压力作用下镁及镁铝合金的结构演化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为目前工业应用中最轻的金属结构材料,因其比强度、比刚度高,良好的电磁屏蔽性能及易于加工、回收等优点,被誉为“21世纪绿色金属工程材料”,并广泛用于汽车、通讯、电子、航空航天等领域。众所周知,材料的结构决定材料的性能。研究表明:常压条件下,镁具有密排六方结构(hcp),而在高压条件下还可能以体心立方结构(bcc)、双层密排六方结构(dhcp)和面心立方结构(fcc)存在。从滑移系数量分析,面心立方结构的塑性最好,体心立方结构的次之,密排六方结构的塑性较差。因此,借助高压手段改变镁的晶体结构可以实现提高其塑性之目的。本文的研究工作与成果如下:
     (1)采用第一性原理理论,分别从高压条件下的能量、电子结构、弹性常数等方面,系统研究了镁的密排六方结构、体心立方结构、双层密排六方结构和面心立方结构在压力条件下的稳定性与相变顺序。结果表明,在0~220GPa范围内,镁的hcp、bcc、dhcp和fcc四种结构的体积随压力的增大逐渐减小,且能量均随着压力的增大而逐渐升高。通过比较镁的四种结构的焓差可知,当P=0GPa时,hcp结构最为稳定,其次是dhcp,再次是fcc,bcc最差。当P=65GPa时,发生hcp→bcc相变,此时bcc最为稳定;当P=130GPa时,dhcp结构较hcp结构能量低,因而可能会产生hcp→dhcp结构转变;当P=190GPa时,fcc结构的能量低于hcp结构,因而发生hcp→fcc结构转变。通过分析镁的hcp、bcc、dhcp和fcc结构在零压力及其相变点处的态密度和弹性常数证实了上述相变发生的可能性。
     (2)应用第一性原理方法研究了元素铝的添加对于纯镁的密排六方和体心立方结构的稳定性、相变顺序和电子结构的影响。结果表明,在0~100GPa范围内,Mg,Mg-4.17at.%Al和Mg-8.33at.%Al的hcp和bcc结构的体积随压力的增大逐渐减小,而能量随着压力的增大而逐渐升高。通过比较Mg,Mg-4.17at.%Al和Mg-8.33at.%Al的hcp和bcc结构的焓差可知:对于纯Mg而言,当P=60GPa时,发生hcp→bcc相变;而对于Mg-4.17at.%Al和Mg-8.33at.%Al而言,当压力分别为70GPa和85GPa时,会产生hcp→bcc结构的转变。意味着Al原子的添加延缓了镁的hcp→bcc结构转变,且Al原子的添加量越多,其延缓程度越大。
     (3)对400℃、24h固溶处理后的AZ91D镁合金进行高压处理,分别研究了保压时间和压力大小对高压处理后的AZ91D镁合金组织及其性能的影响。结果表明:
     ①高压处理明显细化了AZ91D镁合金的晶粒组织。当压力为3GPa、时间为60min时,AZ91D镁合金获得较好的细化效果:晶粒细小且均匀,细化后的晶粒尺寸约为常压处理后晶粒尺寸的1/8~1/10。
     ②高压处理后AZ91D镁合金晶粒内部存在大量的孪晶组织,且孪晶数量与压力和保压时间密切相关。
     ③压力不仅对β-Mg_(17)Al_(12)相的析出具有抑制作用,而且还对β-Mg_(17)Al_(12)相的析出位置有明显影响。
     ④高压处理后的AZ91D镁合金的硬度提高。当保压时间为60min、压力为3GPa时,AZ91D镁合金获得硬度最大值为69.033HV。
     ⑤高压处理后的AZ91D镁合金的耐蚀性得到了提高。当压力为1GPa且时间为60min时,AZ91D镁合金获得最高腐蚀电位为-1.053V。
There have been increasing uses of magnesium alloys for light-weight structuralmaterials for automobile, mobile communication, electronics and aerospace industries dueto high specific strength and stiffness, excellent electromagnetic shielding effectivenessand easy recycling capability. Magnesium alloy is being famed for “21century greenmaterials”. It is well known that microstructure plays a critical role in determining theproperties of materials. The results show that the hexagonal-close-packed (hcp) ofmagnesium is stable at the atmospheric pressure, however, magnesium has other structuresunder high pressure, such as body-centered cubic (bcc), double hexagonal-close-packed(dhcp) and faced-centered cubic (fcc). The plasticity of the fcc structure is the best, the bccstructure takes the second place, the hcp structure is the poorest, by analysis of the numberof slip systems. Therefore, the change of the structure of magnesium by high pressure canimprove the plasticity of magnesium. The main research works and results are listed asfollows.
     (1) The structural stability and phase transitions of hcp, bcc, dhcp and fcc structuresof magnesium under high pressure have been studied systematically by using the firstprinciples methods. Meanwhile, the structural stability of magnesium has been studied bythe energy, electronic structure and elastic constants. When the applied pressure is0~220GPa, the volume of four structures of magnesium decreases but the energy of the fourstructures increases with the pressure increasing. By comparing of enthalpy differences forthe bcc, dhcp and fcc structures with the hcp structure, it can be seen that when thepressure is0GPa, the hcp structure of magnesium should be the most stable structure, thebcc structure takes the second place, the third is the fcc structure, the bcc is the last one.When the pressure is up to65GPa, the bcc structure becomes more stable and thetransformation from hcp structure to bcc structure may occur. When the pressure is130GPa, the enthalpy for the dhcp structure of magnesium becomes less than that for the hcpstructure. Therefore, the dhcp structure should be more stable relative to the hcp structureunder such high pressure. So the phase transition between the hcp and dhcp structure ofmagnesium may happen. Similarly, the lower enthalpy for the fcc structure of magnesium at190GPa should also be considered as a more stable structure in comparison to the hcpstructure. Therefore, the hcp structure may change to fcc structure. The calculated resultson the density of states and elastic constants for the four structures of magnesium under0GPa and various phase transformation pressures further evidence the possibility of theabove phase transformation.
     (2) Under high pressure, the effect of added Al atoms on the structural stability, phasetransition sequence and electronic structure of hcp and bcc structures of magnesium hasinvestigated systematically by using first principles methods.
     The results show that, when the pressure range is0~100GPa, the volume for hcp andbcc structures of Mg, Mg-4.17at.%Al and Mg-8.33at.%Al decreases, but the enthalpyfor the three Mg-based materials increases. For Mg, when the pressure is about60GPa,the enthalpy of bcc structure is lower than the hcp structure, indicating that the bccstructure of Mg becomes more stable, and the hcp→bcc transition may take place. Thephase transition pressure under which the hcp→bcc transition may occur for Mg-4.17at.%Al and Mg-8.33at.%Al is about70GPa and85GPa, respectively. It can be concludedthat, as the added Al atoms increase, the phase transition pressure under which thehcp→bcc transition may take place becomes higher, implying that the hcp→bcc transitionof Mg under pressures will be more difficult with increasing Al addition.
     (3) AZ91D alloys treated by solid solution at673K for24h are aged under highpressure. The effect of holding pressure times and pressure on the microstructures andproperties of AZ91D magnesium alloys are investigated respectively.
     ①High pressure can refine the grain significantly. When the pressure is3GPa andholding pressure time is60min, AZ91D magnesium alloy obtains superior refining effect:the grain size is about1/8~1/10of grains size under ambient pressure treatment.
     ②In the case of holding pressure treatment under high pressure, there occurs a lot oftwining in the grain of AZ91D magnesium alloy, and the number of twining is dependentupon the holding pressure time and the applied pressure.
     ③High pressure inhibits the precipitation of the β-Mg_(17)Al_(12)phase during holdingpressure treatment and affects the precipitated position of the β-Mg_(17)Al_(12)phase.
     ④Holding pressure treatment under high pressure for AZ91D magnesium alloy leads to higher micro-hardness. When the pressure is3GPa and holding pressure time is60min, the micro-hardness reaches the maximum value (69.033HV).
     ⑤The corrosion resistance of AZ91D magnesium alloys is improved throughholding pressure treatment under high pressure. When the pressure is1GPa and agingtime is60min, the highest corrosion potential is-1.053V.
引文
[1]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004:5-15.
    [2]陈振华,严红革,陈吉华,等.镁合金[M].北京:化学工业出版社,2004:17-19.
    [3] Wang F, Wang Y, Mao P L, et al. Effect of Combined Addition of Y and Ca on Microstructureand Mechanical Properties of Die Casting AZ91Alloy[J]. Transactions of Nonferrous MetalsSociety of China,2010,20: s311-s317.
    [4] Cheng S L, Yang G C, Fan J F, et al. Effect of Ca and Y on Microstructure and MechanicalProperties of AZ91D Alloy. Rare Metal Materials and Engineering,2006,35(9):1400-1403.
    [5] Srinivasan A, Swaminathan J, Pillai U T S, et al. Effect of Comninded Addition of Si and Sb onthe Microstructure and Creep Properties of AZ91Magnesium Alloy[J]. Materials Science andEngineering A,2008,485(1-2):86-91.
    [6] Srinivasan A, Pillai U T S, Pai B C. Microstructure and Mechanical Properties of Si and SbAdded AZ91Magnesium Alloy[J]. Metallurgical and Materials Transactions A,2005,36(8):2235-2243.
    [7] Zeng X Q, Wang Q D, Lv Y Z, et al. Microstructure and Mechanical Properties ofMg-9Al-0.5Zn-0.1Be-xCa Alloys[J]. Materials for Mechanical Engineering,2001,25(5):15-18.
    [8]孙扬善,翁坤忠,袁广银. Sn对镁合金显微组织和力学性能的影响[J].中国有色金属学报,1993,9(1):55-60.
    [9]袁广银,孙扬善,曾小勤,等. Bi对AZ91镁合金时效析出动力学过程的影响[J].上海交通大学学报.2001,35(3):451-456.
    [10] Zhang J H, Niu X D, Qiu X, et al. Effect of Yttrium-Rich Misch Metal on the Microstructures,Mechanical Properties and Corrosion Behavior of Die Cast AZ91Alloy[J]. Journal of Alloys andCompounds,2009,471(1-2):322-330.
    [11] Zhao Z D, Chen Q, Kang F, et al. Microstructural Evolution and Tensile Mechanical Propertiesof Thixoformed AZ91D Magnesium Alloy with the Addition of Yttrium[J]. Journal of Alloysand Compounds,2009,482(1-2):455-467.
    [12] Tong G D, Liu H F, Liu Y H. Effect of Rare Earth Additions on Microstructure and MechanicalProperties of AZ91Magnesium Alloys[J]. Transactions of Nonferrous Metals Society of China,2010,20(2): s336-s340.
    [13] Zhu L J, Qian J, Liu Y, et al. Effects of Y and Ce Addition on Microstructure and MechanicalProperties of Squeezing Casting Mg-6Al Magnesium Alloy[J]. Special Casting&NonferrousAlloys,2008,28(11):852-855.
    [14] Lee C D. Dependence of Tensile Proerties of AM60Magnesium Alloy on Microporosity andGrain Size[J]. Materials Science and Engineering: A.2007,454-455(25):575-580.
    [15] Li S S, Zheng W C, Tang B, et al. Effects of Rare Earths and Strontium Composite Additions onMicrostructure and Properties of AM60Magnesium Alloy[J]. Foundry,2007,156(1):18-22.
    [16] Liu W J, Cao F H, Chang L R, et al. Effect of Rare Earth Element Ce and La on CorrosionBehaviors of AM60Magnesium Alloy[J]. Corrosion Sciemce,2009,51(6):1334-1343.
    [17] Nam K Y, Song D H, Lee C W, et al. Modification of Mg2Si Morphology in As-Cast Mg-Al-SiAlloys with Strontium and Antimony[J]. Materials Science Forum,2006,501-511:238-241.
    [18] Chakraborti N, Lukas H L. Thermodynamic Optimization of the Mg-Al-Si Phase Diagram[J].Calphad,1992,16(1):79-86.
    [19] Tian X, Wang L M, Wang J L, et al. The Microstructure and Mechanical Properties ofMg-3Al-3RE Alloys[J]. Journal of Alloys and Compounds,2008,465(1-2):412-416.
    [20] Rzychon T, Kielbus A. Effect of Rare Earth Elements on the Microstructure of Mg-Al Alloys[J].Journal of Achievements in Materials and Manufacturing Engineering,2006,17(1-2):149-152.
    [21]丁文江.镁合金科学与技术[M].北京:科学出版社,2007:12-15.
    [22] Luo A, Pekguleryuz M O. Cast Magnesium Alloys for Elevated Temperature Applications[J].Journal of Materials Science,1994,29(20):5259-5271.
    [23] Wan X F, Sun Y S, Xue F, et al. Microstructure and Mechanical Properties of ZA62BasedMagnesium Alloys with Calcium Addition[J]. Transactions Nonferrous Metals Society of China.2010,20(5):757-762.
    [24] Zhang J H, Wang J, Qiu X, et al. Effect of Nd on the Microstructure, Mechanical Properties andCorrosion Behavior of Die-Cast Mg-4Al Based Alloy[J]. Journal of Alloys and Compounds.2008,464(1-2):556-564.
    [25] Li S B, Wu K, Zhen M Y, et al. Effect of Extrusion on Mechanical Properties of AZ91CastMagnesium Alloy[J]. Journal of Materials Engineering.2006,12:54-57.
    [26] Zhao Z D, Chen Q, Wang Y B, et al. Microstructures and Mechanical Properties of AZ91DAlloys with Y Addition. Materials Science and Engineering A[J].2009,515(1-2):152-161.
    [27]马颖,潘振峰,张洪峰,等.热处理对AZ91D镁合金组织及力学性能的影响[J].兰州理工大学学报.2009,35(5):9-12.
    [28] Czerwinski F, Zielinska-Lipiec A, Pinet P J, et al. Correlating the Microstructure and TensileProperties of a Thixomolded AZ91D Magnesium Alloy[J]. Acta Materialia,2001,49(7):1225-1235.
    [29] Wang R M, Eliezer A, Gutman E. Micorstructures and Dislocations in the Stressed AZ91DMagnesium Alloys[J]. Materials Science and Engineering A,2003,344(1-2):279-287.
    [30]王瑞全,陈体军,马颖.热处理对细晶AZ91D镁合金组织和性能的影响[J].中国铸造装备与技术.2009,6:23-25.
    [31] Wang Y S, Wang Q D, Ma C J, et al. Effects of Zn and RE Additions on the SolidificationBehavior of Mg-9Al Magnesium Alloy[J]. Materials Science and Engineering A,2003,342(1-2):178-182.
    [32] Yuan G Y, Liu Z L, Wang Q D, et al. Microstructure Refinemnent of Mg-Al-Zn-Si Alloys[J].Materials Letters,2002,56(1-2):53-58.
    [33] Honma T, Ohkubo T, Kamado S, et al. Effect of Zn Additions on the Age-Harding ofMg-2.0Gd-1.2Y-0.2Zr Alloys[J]. Acta Materialia,2007,55(12):4137-4150.
    [34] Zhao L M, Zhang Z D. Effect of Zn Alloy Interlayer on Interface Microstructure and Strength ofDiffusion-Bonded Mg-Al Joints[J]. Scripta Materialia,2008,58(4):283-286.
    [35] Bronfin B, Katsir M, Aghion E. Preparation and Solidification Features of AS21MagnesiumAlloy[J]. Materials Science and Engineering A,2001,302(1):46-50.
    [36] Cao P, Qian M, StJohn D H. Effect of Manganese on Grain Refinement of Mg-Al BasedAlloys[J]. Scripta Materialia.2006,54(11):1853-1858.
    [37] Ravi Kumar N V, Blandin J J, Desrayaud C, et al. Grian Refinement in AZ91Magnesium Alloyduring Thermomechanical Processing[J]. Materials Science and Engineering A,2003,359(1-2):150-157.
    [38] Tamura Y, Motegi T, Kono N, et al. Effect of Minor Elements on Grain Size of Mg-9%AlAlloy[J]. Materials Science Forum.2000,350:199-204.
    [39] Mordike B L, Ebert T. Magnesium: Properties-Applications-Potential[J]. Materials Science andEngineering A,2001,302(1):37-45.
    [40]刘倩,唐靖林.碳对镁铝合金晶粒细化影响的研究[J].铸造技术.2008,29(11):1489-1502.
    [41]潘辉,刘晓烈,孙立喜,等.镁及镁合金晶粒细化的研究现状[J].金属材料与冶金工程.2009,37(1):8-12.
    [42]王慧源,刘生发,韩辉,等.镁合金晶粒细化及机理研究进展[J].铸造技术,2009,29(12):1734-1738.
    [43] Cisar L, Yoshida Y, Kamado S, et al. Microstructures and Tensile Properties of EAEC Processedand Forged AZ31Mangesium Alloy[J]. Materials Transactions,2003,44(4):476-483.
    [44] Kamado S, Ashie T, Yamada H, et al. Improvement of Tensile Properties of WroughtMagnesium Alloys by Grain Refining[J]. Materials Science Forum,2000,350-351:65-72.
    [45] Kojima Y, Aizawa T, Kamado S. Grain Refinement of Commercial Magnesium Alloys forHigh-Strain-Rate-Superplastic Forming[J]. Materials Science Forum,2000,350-351:159-170.
    [46] Agnew Sean R, Duygulu zgür. Plastic Anisotropy and the Role of Non-Basal Slip inMagnesium Alloy AZ31B[J]. International Journal of Plasticity,2005,21(6):1161-1193.
    [47]陈振华.变形镁合金[M].北京:化学工业出版社,2005:54.
    [48] Barnett M R. Twinning and the Ductility of Magnesium Alloys: PartⅠ:“Tension” Twins[J].Materials Science and Engineering A,2007,464(1-2):1-7.
    [49] Barnett M R. Twinning and the Ductility of Magnesium Alloys: PartⅡ:“Contraction” Twins[J].Materials Science and Engineering A,2007,464(1-2):8-16.
    [50] Wang Y N, Huang J C. The Role of Twinning and Untwining in Yielding Behavior inHot-Extruded Mg-Al-Zn Alloy[J]. Acta Materialia,2007,55(3):897-905.
    [51] Staroselsky A, Anand L. A Constitutive Model for hcp Materials Deforming by Slip andTwinning: Application to Magnesium Alloy AZ31B[J]. International Journal of Plasticity,2003,19(10):1843-1864.
    [52] Li S B, Zou Z W, Wu K, et al. Microstruture Evolution of AZ91D Magnesium alloy during HighTemperature Compression[J]. The Chinese Journal of Nonferrous Metals,2007,17(7):1041-1046.
    [53] Guo Q, Yan H G, Chen Z H, et al. Grain Refinement in As-Cast AZ80Mg Alloy under LargeStrain Deformation[J]. Materials Characterization.2007,58(2):162-167.
    [54] Ishikawa K, Watanabe H, Mukai T. High Strain Rate Deformation Behavior of an AZ91Magnesium Alloy at Elevated Temperature[J]. Materials Letters,2005,59(12):1511-1515.
    [55] Keshavarz Z, Barnett M R. EBSD Analysis of Deformation Modes in Mg-3Al-1Zn[J]. ScriptaMaterialia,2006,55(10):915-918.
    [56] Chino Y, Kimura K, Mabuchi M. Twinning Behavior and Deformation Mechanisms of ExtrudedAZ31Mg Alloy[J]. Materials Science and Engineering A,2008,486(1-2):481-488.
    [57] Yang X Y, Zhu Y K, Miura H, et al. Static Recrystallization Behavior of Hot–DeformedMagnesium Alloy AZ31during Isothermal Annealing[J]. Transaction Nonferrous Metals Societyof China.2010,20(7):1269-1274.
    [58] Zhang Y, Ma C J, Lu C. Plastic Strain Mechanism and Dynamic Recrystallization of MagnesiumAlloy[J]. Light Alloy Fabrication Technology.2003,31(7):35-39.
    [59] Kai M, Horita Z J, Langdon T G. Developing Grain Refinement and Superplasticity in aMagnesium Alloy Processed by High-Pressure Torsion[J]. Materials Science and Engineering A.2008,488(1-2):117-124.
    [60] Kang S H, Lee Y S, Lee J H. Effect of Grain Refinement of Magnesium Alloy AZ31by SeverePlastic Deformation on Material Characteristics[J]. Journal of Materials Processing Technology.2008,201(1-3):436-440.
    [61] Liu X B, Osawa Y, Takamori S, et al. Grain Refinement of AZ91Alloy by IntroducingUltrasonic Vibration during Solidification[J]. Materials Letters.2008,62(17-18):2872-2875.
    [62] Zhang Z, Wang M P, Li S M, et al. Evolution of Microstructure and Texture of AZ31Magnesium Alloy during Hot-Rolling Process[J]. The Chinese Journal of Nonferrous Metal.2010,20(8):1447-1454.
    [63] Liu Y, Liu T M, Xiao P. The Investigation of AZ31Magnesium Alloy Cold CompressionDeformation Recrystallization[J]. Materials Review.2007,21(5A):370-371.
    [64] Zhu B B, Sun Y S, Wan X F, et al. Microstructures and Mechanical Properties of Mg-Zn-AlWrought Magnesium Alloys. Journal of Southeast Unversity.2010,40(3):640-645.
    [65] Yang X Y, Zhang L. Twinning and Twin Intersection in AZ31Mg Alloy during WarmDeformation[J]. Acta Metallurgica Sinica.2009,45(11):1303-1308.
    [66]俞汉清,陈金德.金属塑性成形原理[M].北京:机械工业出版社,2004:6-30.
    [67] Galiyev A, Kaibyshev R, Gottstein G. Correlation of Plastic Deformation and DynamicRecrystallization in Magnesium Alloy ZK60[J]. Acta Materialia,2001,49(7):1199-1207.
    [68] Galiyev A, Kaibyshev R. Micorstructural Evolution in ZK60Magnesium Alloy during SeverePlastic Deformation[J]. Materials Transaction,2001,42(7):1190-1199.
    [69] Sekine T, He H L, Kobayashi T, et al. Shock-Induced Transformation of β-Si3N4to aHigh-Pressure Cubic-Spinel[J]. Applied Physics Letters,2000,76(25):3706-3708.
    [70] Bundy F P, Hall H T, Strong H M, et al. Man-Made Diamonds[J]. Nature,1995,176(4471):51-55.
    [71] Wentorf R H. Cubic form of Boron Nitride[J]. Journal of Chemistry and Physics,1957,26(4):956-956.
    [72] Zerr A, Miehe G, Seghiou G, et al. Systhesis of Cubic Silicon Nitride[J]. Nature,1999,400(6742):340-342.
    [73] Zerr A, Riedel R, Sekine T, et al. Recent Advanced in New Hard High-Pressure Nitrides[J].Advance Materials,2006,18(22):2933-2948.
    [74] Leinenweber K, O’Keeffe M, Somayazulu M, et al. Systhesis and Structure Refinement of theSpinel γ-Ge3N4[J]. Chemistry-A European Journal.1999,5(10):3076-3078.
    [75] Serghiou G, Miehe G, Tschauner O, et al. Synthesis of a Cubic Ge3N4Phase at High Pressuresand Temperatures[J]. Journal of Chemical Physics,1999,111(10):4659-4662.
    [76] McMillan P F. New Materials from High-Pressure Experiments[J]. Nature Materials,2002,1:19-25.
    [77] Amaya K, Shimizu K, Eremets M I, et al. Observation of Pressure-Induced Superconductivity inthe Megabar Region[J]. Journal of Physics: Condensed Matter,1998,10(49):11179-11190.
    [78] Nagamatsu J, Nakagawa N, Muranaka T, et al. Superconductivity at39K in MagnesiumDiboride[J]. Nature,2001,410(6824):63-64.
    [79] Hubert H, Devouard B, Garvie L A J, et al. Icosahedral Packing of B12Incosahedra in BoronSuboxide (B6O)[J]. Nature,1998,391(6665):376-378.
    [80] Hubert H, Garvie L A J, Devouard B, et al. High-Pressure, High-Temperature Systhesis andCharacterization of Boron Suboxide (B6O)[J]. Chemistry of Materials,1998,10(6):1530-1537.
    [81] Gregoryanz E, Goncharov A F, Hemley R J, et al. High-Pressure Amorphous Nitrogen[J].Physical Review B,2001,64(5):052103.
    [82] Wilding M C, Wilson M, Mcmillan P F. Structural Studies and Polymorphism in AmorphousSolid and Liquids at High pressure[J]. Chemical Society Reviews,2006,35(10):964-986.
    [83] Katayama K, Mizutani T, Utsumi W, et al. A First-Order Liquid-Liquid Phase Transition inPhosphorus[J]. Nature,2000,403(6766):170-173.
    [84] Poole P H, Grande T, Angell C A, et al. Polymorphic Phase Transitions in Liauids and Glasses[J].Science,1997,275(5298):322-323.
    [85] McMahon M I, Nelmes R J. New High-Pressure Phase of Si[J]. Physical Review B,1993,47(13):8337-8340.
    [86] Hu J Z, Merkle L D, Menoni C S, et al. Crystal Data for High-Pressure Phases of Silicon[J].Physical Review B,1986,34(7):4679-4684.
    [87]张建民,张瑞林,余瑞璜. Fe-Al合金有序无序相变的电子理论研究[J].1994,30(5):204-209.
    [88] Xie Y, Ma Y M, Cui T, et al. Origin of bcc to fcc Phase Transition under Pressure in AlkaliMetals[J]. New Journal of Physics,2008,10(6):063022.
    [89] Akahama Y, Kobayashi M, Kawamura H. Simple-Cubic-Simple-Hexagonal Transition inPhosphorus under Pressure[J]. Physical Review B,1999,59(13):8520-8525.
    [90]侯永,张栋文,袁建民.第一原理对铝的静态结构和相变的计算[J].高压物理学报,2005,19(4):377-380.
    [91] Mishin Y, Mehl M J, Papaconstantopoulos D A, et al. Structural Stability and Lattice Defects incopper: Ab initio, Tight-Binding, and Embedded-Atom Calculations[J]. Physical Review B,2001,63:224106.
    [92] Wang J J, Chen A H, Yu Y P, et al. First Principles Calculation of Phase Transition of Vanadiumunder Pressure[J]. Journal of Southeast University,2009,39(5):1028-1032.
    [93] Schwarz U, Grzechnik A, Syassen K, et al. Rubidium-Ⅳ: A High Pressure Phase with ComplexCrystal Structure[J]. Physical Review Letters,1999,83(20):4085-4088.
    [94] McMahon M I, Degtyareva O, Nelmes R J. Ba-Ⅳ-Type Incommensurate Crystal Structure inGroup-ⅤMetals[J]. Physical Review Letters,2000,85(23):4896-4899.
    [95] Onodera A, Sakamoto I, Fujii Y, et al. Structural and Electrical Properties of GeSe and GeTe atHigh Pressure[J]. Physical Review B,1997,56(13):7935-7941.
    [96] Skriver H L. Calculated Structural Phase Tramsitions in the Alkaline Earth Metals[J]. PhysicalReview Letters,1982,49(24):1768-1772.
    [97] McMahan A K, Moriarty J A. Structural Phase Stability in Third-Period Simple Metals[J].Physical Review B,1983,27(6):3235-3251.
    [98] Moriarty J A, Althoff J D. First-Principles Temperature-Pressure Phase Diagram ofMagnesium[J]. Physical Review B,1995,51(9):5609-5616.
    [99] Olijnyk H, Holzapfel W B. High-Pressure Structural Phase Transition in Mg[J]. Physical ReviewB,1985,31(7):4682-4683.
    [100] Jona F, Marcus P M. Magnesium under Pressure: Structure and Phase Transition[J]. Journal ofPhysics: Condensed Matter,2003,15(45):7727-7734.
    [101] Wentzcovitch R E. Hcp-to-Bcc Pressure-Induced Transition in Mg Simulated by Ab InitoMolecular Dynamics[J]. Physical Review B,1994,50(14):10358-10361.
    [102] Wentzcovitch R E, Cohen M L. Theoretical Model for the Hcp-Bcc Transition in Mg[J]. PhysicalReview B,1988,37(10):5571-5576.
    [103] Perez-Albuerne E A, Clendenen R L, Lynch R W, et al. Effect of Very High Pressure on theStructure of Some Hcp Metals and Alloys[J]. Physical Review,1966,142(2):392-399.
    [104] Errandonea D, Meng Y, H usermann D, et al. Study of the Phase Transformations and Equationof State of Magnesium by Synchrotron X-ray Diffraction[J]. Journal of Physics: CondensedMatter,2003,15(8):1277-1289.
    [105] Li P F, Gao G Y, Wang Y C, et al. Crystal Structures and Exotic Behavior of Magnesium underPressure[J]. The Journal of Physical Chemistry C,2010,114(49):21745-21749.
    [106] Ganeshan S, Shang S L, Wang Y, et al. Effect of Alloying Elements on the Elastic Properties ofMg from Frist-Principles Calculations[J]. Acta Materialia,2009,57(13):3876-3884.
    [107] Wang C, Han P, Zhang L, et al. The Strengthening Effect of Al Atoms into Mg-Al Alloy: AFrist-Principles Study[J]. Journal of Alloys and Compounds,2009,482(1-2):540-543.
    [108] Zhang L J, Chen J C, Feng J, et al. Influence of α-Mg Doped by Al、Zn、Mn、Zr、Ca by DensityFunction Theory[J]. Superconductivity,2008,36(12):38-42.
    [109] Yasi J A, Herctor Jr L G, Trinkle D R. First-Principle Data for Solid-Solution Strengthening ofMagnesium: from Geometry and Chemistry to Properties[J]. Acta Materialia,2010,58(17):5704-5713
    [110] Wei Z J, Wang Z L, Wang H W, et al. Evolution of Microstructures and Phases of Al-Mg Alloyunder4GPa High Pressure[J]. Journal of Materials Science,2007,42(17):7123-7128.
    [111] Xu R. The Effect of High Pressure on Solidification Microstructure of Al-Ni-Y Alloy[J].Materials Letters,2005,59(22):2818-2820.
    [112] Jie J C, Zou C M, Wang H W, et al. Microstructure Evolution of Al-Mg Alloy duringSolidification under High Pressure[J]. Materials Letters,2010,64(7):869-871.
    [113] Zhao J, Liu L, Yang J R, et al. Effect of High Pressure on the Microstructure and Hardness of aCu-Zn Alloy[J]. Rare Metals,2008,27(5):541-544.
    [114] Chelikowsky J R, Louie S G.. Quantum Theory of Real Materials[J]. Kluwer Academy Press,1989:1-11.
    [115] Kohn W, Sham L J. Self-Consistent Equations including Exchange and Correlation Effects[J].Physical Review,1965,140(4A):1133-1138.
    [116] Segall M D, Linda P L D, Probert M J, et al. First-Principles Simulation: Ideas, Illustrations andthe CASTEP Code[J]. Journal of Physics: Condensed Matter,2002,14(11):2717-2744.
    [117] Vanderbilt D. Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J].Physical Review B,1990,41(11):7892-7895.
    [118] Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J].Physical Review Letters,1996,77(18):3865-3868.
    [119] Fischer T H, Almlof J. General Methods for Geometry and Wave Function Optimization[J]. TheJournal of Physical Chemistry,1992,96(24):9768-9774.
    [120] Liu C M, Liu Z J, Zhu X R, et al. Research and Development Progress of DynamicRecrystallization in Pure Magnesium and Its Alloy[J]. The Chinese Journal of Nonferrous Metals,2006,16(1):1-12.
    [121]张菊梅,将百灵,王志虎,等.固溶及时效处理对AZ80镁合金显微组织的影响[J].金属热处理.2007,32(10):6-10.
    [122] Chen G, Peng X D, Fan P G, et al. Effects of Sr and Y on Microstructure and CorrosionResistance of AZ31Magnesium alloy[J]. The Chinese Journal of Nonferrous Metals,2011,21(4):725-731.
    [123] TrojanováZ, Lukác P. Compressive Deformation Behaviour of Magnesium Alloys[J]. Journal ofMaterials Processing Technology,2005,162-163:416-421.
    [124] Yang J, Wang J L, Wang L D, et al. Refinement of Edge-to-Edge Matching Model and ItsApplication in the Mg17Al12/α-Mg and α-Y/α-Mg Systems[J]. Intermetallics,2009,17(3):104-108.
    [125] Zhang H, Shang S L, Saal J E, et al. Enthalpies of Formation of Magnesium Compounds fromFrist-Principles Calculations[J]. Intermetallics,2009,17(11):878-885.
    [126] Cao L, Chen R S, Han E H. Effect of Rare-Earth Elements Gd and Y on the Solid SolutionStrengthening of Mg Alloy[J]. Journal of Alloys and Compounds.2009,481(1-2):379-384.
    [127] Shin D W, Wolverton C. Frist-Principles Study of Solute-Vacancy Binding in Magnesium[J].Acta Materialia,2010,58(2):531-540.
    [128] Zhou H T, Zeng X Q, Liu W F, et al. Effect of Ce on Microstructures and Mechanical Propertiesof AZ61Wrought Magnesium[J]. The Chinese Journal of Nonferrous Metals,2004,14(1):99-104.
    [129] Wang R M, Eliezer A, Gutman S E. An Investigation on Microstructure of an AM50MagnesiumAlloy[J]. Materials Science and Engineering A,2003,355(1-2):201-207.
    [130] Desgreniers S, Lagarec K. High-Denssity ZrO2and HfO2: Crystalline Structures and Equationsof State[J]. Physical Review B,1999,59(13):8467-8472.
    [131] Tao H J, Yi J, Yin Z M, et al. Calculations of Lattice Stabilities of Elemental Mg from ElectronicStructures in Frist Principles[J]. The Chinese Journal of Nonferrous Metals,2008,18(12):2224-2232.
    [132] Jona F. Marcus P M. Hexagonal and Tetragonal States of Magnesium by First Principle[J].Physical Review B.2002,66(9):094104.
    [133] Wang Y. Curtarolo S, Jiang C, et al. Ab Initio Lattice Stability in Comparision with CALPHADLattice Stability[J].2004,28(1):79-90.
    [134] Blaha P, Schwarz K, Sorantin P, et al. Full Potential, Linearized Augmented Plane WavePrograms for Crystalline System[J]. Computer Physics Communication,1990,59(2):399-415.
    [135]侯永,袁建民.第一性原理对金的高压相变和零温物态方程的计算[J].物理学报,2007,56(6):3458-3463.
    [136]王文魁,何寿安.高温高压下非晶Co80B20合金的相稳定性[J].物理学报,1984,33(7):914-920.
    [137]肖奇,邱冠周,胡岳华,等. FeS2(100)表面原子几何与电子结构的理论研究[J].物理学报,2002,51(9):2133-2138.
    [138] Marcus P M, Qiu S L. Elasticity in Crystals under Pressure[J]. Journal of Physics: CondensedMatter,2009,21(11):115401.
    [139] Barry M M, Klein B M, Papaconstantopoulos D A, et al. Frist Principles Calculations of ElasticProperties of Metals[J]. Intermetallic Compounds: Principles and Practice,1994,4:195-210.
    [140] Sin’ko G V, Smirnov N A. Ab Initio Calculations for the Elastic Properties of Magnesium underPressure[J]. Physical Review B.2009,80(10):104113.
    [141] Slutsky L J, Garland C W. Elastic Constants of Magnesium from4.2K to300K[J]. PhysicalReview.1957,107(4):972-976.
    [142] Ganeshan S, Shang S L, Zhang H, et al. Elastic Constants of Binary Mg Compounds fromFirst-Principles Calculations[J]. Intermetallics,2009,17(5):313-318.
    [143]曾宪波,彭品. α-Ti-25Al-xNb合金力学性质的第一性原理计算[J].金属学报,2009,45(9):1049-1056.
    [144] Beckstein O, Klepeis J E, Hart G L W, et al. Frist Principles Elastic Constants and ElectronicStructure of α-Pt2Si and PtSi[J]. Physical Review B,2001,63(13):134112.
    [145] Hu J Q, Xie M, Pan Y, et al. The Electronic, Elastic and Structural Properties of Pd-ZrIntermetallic[J]. Computational Materials Science,2012,51(1):1-6.
    [146]姚强,孙坚.(Co, Ir)3(Al, W)析出相稳定性和弹性性质第一性原理的研究[J].材料研究与应用.2007,1(4):281-285.
    [147]周惦武,徐少华,张福全,等. ZA62镁合金中AB2型金属间化合物的结构稳定性与弹性性能的第一性原理计算[J].金属学报,2010,46(1):97-103.
    [148]姚强,刑辉,郭文渊,等. Ti-25at%Nb合金β、α″和ω相结构稳定性和弹性性质理论计算[J].稀有金属材料与工程,2009,38(4):663-666.
    [149]李荣德,黄忠平,白彦华,等.超高压对ZA27合金非平衡凝固组织和性能的影响[J].铸造,2003,52(2):92-94.
    [150] Aung N N, Zhou W. Effect of Grian Size and Twins on Corrosion Behaviour of AZ31BMagnesium Alloy[J]. Corrosion Science,2010,52(2):589-594.
    [151] Zeng R C, Kainer K U, Blawert C, et al. Corrosion of an Extruded Magnesium Alloy ZK60Component-The Role of Microstructural Features[J]. Journal of Alloys and Compounds,2011,509(13):4462-4469.
    [152] Alvare-Lopez M, Pereda M D, Del Valle J A, et al. Corrosion Behaviour of AZ31MangensiumAlloy with Different Grain Sizes in Simulated Biological Fluid[J]. Acta Biomaterialia,2010,6(5):1763-1771.
    [153] Hamu G B, Eliezer D, Wagner L. The Relation between Severe Plastic DeformationMicrostructure and Corrosion Behavior of AZ31Magnesium Alloy[J]. Journal of Alloy andCompounds,2009,468(1-2):222-229.
    [154] Pardo A, Merino M C, Coy A E, et al. Corrosion Behaviour of Magnesium/Aluminium Alloys in3.5wt.%NaCl[J]. Corrosion Science,2008,50(3):823-834.
    [155] Xu W J, Ma Y. Chen T J, et al. Corrosion Behavior of Thixoformed AZ91D Magnesium Alloy inNaCl Aqueous Solution[J]. Key Engineering Materials,2007,353-358:2611-2614.
    [156] Zhou X H, Huang Y W, Wei Z L, et al. Improvement of Corrosion Resistance of AZ91DMagnesium Alloy by Holmium Addition[J]. Corrosion Science.2006,48(12):4223-4233.
    [157] Song G L, Atrens A, Wu X L, et al. Corrosion Behaviour of AZ21, AZ501and AZ91in SodiumChloride[J]. Corrosion Science.1998,41(2):249-273.
    [158] Cheng Y L, Qin T W, Wang H M, et al. Comparison of Corrosion Behaviors of AZ31, AZ91,AM60, ZK60Magnesium Alloys[J]. Transactions of Nonferrous Metals Society of China,2009,16(3):517-524.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700