materials Science and Engineering:A.2006,430(1-2):242-247.
    [2]Park J B, Kim Y K. Biomaterials Principles and Applications[M]. Boca Raton: CRC Press,2003:1-20.
    [3]Tombell, Eds. K A. Stainless Steel 2000[M]. London:The Institute of Materials, Maney,2001.
    [4]Bell T, Li C X. Stainless steel low temperature nitriding and carburizing[J]. Advanced Materials and Processes,2002,160(6):49-51.
    [5]赵昌盛,孙桂良,闵令平.不锈钢的应用[M].北京:机械工业出版社,2010.
    [6]Chen X H, Lu J, Lu L, et al. Tensile properties of a nanocrystalline 316L austenitic stainless steel[J]. Scripta Materialia,2005,52(10):1039-1044.
    [7]Tassin C, Laroudie F, Pons M. Improvement of the wear resistance of 316L stainless steel by laser surface alloying[J]. Surface and Coatings Technology, 1996,80:207-210.
    [8]肖纪美.不锈钢的金属学问题[M].北京:冶金工业出版社,2006.
    [9]Ding M H, Wang B L, Li L, et al. A study of TaxCi-x coatings deposited on biomedical 316L stainless steel by radio-frequency magnetron sputtering [J]. Applied Surface Science,2010,257:696-703.
    [10]Chiu K Y, Cheng F T, Man H C. Cavitation erosion resistance of AISI 316L stainless steel laser surface-modified with NiTi[J]. Materials Science and Engineering:A,2005,392(1-2):348-358.
    [11]Li G, Peng Q, Li C, et al. Effect of DC plasma nitriding temperature on microstructure and dry-sliding wear properties of 316L stainless steel[J]. Surface & Coatings Technology,2008,202(12):2749-2754.
    [12]Viswanathan A, Sastikumar D, Kumar H, et al. Formation of WC-iron silicide (Fe5Si3) composite clad layer on AISI 316L stainless steel by high power (CO2) laser[J]. Surface & Coatings Technology,2009,203:1618-1623.
    [13]Ouyang J H, Pei Y T, Y Z. Tribological behavior of laser-clad TiCp composite coating[J]. Wear,1995,185:167-172.
    [14]Antunes R A, Rodas A C D, Lima N B, et al. Study of the corrosion resistance and in vitro biocompatibility of PVD TiCN-coated AISI 316 L austenitic stainless steel for orthopedic applications[J]. Surface & Coatings Technology, 2010,205:2074-2081.
    [15]Vaghari H, Sadeghian Z, Shahmiri M. Investigation on synthesis, characterisation and electrochemical properties of TiO2-AlO3 nanocomposite thin film coated on 316L stainless steel[J]. Surface & Coatings Technology, 2011,205:5414-5421.
    [16]Vardavoulias M, Jeandin M, Velasco F, et al. Dry sliding wear mechanism for PM austenitic stainless steels and their composites containing Al2O3 and Y2O3 particles[J]. Tribology International,1996.29(6):499-506.
    [17]Lee J, Euh K, Oh J C, et al. Microstructure and hardness improvement of TiC stainless steel surface composites fabricated by high-energy electron beam irradiation[J]. Materials Science and Engineering A.2002,323:251-259.
    [18]蒲泽林,褚景春,毛雪平.颗粒增强金属基夏合材料的制备方法综述[J].现代电力,2002(6):31-37.
    [19]吴人杰.复合材料[M].天津:天津大学出版社,2000:126-135.
    [20]Akhtar F, Feng P, Du X. et al. Microstructure and property evolution during the sintering of stainless steel alloy with Si3N4[J]. Materials Science and Engineering A.2008.472(1-2):324-331.
    [21]Akhtar F, Guo S J. Microstructure, mechanical and fretting wear properties of TiC-stainless steel composites[J]. Materials Characterization,2008,59(1):84-90.
    [22]Dutta Majumdar J, Kumar A, Li L. Direct laser cladding of SiC dispersed AISI 316L stainless steel [J]. Tribology International,2009,42(5):750-753.
    [23]Nascimento A M D, Ocelik V, Ierardi M C F, et al. Wear resistance of WCP duplex stainless steel metal matrix composite[J]. Surface & Coatings Technology,2008,202:4758-4765.
    [24]林文松,李元元.颗粒强化钢铁基复合材料的研究现状与展望[J].粉末冶金工业,2001,05:25-29.
    [25]赵玉谦.TiC颗粒局部增强铸造钢基复合材料的制备[D].吉林大学,2005.
    [26]曹磊.熔铸法制备TiC/Ti-6Al-4V复合材料组织与力学性能研究[D].哈尔滨工业大学,2010.
    [27]杨霞,果世驹,孟飞.增强体与粉末冶金316L不锈钢的反应性[J].机械工程材料,2005,10:34-37.
    [28]Farid A, Guo S, Cui F, et al. TiB2 and TiC stainless steel matrix composites[J]. Materials Letters,2007,61(1):189-191.
    [29]Zhu S J, Mukherji D, Chen W, et al. Steady state creep behaviour of TiC particulate reinforced Ti-6A1-4V composite[J]. Materials Science and Engineering:A.1998,256(1-2):301-307.
    [30]Liu Z, Tian J, Li B, et al. Microstructure and mechanical behaviors of in situ TiC particulates reinforced Ni matrix composites[J]. Materials Science and Engineering:A.2010.527(16-17):3898-3903.
    [31]Li B, Liu Y, Cao H, et al. Rapid fabrication of in situ TiC particulates reinforced Fe-based composites by spark plasma sintering[J]. Materials Letters,2009, 63(23):2010-2012.
    [32]Falcon-Franco L, Bedolla-Becerril E, Lemus-Ruiz J, et al. Wear performance of TiC as reinforcement of a magnesium alloy matrix composite[J]. Composites Part B:Engineering,2011,42(2):275-279.
    [33]Committee A I H. ASM Handbook, Vol.3, Alloy Phase Diagrams[M]. Materials Park:ASM International,1992.
    [34]Parashivamurthy K I, Kumar R K, Seetharamu S, et al. Review on TiC reinforced steel composites[J]. Journal of Materials Science,2001,36(18):4519-4530.
    [35]刘旋,李祖来,蒋业华,等.真空实型铸渗法制备自生TiC颗粒增强钢基表面复合材料的组织研究[J].铸造,2009(4):341-343.
    [36]Khakbiz M, Simchi A, Bagheri R. Analysis of the rheological behavior and stability of 316L stainless steel-TiC powder injection molding feedstock[J]. Materials Science and Engineering:A,2005,407(1-2):105-113.
    [37]Hui X D, Yang Y S, Wang Z F, et al. High temperature creep behavior of in-situ TiC particulate reinforced Fe-Cr-Ni matrix composite[J]. Materials Science and Engineering:A,2000,282(1-2):187-192.
    [38]Ibrahim I A, Mohamed F A, Lavernia E J. Particulate reinforced metal matrix composites-a review[J]. Journal of Materials Science,1991,26:1137-1156.
    [39]张燕瑰,胡志君,吴进.碳化硅颗粒增强A1基复合材料的新型制备工艺[J]精密成形工程,2011,3(1):39-42.
    [40]Ni Z, Sun Y, Xue F, et al. Microstructure and properties of austenitic stainless steel reinforced with in situ TiC particulate[J]. Materials and Design,2011(32): 1462-1467.
    [41]Sulima I, Klimczyk P, Hyjek P. The influence of the sintering conditions on the properties of the stainless steel reinforced with TiB2 ceramics[J]. Archives of Materials Science and Engineering,2009,39(2):103-106.
    [42]吴钱林,孙扬善,薛烽.等.TiC强化304不锈钢的显微组织和性能[J].钢铁,2009,7:81-84.
    [43]李东波.ZrO2(2Y)/316L不锈钢复合材料的组织结构与力学性能[D].哈尔滨工业大学,1999.
    [44]黄争鸣.复合材料细观力学引论[M].北京:科学出版社,2004.
    [45]Jain J, Kar A M, Upadhyaya A. Effect of YAG addition on sintering of PM 316L and 434L stainless steels [J]. Materials Letters,2004,58:2037-2040.
    [46]谢建新,郭振文,张文泉,等.316L不锈钢/Y-PSZ复合材料的制备与性能[J].北京科技大学学报,2007,29(5):494-498.
    [47]Tjong S C, Lau K C. Abrasion resistance of stainless-steel composites reinforced with hard TiB2 particles[J]. Composites Science and Technology,2000,60(8): 1141-1146.
    [48]Das K, Bandyopadhyay T K, Das S. A review on the various synthesis routes of TiC reinforced ferrous based composites[J]. Journal of Materials Science,2002, 37(18):3881-3892.
    [49]曹国剑.放电等离子烧结Ni3Al及其复合材料的高温压缩与抗氧化性能[D].哈尔滨:哈尔滨工业大学,2007.
    [50]Phaniraj M P, Kim D I, Shim J H, et al. Cyclic oxidation of yttria dispersed austenitic stainless steel[J]. Corrosion Science,2010,52(10):3573-3576.
    [51]Wu Q, Zhang J, Sun Y. Oxidation behavior of TiC particle-reinforced 304 stainless steel[J]. Corrosion Science,2010,52(3):1003-1010.
    [52]Ren Y J, Zeng C L. Corrosion protection of 304 stainless steel bipolar plates using TiC films produced by high-energy micro-arc alloying process[J]. Journal of Power Sources,2007,171(2):778-782.
    [53]Balaji S, Upadhyaya A. Electrochemical behavior of sintered YAG dispersed 316L stainless steel composites[J]. Materials Chemistry and Physics,2007, 101(2-3):310-316.
    [54]果世驹,杨霞,陈邦峰,等.316L不锈钢粉末温压与模壁润滑的高密度成形 [J].粉末冶金技术,2005,23(6):403-408.
    [55]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997:169-185.
    [56]金永平,郭斌,王尔德.高能球磨对3%C-Cu粉末压制特性的影响[J].中国有色金属学报,2007,17(9):1490-1495.
    [57]German M R. Sintering Theory and Practice[M]. New York:USA:Wiley,1996.
    [58]Wakai F, Chihara K, Yoshida M. Anisotropic shrinkage induced by particle rearrangement in sintering[J]. Acta materialia,2007,55(13):4553-4566.
    [59]St. Laurent S, Chagnon F. Key parameters for warm compaction of high density materials[J]. Metal Powder Report,1997,51(1):37-42.
    [60]Zhou Z, Zhao W, Li Y, et al. Numerical simulation of warm compacted synchronous pulley[J]. Transactions of Nonferrous Metals Society of China, 2006,16(1):65-70.
    [61]叶途明.粉末冶金材料的温压行为及其致密化机理研究[D].中南大学,2007.
    [62]Nor S S M, Rahman M M, Tarlochan F, et al. The effect of lubrication in reducing net friction in warm powder compaction process[J]. Journal of Materials Processing Technology,2008,207(1-3):118-124.
    [63]肖志瑜,张菊红,温利平,等.模壁润滑温压Fe-2Ni-2Cu-1Mo-1C材料的烧结行为研究[J].粉末冶金技术,2007,1:27-31.
    [64]李春香,曹顺华,邹仕民,等.316L不锈钢粉末的温压工艺研究[J].粉末冶金材料科学与工程,2008,1:35-39.
    [65]Breval E, Cheng J P, Agrawal D K, et al. Comparison between microwave and conventional sintering of WC/Co composites[J]. Materials Science and Engineering:A,2005,391:285-295.
    [66]Padmavathi C, Upadhyaya A, Agrawal D. Corrosion behavior of microwave-sintered austenitic stainless steel composites[J]. Scripta Materialia, 2007,57(7):651-654.
    [67]易健宏,周承商.金属基粉末冶金材料的微波烧结技术研究[C].2009全国粉末冶金学术金议论文集,中国湖南张家界,2009:14-20.
    [68]Oghbaei M, Mirzaee O. Microwave versus conventional sintering:A review of fundamentals, advantages and applications[J]. Journal of Alloys and Compounds, 2010,494(1-2):175-189.
    [69]Panda S S, Singh V, Upadhyaya A, et al. Effect of conventional and microwave sintering on the properties of yttria alumina garnet-dispersed austenitic stainless steel[J]. Metallurgical and Materials Transactions A,2006,37:2253-2263.
    [70]Suryanarayana C. Mechanical alloying and milling[J]. Progress in Materials Science,2001,46:1-184.
    [71]Yao Z, Xiong W, Qu J, et al. Role of A2 and A50 process on the oxide dispersion strengthened ferritic alloy fabricated by mechanical alloying[J]. Materials and Design,2011,32:2821-2826.
    [72]Akhtar F, Feng P, Du X, et al. Microstructure and property evolution during the sintering of stainless steel alloy with Si3N4[J]. Materials Science and Engineering:A,2008,472(1-2):324-331.
    [73]朱松,范景莲,刘涛,等.喷雾干燥-氢还原制备超细/纳米晶W-10Cu粉末及其烧结行为[J].粉末冶金材料科学与工程,2010,4:373-377.
    [74]Li Yuanyuan, Ngai Tungwai Leo, Zhang Datong, et al. Effect of die wall lubrication on warm compaction powder metallurgy [J]. J. Mater. Process. Technol.,2002,129(1-3):354-358.
    [75]Li Y, Zhao W, Zhou Z, et al. Coupled mechanical and thermal simulation of warm compaction[J]. Transactions of Nonferrous Metals Society of China,2006, 16(2):311-315.
    [76]Ozaki Y, Unami S, Uenosono S. Pre-mixed partially alloyed iron powder for warm compaction:KIP Clean Mix HW Series[J]. Kawasaki Steel Tech. Rep., 2002,47:48-54.
    [77]Leonelli C, Veronesi P, Denti L, et al. Microwave assisted sintering of green metal parts[J]. Journal of Materials Processing Technology,2008,205(1-3): 489-496.
    [78]Travitzky N A, Goldstein A, Avsian O, et al. Microwave sintering and mechanical properties of Y-TZP/20wt.%Al2O3 composites[J]. Materials Science and Engineering A,2000,286(2):225-229.
    [79]Das S, Mukhopadhyay A K, Datta S, et al. Prospects of microwave processing: An overview[J]. Bulletin of Materials Science,2009,32(1):1-13.
    [80]Ariffin A K, Rahman M M. Warm metal powder compaction process[J]. Adv. Mater. Process.,2003,1:159-195.
    [81]Mondal A, Agrawal D, Upadhyaya A. Microwave heating of pure copper powder with varying particle size and porosity[J]. Journal of Microwave Power & Electromagnetic Energy,2009,43(1):5-10.
    [82]Demirskyi D, Agrawal D, Ragulya A. Densification kinetics of powdered copper under single-mode and multimode microwave sintering[J]. Materials Letters, 2010,64(13):1433-1436.
    [83]Liu D, Zhang S Q, Li A, et al. Microstructure and tensile properties of laser melting deposited TiC/TA15 titanium matrix composites[J]. Journal of Alloys and Compounds,2009,485(1-2):156-162.
    [84]Zhang G, Schlarb A K, Tria S, et al. Tensile and tribological behaviors of PEEK/nano-SiO2 composites compounded using a ball milling technique[J]. Composites Science and Technology,2008,68(15-16):3073-3080.
    [85]Li Y, Ramesh K T. Influence of particle volume fraction, shape, and aspect ratio on the behavior of particle-reinforced metal-matrix composites at high rates of strain[J]. Acta mater,1998,46(16):5633-5646.
    [86]Zong Y P, Zou L. Materials design of microstructure in grain boundary and second phase particles[J]. Materials Science and Technology,2003,19(2): 97-101.
    [87]Xu D, Schmauder S, Soppa E. Influence of geometry factors on the mechanical behavior of particle and fiber reinforced composites[J]. Computational Materials Science,1999,15:295-301.
    [88]徐娜,宗亚平,张芳,等.颗粒形状对铝基复合材料力学行为影响的模拟[J].东北大学学报(自然科学版),2007,2:213-216.
    [89]胡赓祥,蔡珣,戎咏华.材料科学基础[M].上海:上海交通大学出版社,2006:187.
    [90]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2008:1-2.
    [91]Srivastava A K, Das K. The abrasive wear resistance of TiC and (Ti,W)C-reinforced Fe-17Mn austenitic steel matrix composites[J]. Tribology International,2010,43(5-6):944-950.
    [92]German R M. Sintering Theory and Practice[M]. New York, USA:Wiley,1996.
    [93]Wan D T, Hu C F, Bao Y W, et al. Effect of SiC particles on the friction and wear behavior of Ti3Si(Al)C2-based composites[J]. Wear,2007,262(7-8): 826-832.
    [94]Chang H, Binner J, Higginson R. Dry sliding wear behaviour of Al(Mg)/Al2O3 interpenetrating composites produced by a pressureless infiltration technique[J]. Wear,2010,268(1-2):166-171.
    [95]李铁藩,金属高温氧化和热腐蚀[M].北京:化学工业出版社,2003:1-3.
    [96]刘秀晨,安成强.金属腐蚀学[M].北京:国防工业出版社,2002:257-262.
    [97]李美栓.金属的高温腐蚀[M].北京:冶金工业出版社,2001:2-5.
    [98]Bautista A, Velasco F, Abenojar J. Oxidation resistance of sintered stainless steels:effect of yttria additions[J]. Corrosion science,2003,45(6):1343-1354.
    [99]Vesel A, Mozetic M, Drenik A, et al. High temperature oxidation of stainless steel AISI 316L in air plasma[J]. Applied Surface Science,2008,255(5 Part 1): 1759-1765.
    [100]Li Z, Gao W, Liang J, et al. Oxidation behaviour of Ti3Al-TiC composites[J]. Materials Letters,2003,57(13-14):1970-1976.
    [101]Qin Y X, Zhang D, Lu W J, et al. Oxidation behavior of in situ synthesized (TiB+TiC)/Ti-Al composites[J]. Materials Letters,2006,60(19):2339-2345.
    [102]Shi R, Jianrong W, Jia L I, et al. Oxidation behavior of micro-sized Al2O3-TiC-Co composites prepared from cobalt-coated powders[J]. International Journal of Refractory Metals & Hard Materials,2011,29(6):692-697.
    [103]Velasco F, Bautista A, Gonzalez Centeno A. High-temperature oxidation and aqueous corrosion performance of ferritic, vacuum-sintered stainless steels prealloyed with Si[J]. Corrosion Science,2009,51(1):21-27.
    [104]李铁藩.金属高温氧化和热腐蚀[M].北京:化学工业出版社,2003:29-35.
    [105]吴钱林,孙扬善,薛烽,等.原位合成TiC弥散强化304不锈钢的高温氧化行为[J].材料热处理学报,2009(5):177-181.
    [106]Yuan X, Liu G, Jin H, et al. In situ synthesis of TiC reinforced metal matrix composite (MMC) coating by self propagating high temperature synthesis (SHS)[J]. Journal of Alloys and Compounds,2011,509(30):L301-L303.
    [107]Zhang X N, Li C, Li X C, et al. Oxidation behavior of in situ synthesized TiCTi-6Al composite[J]. Materials Letters,2003,57:3234-3238.
    [108]Lin Y, Ehlert G, Sodano H A. Increased interface strength in carbon fiber composites through a ZnO nanowire interphase[J]. Advanced Functional Materials,2009,19(16):2654-2660.
    [109]Nambu S, Michiuchi M, Inoue J, et al. Effect of interfacial bonding strength on tensile ductility of multilayered steel composites[J]. Composites Science and Technology,2009,69(11-12):1936-1941.
    [110]Guessasma S, Benseddiq N, Lourdin D. Effective Young's modulus of biopolymer composites with imperfect interface[J]. International Journal of Solids and Structures,2010,47(18-19):2436-2444.
    [111]Ilo S, Just C, Badisch E, et al. Effects of interface formation kinetics on the microstructural properties of wear resistant metal-matrix composites[J]. Materials Science and Engineering:A,2010,527(23):6378-6385.
    [112]Li Y, Liu N, Zhang X, et al. Effect of Mo addition on the microstructure and mechanical properties of ultra-fine grade TiC-TiN-WC-Mo2C-Co cermets[J]. International Journal of Refractory Metals and Hard Materials,2008,26(3): 190-196.
    [113]徐文武,邹正光,吴一,等.Mo改善TiC/Fe金属陶瓷界面润湿机理的价电子理论分析[J].硬质合金,2007,2:70-73.
    [114]Pardo A, Merino M C, Coy A E, et al. Effect of Mo and Mn additions on the corrosion behaviour of AISI 304 and 316 stainless steels in H2SO4[J]. Corrosion Science.2008.50(3):780-794.
    [115]Pardo A, Merino M C, Coy A E, et al. Pitting corrosion behaviour of austenitic stainless steels combining effects of Mn and Mo additions[J]. Corrosion Science, 2008,50(6):1796-1806.
    [116]Yang X, Guo S J. Fe-Mo-B enhanced sintering of PM 316L stainless steel[J]. Journal of Iron and Steel Research, International.2008,15(1):10-14.
    [117]尤显卿,任昊.颗粒增强钢基复合材料摩擦学研究进展[J].兵器材料科学与工程,2003,5:57-61.
    [118]汤慧萍,刘海彦,黄原平等.Mo对P/M Ti-Mo合金烧结致密化和力学性能的影响[J].稀有金属材料与工程,2006,12:1932-1935.
    [119]邹正光,陈寒元,麦立强.钛铁矿原位碳热还原合成TiC/Fe复合材料的研究[J].硅酸盐学报,2001,29(3):199-203.
    [120]李荣久.陶瓷-金属复合材料[M].北京:冶金工业出版社,2002.
    [121]胡赓祥,蔡珣,戎咏华.材料科学基础[M].上海:上海交通大学出版社,2006:44.
    [122]Qin S, Zhang C, Xu J, et al. Effect of Mo addition on precipitated Fe catalysts for Fischer-Tropsch synthesis[J]. Journal of Molecular Catalysis A:Chemical, 2009,304(1-2):128-134.
    [123]Pardo A, Merino M C, Coy A E, et al. Pitting corrosion behaviour of austenitic stainless steels-combining effects of Mn and Mo additions[J]. Corrosion Science, 2008,50(6):1796-1806.
    [124]Salak A, Miskovic V, Dudrova E, et al. The dependence of mechanical properties of sintered iron compacts upon density[J]. Powder Metall. Int.,1974,6(3): 128-132.
    [125]吴承建,陈国良,强文江.金属材料学[M].北京:冶金工业出版社,2008.
    [126]黄建中,左禹.材料的耐蚀性和腐蚀数据[M].北京:化学工业出版社,2003.
    [127]国家质量技术监仔局.不锈钢点蚀电位测量方法[S].1999.
    [128]Burstein G T, Pistorius P C. Surafce roughness and metastable pitting of stainless steel in chloride solution[J]. Corrosion,1995.51(5):380-385.
    [129]Zuo Y, Fu S. Surafce roughness and metastable pitting of amorphous nickel alloy[J]. Corrosion,1998,61:313-316.
    [130]Hashimoto K. Asami K, Teramoto K.. An X-ray photo-electron spectroscopic study on the role of molybdenum in increasing the corrosion resistance of ferritic stainless steels[J]. Corrosion Science,1979,19:3-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700