含Ag的Al-Cu-Mg耐热铝合金微观组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的2219和2618耐热铝合金由于具有较高的强度和良好的耐热性能,被广泛应用于航空航天领域。但当工作温度超过200℃以后,主要强化相的粗化使其力学性能显著下降,难以满足新一代飞行器、推进器等结构部件对使用温度的要求。与传统耐热铝合金相比,添加Ag的Al-Cu-Mg系耐热铝合金不仅具有较高的室温强度和较好的耐损伤性能,而且还具有优异的耐热性能和热稳定性。这种新型耐热铝合金有望满足超音速飞机的耐热性能及经济性要求,具有广阔的应用前景。为此,采用活性熔剂保护熔炼,水冷铜模激冷铸造技术制备了含Ag和不含Ag的两种Al-Cu-Mg合金,研究了微量Ag对Al-Cu-Mg合金组织与性能的影响,并在此基础上,研究了含Ag的Al-Cu-Mg耐热铝合金的均匀化处理,热压缩变形的流变应力行为和组织演变,固溶和时效处理及其组织与性能的变化规律,热暴露及高温蠕变行为,为该系合金的成分设计、热加工工艺和热处理制度的制定以及合金的工业应用提供了依据。
     采用维氏硬度测试、室温和高温拉伸性能测试及金相(OM)、扫描电镜(SEM)和透射电镜(TEM)分析技术,研究了微量Ag对Al-Cu-Mg合金组织与性能的影响。发现微量Ag的添加在一定程度上抑制了Al-Cu-Mg合金中θ’相的析出,促进了Ω相的析出,提高了合金的时效硬化速率,缩短了峰时效时间,增大了合金的峰值硬度,使Al-Cu-Mg合金中的强化相由θ’相和少量S’相转变为Q相和少量θ’相,显著提高了合金的室温和高温强度。
     研究了均匀化处理对含Ag的Al-Cu-Mg耐热铝合金组织的影响,优化了合金的均匀化制度。含Ag的Al-Cu-Mg耐热铝合金铸态组织中存在严重的枝晶偏析,合金中各元素在晶内和晶界分布不均匀。随均匀化温度的升高或均匀化时间的延长,合金中的非平衡相逐渐溶解,元素分布趋于均匀。该合金适宜的均匀化制度为500℃/16h,这一制度与均匀化动力学分析得出的结果基本相符。
     采用热压缩模拟实验研究了含Ag的Al-Cu-Mg耐热铝合金在热变形过程中的流变应力行为,并利用OM、SEM和TEM分析技术研究了合金在热压缩变形过程中的组织演变。发现含Ag的Al-Cu-Mg耐热铝合金在高温压缩变形时的流变应力随应变速率的增大而增大,随变形温度的升高而减小,ln[sinh(ασ)]与Inε以及ln[sinh(ασ)]与1/T之间满足线性关系。合金在热压缩变形时的流变应力本构方程为ε=1.89×1013[sinh(0.0116σ)]7.29exp(-196000/RT)。采用人工神经网络对合金高温变形的流变行为进行了预测,预测结果与实验结果吻合得较好。随热变形温度的升高或应变速率的减小,合金晶粒发生长大,位错密度减小,再结晶体积分数增大,合金的软化机制由动态回复转变为动态再结晶。加工图表明合金存在两个失稳区,温度为300-400℃、应变速率为0.1-10s-1和温度为460-500℃、应变速率为1.0-10s-1。产生失稳的主要原因是局部流变和断裂。合金较适宜的加工条件是温度为385-460℃、应变速率为0.001-0.003s-1。
     研究了固溶、单级时效、形变时效和断续时效对含Ag的Al-Cu-Mg耐热铝合金组织与性能的影响,优化了合金的固溶时效处理制度。合金适宜的固溶一单级时效处理制度为515℃/1.5h水淬+185℃/4h时效,在此条件下,合金的抗拉强度、屈服强度和伸长率分别为505MPa、443MPa和12.2%。形变时效能够提高合金的时效硬化速率,促进Q相和θ’相在位错处形核,细化晶内和晶界析出相;合金的强度随着预变形量的增加先减小后增大,合金适宜的预变形量为4%;经4%预变形+185℃/2h时效后,合金的抗拉强度为516MPa,屈服强度为453MPa,伸长率为12.1%。断续时效在二次时效温度较低时能够促进θ’相的析出,提高合金的伸长率;二次时效温度较高时能够促进Ω相的析出并细化Ω相,改善析出相在晶界的分布,提高合金的强度和塑性;合金适宜的断续时效制度为185℃/2h+150℃/6h,经此时效制度处理后,合金的抗拉强度为518MPa,屈服强度为454MPa,伸长率为13.8%。
     采用热暴露实验,对比研究了欠时效态和峰时效态含Ag的Al-Cu-Mg耐热铝合金组织与性能随温度和时间的变化,并探讨了合金的热稳定机制。欠时效态和峰时效态合金在250℃以下均具有良好的热稳定性。随热暴露时间的延长或温度的升高,峰时效态合金中的主要强化相Ω相和θ’相尺寸逐渐增大,数量逐渐减少,合金强度逐渐降低。在100-150℃下,欠时效态合金中Ω相和θ’相发生了二次析出,合金强度随热暴露时间的延长先增大后缓慢减小;在200-300℃下,欠时效态合金强度随热暴露时间的延长或温度的升高逐渐减小
     对比研究了欠时效态和峰时效态含Ag的Al-Cu-Mg耐热铝合金的高温蠕变行为,并采用SEM和TEM分析技术研究了合金在蠕变过程中的组织演变。含Ag的Al-Cu-Mg耐热铝合金具有良好的抗高温蠕变性能。欠时效态合金在蠕变过程中Ω相和θ’相均发生了动态析出,其稳态蠕变速率和强化相的长大速率均低于峰时效态合金。合金的稳态蠕变速率随蠕变温度的升高或蠕变应力的增大而增大,三者之间的本构关系可描述为ε=7.60×10-4σ3.60exp(-102000/RT)。随着蠕变的进行,蠕变机制由初期的位错机制逐渐转变为晶内扩散机制。
The conventional Al-Cu-Mg series heat-resistant aluminum alloys such as2219and2618, are widely used in aeronautic and astronautic industries due to their high strength and better heat-resistant properties. But the working temperature is usually under200℃otherwise the mechanical properties of these alloys would decrease dramatically due to the coarsening of the strengthening phases, which can not meet the working temperature for the structural parts of new-generation supersonic aircraft and thrusters. Compared to the conventional Al-Cu-Mg series heat-resistant aluminum alloys, the Al-Cu-Mg heat-resistant aluminum alloys containing Ag possess higher strength at room temperature, better damage-resistant property as well as the excellent heat-resistant property and thermal stability. The new heat-resistant aluminum alloys could meet the heat-resistant property and the economical efficiency of the supersonic aircraft and would be used widely. As a result, Al-Cu-Mg alloys with and without Ag were prepared using water chilling copper mould ingot metallurgy processing which was protected by active flux. The effect of trace addition of Ag on the microstructure and properties of Al-Cu-Mg alloy was studied. And on this basis, the homogeneous treatment, the flow behavior and the corresponding microstructural evolution during hot compression deformation, the solution treatment, the aging treatment and the corresponding microstructure and property changes as well as the thermal-exposure and creep behavior were studied. This could provide basis for the composition design, the formulation of hot working process as well as the heat treatment process and its industrial application
     The effects of trace addition of Ag to Al-Cu-Mg alloy on the microstructure and mechanical properties were studied by means of Vickers hardness tests, tensile testing at room and elevated temperatures, optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM), respectively. The results show that trace addition of Ag inhibited the precipitation of θ' phase and accelerated the precipitation of Ω phase. And it can also accelerate the age-hardening effect of the alloy, reduce the time to the peak-aging, enhance the peak hardness, make the major strengthening phases of the Al-Cu-Mg alloy turn θ' and less S' phases into Ω and less θ' phases and improve the mechanical properties of the alloy both at room temperature and at elevated temperatures.
     The effects of homogenization treatment on the microstructure of the Al-Cu-Mg heat-resistant aluminum alloy containing Ag were studied. And the homogenization process of the alloy was also optimized. The results show that severe dendritic segregation existed in the ingot and the alloy elements were unevenly distributed both inside the grains and along the grain boundaries. With increasing the homogenization temperature or prolonging the holding time, the residual phases dissolved into the matrix gradually and all elements became more homogenized. The proper homogenizing process was500℃/16h, which was consistent with the results of homogenization kinetic analysis.
     The flow behavior of Al-Cu-Mg heat-resistant aluminum alloy containing Ag was studied by thermal simulation test. And the microstructural evolution during hot compression deformation was also studied by OM, SEM and TEM, respectively. The results show that the flow stress increased with increasing the strain rate or decreasing the deforming temperature. The relationship between ln[sinh(ασ)] and le ε, ln[sinh(ασ)] and1/T satisfied linear type. The constitute equation of flow behavior of the alloy can be expressed as ε=1.89×1013[sinh(0.0116σ)]7.29exp(-196000/RT). The flow stress during high temperature deformation was predicted by artificial neural network and the predicted stress-strain curves were in good agreement with the experimental results. With increasing the strain rate or decreasing the deformation temperature, the density of the dislocation decreased while the size of the grain as well as the volume fraction of the recrystallization increased and the main soften mechanism of the alloy transformed from dynamic recovery to dynamic recrystallization. According to the processing map analysis, flow instability occurs at two regions, the low temperature300~400℃with a strain rate of0.1~10s-1and the high temperature460~500℃with a strain rate of1.0~10s-1. The flow localization and the fracture are responsible for it. The suitable deformation condition for the alloy is385~460℃and0.001~0.003s-1.
     The effects of the solution treatment, single aging, the deformation aging and the interrupted aging on the microstructure and the properties of the Al-Cu-Mg heat-resistant aluminum alloy containing Ag were studied. And the solution and the aging process of the alloy were also optimized. The results show that the suitable solution and single aging process was515℃/1.5h water-quenching+185℃/4h, treated by which, the tensile strength of the alloy was505MPa, the yield strength was443MPa and the elongation was12.2%. The deformation aging for the Al-Cu-Mg heat-resistant aluminum alloy containing Ag accelerated the aging process and the nucleation of Ω and θ' at dislocations and refined the precipitations both in the grains and on the grain boundaries. With increasing the deformation amount, the strength of the alloy decreased and then increased. And the suitable pre-deformation amount was4%. Treated by4%pre-deformation+185℃/2h aging, the tensile strength of the alloy was516MPa, the yield strength was453MPa and the elongation was12.1%. Lower secondary aging temperature for interrupted aging process accelerated the precipitations of θ' and increased the elongation of the alloy while higher secondary aging temperature accelerated the precipitations of Ω and refined its size, modified the distribution of the particles on the grain boundaries which led to the enhanced strength and plasticity of the alloy. The suitable interrupted aging process for Al-Cu-Mg heat-resistant aluminum alloy containing Ag was185℃/2h+150℃/6h, treated by which, the tensile strength of the alloy was518MPa, the yield strength was454MPa and the elongation was13.8%.
     The thermal exposure experiments of the peak-aged and the under-aged Al-Cu-Mg heat-resistant aluminum alloy containing Ag alloys were carried out and the corresponding changes of the microstructure and the properties with varying the thermal exposure temperature and time were studied. And the mechanism of the thermal stability of the alloys was also discussed. Both under-aged and peak-aged Al-Cu-Mg heat-resistant aluminum alloy containing Ag possessed excellent heat-resistant properties below250℃. With increasing the thermal exposure time or the temperature, the precipitations in the peak-aged alloy coarsed and the number of that decreased. Correspondingly, the strength of the peak-aged alloy decreased. The main strengthening phases Ω and θ' precipitated secondarily in the under-aged alloy exposed at100~150℃and the strength of the alloy increased and then decreased with prolonging the thermal exposure time. The strength of the under-aged alloy exposed at200~300℃decreased with increasing the thermal exposure time or the temperature.
     The creep behavior at elevated temperatures of both under-aged and peak-aged Al-Cu-Mg heat-resistant aluminum alloy containing Ag were studied. And the microstructural evolution was analysised by means of SEM and TEM. The Al-Cu-Mg heat-resistant aluminum alloy containing Ag possessed excellent creep resistant properties at elevated temperatures. The main strengthening phases Ω and θ' in the under-aged alloy precipitated dynamically during the creep process. And the coarsening rate of the strengthening phases and the steady creep rate of the under-aged alloy were much lower than that of the peak-aged alloy. The steady creep rate increased with increasing the temperature or the applied stress, which can be described by a constitutive equation ε=7.60x10-4σ3.60exp(-102000/RT). The main creep mechanism was dislocation mechanism at the early stage of creep and changed to the intracrystalline diffusion mechanism as the creep proceeded.
引文
[1]肖亚庆.铝加工技术实用手册[M].北京:冶金工业出版社,2005
    [2]Iau J, Kulak M. A new paradigm in the design of aluminium alloys for aerospace applications[J]. Materials Science Forum,2000,331/337:127-140
    [3]王祝堂,田荣璋.铝合金及其加工手册[M].长沙:中南大学出版社,2000
    [4]杨守杰,戴圣龙.航空铝合金的发展回顾与展望[J].材料导报,2005,19(2):84-88
    [5]张君尧.铝合金材料的新进展[J].轻合金加工技术,1998,26(5):1-6,10
    [6]郑玉珍,刘存玉,刘金凤.影响2124铝合金断裂韧性的因素[J].航空材料,1989,9(4):16-23
    [7]Polmear I J. Control of precipitation processes and properties in aged aluminium alloys by microalloying[J]. Materials Forum,1999,23:117-135
    [8]高云震.铝合金断裂韧性[M].北京:冶金工业出版社,1980
    [9]黄昭良.某导弹舱体材料分析[J].上海航天,1991(2):7-13
    [10]林刚,林慧国,赵玉涛.铝合金应用手册[M].北京:机械工业出版社,2006
    [11]Mc Queen H J. Experimental roots of thermo mechanical treatments for aluminum alloys[J]. Journal of Metals,1980,3:17-26
    [12]薛卫东.新型铝合金展望[J].机械工程自动化,2004,11(4):90-91,94
    [13]彭志辉.航空用新型高强度铝合金[J].材料导报,1997,11(6):16-19
    [14]王建华.耐热铝合金研究进展[J].宇航材料工艺,2000,30(6):10-13
    [15]Hu L, Liu Z, Wang E. Micro structure and mechanical properties of 2024 aluminum alloy consolidated from rapidly solidified alloy powders[J]. Materials Science and Engineering A,2002,323(1-2):213-217
    [16]Xu W, Liu J, Luan G, et al. Micro structure and mechanical properties of friction stir welded joints in 2219-T6 aluminum alloy [J]. Materials & Design,2009, 30(9):3460-3467
    [17]Leng Y, Porr Jr W C, Gangloff R P. Tensile deformation of 2618 and Al-Fe-Si-V aluminum alloys at elevated temperatures [J]. Scripta Metallurgica et Materialia, 1990,24(11):2163-2168
    [18]Kaibyshev R, Sitdikov O, Mazurina I, et al. Deformation behavior of a 2219 Al alloy[J]. Materials Science and Engineering A,2002,334(1-2):104-113
    [19]Zhang W L, Frankel G S. Localized corrosion growth kinetics in AA2024 alloys[J]. Journal of the Electrochemical Society B,2002,149(22):510-519
    [20]Zhang W L, Frankel G S. Transitions between pitting and intergranular corrosion in AA2024[J]. Electrochimica Acta,2003,48(9):1193-1210
    [21]Guillaumin V, Mankowski G. Localized corrosion of 2024 T351 aluminum alloy in chloride media[J]. Corrosion Science,1999,41(3):421-438
    [22]Liu Z, Chong P H, Butt A N, et al. Corrosion mechanism of laser-melted AA 2014 and AA 2024 alloys[J]. Applied Surface Science,2005,247(1-4):294-299
    [23]Strivatsan T S, Kolar D, Magnusen P. The cyclic fatigue and final fracture behavior of aluminum alloy 2524[J]. Materials & Design,2002,23(2):129-139
    [24]Srivatsan T S, Kolar D, Magnusen P. Influence of temperature on cyclic stress response, strain resistance, and fracture behavior of aluminum alloy 2524 [J]. Materials Science and Engineering A,2001,314(1-2):118-130
    [25]May A, Belouchrani M A, Taharboucht S, et al. Influence of heat treatment on the fatigue behaviour of two aluminium alloys 2024 and 2024 plated[J]. Procedia Engineering,2010,2(1):1795-1804
    [26]Reddy A S. Fatigue and creep deformed microstructures of aged alloys based on Al-4% Cu-0.3% Mg[J]. Materials & Design,2008,29(4):763-768
    [27]刘静安,谢水生.铝合金材料的应用于技术开发[M].北京:冶金工业出版社,2004
    [28]张宝昌.有色合金及其热处理[M].陕西:西北工业大学出版社,1993
    [29]Polmear I J, Pons G, Octor H, et al. After Concorde:Evaluation of an Al-Cu-Mg-Ag alloy for use in the proposed European SST[J]. Materials Science Forum,1996,217-222:1759-1764
    [30]Kazanjian S M, Wang N, Starke Jr E A. Creep behavior and microstructural stability of Al-Cu-Mg-Ag and Al-Cu-Li-Mg-Ag alloys[J]. Materials Science and Engineering A,1997,234-236:571-574
    [31]金头男,尹志民.Al-Cu-Mg-Si系锻铝合金夹杂相的微观结构[J].中国有色金属学报,1993,7(1):122-124
    [32]陈志国,李世晨,刘祖耀,等.微合金化Al-4.0Cu-0.3Mg合金时效初期微结构演变的计算机模拟[J].中国有色金属学报,2004,14(4):1274-1280
    [33]刘禹门.Al-Cu-Mg合金中位错与S相的相互作用[J].兵器材料科学与工程,2005,28(5):1-4
    [34]Yan J. A precipitate phase in AA2124[J]. Journal of Materials Science,1991, 26:3244-3248
    [35]王猛.轻金属材料加工手册(下)[M].北京:冶金工业出版社,1980
    [36]谢优华.锆对新型超高强铝合金组织和性能的影响[D].北京:北京航空材料研究院,2001
    [37]张士林,任颂赞.简明铝合金手册[M].上海:上海科学技术文献出版社,2001
    [38]柏振海,熊俊,罗兵辉,等.钪在铝合金中的作用[J].合金与热处理,2001,24(6):33-36
    [39]Yu K, Li W, Li S, et al. Mechanical properties and micro structure of aluminum alloy 2618 with Al3(Sc, Zr) phases[J]. Materials Science and Engineering A, 2004,368(1-2):88-93
    [40]张坤,戴圣龙,杨守杰,等.Al-Cu-Mg-Ag系新型耐热铝合金研究进展[J].航空材料学报,2006,26(3):251-257
    [41]Wilson R N, Partridge P G. The nucleation and growth of S' precipitates in an aluminium-2.5%copper-1.2%magnesium alloy[J]. Acta Metallurgica,1965, 13(12):1321-1327
    [42]Vietz J T, Polmear I J. The influence of small additions of silver on the ageing of aluminium alloys:observations on Al-Cu-Mg alloys[J]. Journal of Institute of Metals,1966,94(12):410-419
    [43]Hutchinson C, Ringer S P. Precipitation processes in Al-Cu-Mg alloys microalloyed with Si[J]. Metallurgical and Materials Transactions,2000, 31(11):2721-2733
    [44]Gao X, Nie J F, Muddle B C. Effects of Si additions on the precipitation hardening response in Al-Cu-Mg(-Ag) alloys[J]. Materials Science Forum,1996, 217/222(part 2):1251-1256
    [45]Ringer S P, Sakurai T, Polmear I J. Origins of hardening in aged Al-Cu-Mg-(Ag) alloys[J]. Acta Materialia,1997,45(9):3731-3744
    [46]Suzuki Y, Matsuo M, Saga M, et al. Properties of bake hardenable Al-Mg-Cu alloy sheets[J]. Material Science Forum,1996,217-222:1789-1794
    [47]Ratchev P, Verlinden B, Van H P.S' phase precipitation in Al-4wt%Mg-lwt%Cu alloy [J]. Scripta Metallurgica et Materialia,1994, 30(5):599-604
    [48]Takeda M, Madea Y, Yoshida A, et al. Discontinuity of G.P.(I) zone and θ"-phase in an Al-Cu alloy[J]. Scripta Materialia,1999,41(6):643-649
    [49]Sato T. Early stage phenomena and role of microalloying elements in phase decomposition of aluminum alloys[J]. Materials Science Forum,2000,331-337: 85-96
    [50]Karlik M, Bigot A, Jouffrey B. HREM, FIM and tomographic atom probe investigation of Guinier-Preston zones in an Al-1.54%Cu alloy[J]. Ultramicroscopy,2004,98(2/4):219-230
    [51]Matsubara E, Cohen J B. G P zones in Al-Cu alloys-I[J]. Acta Metallurgica,1985, 33(11):1945-1955
    [52]Phillips V A. High resolution electron microscope observations on precipitation in Al-3.0%Cu alloy[J]. Acta Metallurgica,1975,23(6):751-767
    [53]李松瑞,周善初.金属热处理[M].长沙:中南大学出版社,2003
    [54]Wang S C, Starink M J. Precipitates and intermetallic phases in precipitation hardening Al-Cu-Mg-(Li) based alloys[J]. International Materials Reviews,2005, 50(4):193-215
    [55]Muddle B C, Polmear I J. The precipitate Ω Phase in Al-Cu-Mg-Ag alloys[J]. Acta Metallugrica,1989,37(3):777-789
    [56]李慧中,张新民,陈明安.2519铝合金时效过程的组织特征[J].特种铸造及有色合金,2005,25(5):273-275
    [57]刘志义,李云涛,刘延斌,等.Al-Cu-Mg-Ag合金析出相的研究进展[J].中国有色金属学报,2207,17(12):1905-1915
    [58]Gupta A K, Jena A K, Chaturvedi M C. Differential technique for the determination of the activation energy of precipitation reactions from differential scanning calorimatefic data[J]. Scripta Metallurgica,1988,22(3):369-371
    [59]Jena A K, Gupta A K, Chaturvedi M C. Differential scanning calorimetric investigation of precipitation kinetics in the AL-1.53wt%Cu-0.79wt%Mg alloy[J]. Acta Metallurgica,1989,37(3):885-895
    [60]Bagaryatshy Y A. Structural changes on aging Al-Cu-Mg alloys[J]. Doklady Akademii Nauk, SSSR.1952,87:397-562
    [61]Gerold V, Haberkorn H. Rontgenographic understructure calculation of Al-Mg-Cu and Al-Mg-Zn-Li alloys[J]. Zeitschrift fur Metallkunde,1959, 50:568-574
    [62]Silcock J M. The structural ageing characteristics of Al-Cu-Mg alloys with copper-magnesium weight ratios of 7-1 and 2.2-1 [J]. Journal of Institute of Metals,1960-1961,89:203-210
    [63]Wolverton C. Crystal structure and stability of complex precipitate phases in Al-Cu-Mg-(Si) and Al-Zn-Mg alloys[J]. Acta Materialia,2001, 49(16):3129-3142
    [64]Cuisiat F, Duval P, Graf R. Etude des premiers stades de decomposition d'un alliage Al-Cu-Mg[J]. Scripta Metallurgica,1984,18(10):1051-1056
    [65]Shih H C, Ho N J, Huang J C. Precipitation behaviors in Al-Mg-Cu and 2024 aluminum alloys[J]. Metallurgical and Materials Transactions A,1996, 27:2479-2494
    [66]Laird C, Aaronson H I. Structures and migration kinetics of Al pha:Theta prime boundaries in Al-4pctCu:part I-interfacial structures [J]; Transactions of the Metallurgical Society of AIME,1968,242:1393-1403
    [67]Silcock J M, Heal T J, Hardy H K. Structural ageing characteristics of binary aluminium-copper alloys[J]. Journal of Institute of Metals,1953-54,82:239-248
    [68]Ratchev P, Verlinden B, De Smet P, et al. Precipitation hardening of all Al-4.2wt%Mg-0.6wt%Cu alloy[J]. Acta Materialia,1998,46(10):3523-3533
    [69]Perlitz H, Westgren A. The Crystal Structure of MgCuAl2[J]. Arkiv Kemi Mineral Geology,1943,16B(13):1-8
    [70]Auld J H. X-ray investigation of ageing in an Aluminium-5%Magnesium alloy with small silver additions[J]. Acta Metallurgica,1968,16(1):97-101
    [71]Mondolfo L F. Aluminum Alloys:Structure and Properties[M]. London: Butterworths,1976
    [72]Huang B P, Zheng Z Q. Independent and combined roles of trace Mg and Ag additions in properties precipitation process and precipitation kinetics of Al-Cu-Li-(Mg)-(Ag)-Zr-Ti alloys[J]. Acta Materialia,1998,46(12):4381-4388
    [73]肖代红.微合金化对Al-Cu-Mg基耐热铝合金的显微组织和力学性能的影响[D].上海:上海交通大学,2004
    [74]Zhu A W, Starke Jr E A. Strengthening effect of unshearable particles of finite size:a computer experimental study[J]. Acta Materialia,1999,47(11): 3263-3269
    [75]Xiao D H, Song M, Chen K H, et al. Effect of rare earth Yb addition on mechanical properties of Al-5.3Cu-0.8Mg-0.6Ag alloy[J]. Materials Science and Technology,2007,23(10):1156-1160
    [76]Xiao D H, Song M, Huang B Y, et al. Effect of Sc addition on microstructure and mechanical properties of Al-Cu-Mg-Ag-Zr alloy[J]. Materials Science and Technology,2009,25(6):747-752
    [77]Raviprasad K, Hutchinson C R, Sakurai T, et al. Precipitation processes in an Al-2.5Cu-1.5Mg(%) alloy microalloyed with Ag and Si[J]. Acta Materialia,2003, 51(17):5037-5050
    [78]Barlow I C, Rainforth W M, Jones H. Role of silicon in the formation of the Al5Cu6Mg2 phase in Al-Cu-Mg alloys[J]. Journal of Materials Science,2000, 35(6):1413-1418
    [79]Gable B M, Shiflet G J, Starke Jr E A. The effect of Si additions on omega precipitation in Al-Cu-Mg-(Ag) alloys[J]. Scripta Materialia,2004, 50(1):149-153
    [80]肖代红,黄伯云,陈康华.稀土Er对Al-5.3Cu-0.8Mg-0.6Ag合金组织与性能的影响[J].材料热处理学报,2008,29(2):119-122
    [81]夏卿坤,刘志义,余日成,等.均匀化退火对Al-Cu-Mg-Ag系合金组织与性能的影响[J].材料热处理,2006,35(4):8-10
    [82]余日成,刘志义,刘延斌,等.Al-Cu-Mg-Ag系高强耐热合金的热加工工艺研究[J].金属热处理,2006,31(5):75-79
    [83]肖代红,宋玟,陈康华,等.热处理对含Ag耐热铝合金组织与性能影响[J].材料热处理学报,2008,29(1):75-79
    [84]夏卿坤,刘志义,余日成,等.一种新型耐热铝合金均匀化工艺的研究[J].铸造,2007,56(1):23-25
    [85]肖代红,王健农,丁冬雁.预拉伸处理对Al-5.3Cu-0.8Mg-0.3Ag合金性能和时效过程影响[J].热加工工艺,2003,4:1-2,5
    [86]Unlu N, Gable B M, Shiflet G J, et al. The effect of cold work on the precipitation of Ω and θ' in a ternary Al-Cu-Mg alloy[J]. Metallurgical and Materials Transaction A,2003,34(12):2757-2769
    [87]Ringer S P, Muddle D M, Pohner I J. Effects of cold work on precipitation in Al-Cu-Mg-(Ag) and Al-Cu-Li (Mg-Ag) alloys[J]. Metallurgical and Materials Transaction A,1995,26(7):1659-1671
    [88]刘延斌,刘志义,余日成,等.预拉伸对Al-Cu-Mg-Ag合金室温性能的影响[J].金属热处理,2007,32(4):64-67
    [89]Lumley R N, Polmear I J, Morton A J. Heat treatment of age-hardenable aluminum alloys[P]. United States:US7025839B2,2006
    [90]张新明,刘玲,贾寓真.拉伸与轧制预变形对2519A铝合金组织与力学性能的影响[J].中国有色金属学报,2010,20(6):1088-1094
    [91]李慧中,张新明,陈明安,等.预变形对2519铝合金组织与力学性能的影响[J].中国有色金属学报,2004,14(12):1990-1994
    [92]郭昀抒,潘清林,聂波,等.2A23时效成形铝合金的时效研究[J].材料工程,2009,1:37-40
    [93]Lumley R N, Polmear I J. The effect of long term creep exposure on the micro structure and properties of an underaged Al-Cu-Mg-Ag alloy[J]. Scripta Materialia,2004,50(9):1227-1231
    [94]Macchi C E, Somoza A, Dupasquier A, et al. Secondary precipitation in Al-Zn-Mg-(Ag) alloys[J]. Acta Materialia,2003,51(17):5151-5158
    [95]Buha J, Lumley R N, Crosky A G. Secondary ageing in an aluminium alloy 7050[J]. Materials Science and Engineering A,2008,492(1-2):1-10
    [96]李海,郑子樵,王芝秀.7055铝合金二次时效特征研究-(Ⅰ)力学性能[J].稀有金属材料与工程,2005,34(7):1029-1032
    [97]周古为,郑子樵,李海.基于人工神经网络的7055铝合金二次时效性能预测[J].中国有色金属学报,2006,16(9):1583-1588
    [98]于利军,郑子樵,李世晨,等.热处理工艺T6I6对2195合金组织和性能的影响[J].材料热处理学报,2006,27(5):79-84
    [99]肖代红,宋玟,陈康华,等.Ag对A1-Cu-Mg-Mn-(Zr,Ti)合金高温性能的影响[J].特种铸造及有色合金,2007,27(1):7-11
    [100]武恭,姚良均,李震霞,等.铝及铝合金材料手册[M].北京:科学出版社,1997
    [101]Hutchinson C R, Fan X, Pennycook S J, et al. On the origin of the high coarsening resistance of Ω plates in Al-Cu-Mg-Ag alloys[J]. Acta Materialia, 2001,49(14):2827-2841
    [102]Ringer S P, Yeung W, Muddle B C, et al. Precipitate stability in Al-Cu-Mg-Ag alloys aged at high temperatures [J]. Acta Metallurgica et Materialia,1994, 42(5):1715-1725
    [103]Bakavos D, Prangnell P B, Bes B, et al. The effect of silver on micro structural evolution in two 2xxx series Al-alloys with a high Cu:Mg ratio during ageing to a T8 temper[J]. Materials Science and Engineering A,2008,491(1-2):214-223
    [104]Song M, Chen K H, Huang L P. Effects of Ag addition on mechanical properties and micro structures of Al-8Cu-0.5Mg alloy[J]. Transactions of Nonferrous Metals Society of China,2006,16(4):766-771
    [105]Hou Y H, Gu Y X, Liu Z Y, et al. Modeling of whole process of ageing precipitation and strengthening in Al-Cu-Mg-Ag alloys with high Cu-to-Mg mass ratio[J]. Transactions of Nonferrous Metals Society of China,2010, 20(5):863-869
    [106]Xia Q K, Liu Z Y, Li Y T. Micro structure and properties of Al-Cu-Mg-Ag alloy exposed at 200℃ with and without stress[J]. Transactions of Nonferrous Metals Society of China,2008,18(4):789-794
    [107]Lumley R N, Morton A J, Polmear I J. Enhanced creep performance in an Al-Cu-Mg-Ag alloy through underageing[J]. Acta Materialia,2002, 50(14):3597-3608
    [108]Eddahbi M, Jimenez J A, Ruano O A. Micro structure and creep behaviour of an Osprey processed and extruded Al-Cu-Mg-Ti-Ag alloy [J]. Journal of Alloys and Compounds,2007,433(1-2):97-107
    [109]Bai S, Liu Z, Li Y, et al. Micro structures and fatigue fracture behavior of an Al-Cu-Mg-Ag alloy with addition of rare earth Er[J]. Materials Science and Engineering A,2010,527(7-8):1806-1814
    [110]夏卿坤,刘志义,李云涛,等.Al-Cu-Mg-Ag-Zr合金高温持久后的组织与性能[J].兵器材料科学与工程,2007,30(5):13-17
    [111]夏卿坤,刘志义,余日成,等.Al-4.72Cu-0.45Mg-0.54Ag-0.17Zr合金高温持久后的剩余室温拉伸性能及组织分析[J].材料工程,2006,11:3-9
    [112]Xiao D, Wang J, Chen K, et al. Superplastic deformation of a heat-resistant Al-Cu-Mg-Ag-Mn alloy[J]. Journal of Materials Processing Technology,2009, 209(7):3300-3305
    [113]Xiao D H, Song M. Superplastic deformation of an as-rolled Al-Cu-Mg-Ag alloy [J]. Materials & Design,2009,30(2):424-426
    [114]Beffort O, Solenthaler C, Speidel M O. Improvement of strength and fracture toughness of a spray-deposited Al-Cu-Mg-Ag-Mn-Ti-Zr alloy by optimized heat treatments and thermo mechanical treatments [J]. Materials Science and Engineering A,1995,191(1-2):113-120
    [115]Chang C H, Lee S L, Lin J C, et al. Effect of Ag content and heat treatment on the stress corrosion cracking of Al-4.6Cu-0.3Mg alloy[J]. Materials Chemistry and Physics,2005,91(2-3):454-462
    [116]Little D A, Connolly B J, Scully J R. An electrochemical framework to explain the intergranular stress corrosion behavior in two Al-Cu-Mg-Ag alloys as a function of aging [J]. Corrosion Science,2007,49(2):347-372
    [117]Abis S, Mengucci P, Riontino G. A study of the high-temperature ageing of Al-Cu-Mg-Ag alloy 201 [J]. Philosophical Magzine Part B,1993,67(4):465-484
    [118]Ringer S P, Hono K, Polmear I J, et al. Nucleation of precipitates in aged Al-Cu-Mg-(Ag) alloys with high Cu:Mg ratios[J]. Acta Materialia,1996, 44(5):1883-1898
    [119]Mukhopadhyay A K. On the nature of the second phase particles present in an as-cast Al-Cu-Mg-Ag alloy[J]. Scripta Materialia,1999,41(6):667-672
    [120]Taylor J A, Parker B A, Polmear I. Precipitation in Al-Cu-Mg-Ag casting alloy[J]. Metal Science,1978,12(10):478-482
    [121]Cousland S M, Tate G R. Structural changes associated with solid-state reactions in Al-Ag-Mg alloys[J]. Journal of Applied Crystals,1986,19(part 3):174-180
    [122]Lim M S, Tibballs K E, Rossiter P L. An assessment of thermodynamic equilibria in the Ag-Al-Cu-Mg quaternary system in relation to precipitation reactions[J]. Zeitschrift fur Metallkunde,1997,88(3):236-245
    [123]Reich L, Murayama M, Hono K. Evolution of Ω phase in an Al-Cu-Mg-Ag alloy-a three-dimension atom probe study[J]. National Research Institute for Metals,1998,46(17):6053-6062
    [124]Xiao D H, Wang J N, Ding D Y, et al. Effect of Cu content on the mechanical properties of an Al-Cu-Mg-Ag alloy[J]. Journal of Alloys and Compounds, 2002,343(1-2):77-81
    [125]Teleshov V V, Kaputkin E Ya, Golovleva A P, et al. Temperature ranges of phase transformations and mechanical properties of alloys of the Al-Cu-Mg-Ag system with various Cu/Mg ratios[J]. Metal Science and Heat Treatment,2005, 47(3-4):139-144
    [126]Kerry S, Scott V D. Structure and orientation relationship of precipitates formed in Al-Cu-Mg-Ag alloys[J]. Metal Science,1984,18(6):289-294
    [127]Sun L, Irving D L, Zikry M A, et al. First-principles investigation of the structure and synergistic chemical bonding of Ag and Mg at the Al/Q interface in a Al-Cu-Mg-Ag alloy[J]. Acta Materialia,2009,57(12):3522-3528
    [128]Garg A, Howe J M. Convergent-beam electron diffraction analysis of the Ω phase in an Al-4.0 Cu-0.5 Mg-0.5 Ag alloy[J]. Acta Metallurgica et Materialia, 1991,39(8):1939-1946
    [129]Li B Q, Wawner F E. Dislocation interaction with semicoherent precipitates (Ω phase) in deformed Al-Cu-Mg-Ag alloy [J]. Acta Materialia,1998, 46(15):5483-5490
    [130]张新明,李慧中,陈明安,等.热处理对2519铝合金应力腐蚀开裂敏感性的影响[J].中国有色金属学报,2006,16(10):1743-1748
    [131]Weatherly G C. The structure of ledges at plate-shaped precipitates[J]. Acta Materialia,1971,19(3):181-192
    [132]Fonda R W, Cassada W A. Accomodation of the misfit strain surrounding{111} precipitates (Ω) in Al-Cu-Mg-(Ag)[J]. Acta Metallurgica, 1992, 40(10):2539-2546
    [133]Sankaran R, Laird C. Kinetics of growth of platelike precipitates[J]. Acta Metallurgica, 1974,22(8):957-969
    [134]Li N K, Cui J Z. Micro structural evolution of high strength 7B04 ingot during homogenization treatment[J]. Transactions of Nonferrous Metals Society of China,2008,18(4):769-773
    [135]Wu Y, Xiong J, Lai R, et al. The micro structure evolution of an Al-Mg-Si-Mn-Cu-Ce alloy during homogenization[J]. Journal of Alloys and Compounds,2009,475(1-2):332-338
    [136]Zhang J, Zuo R, Chen Y, et al. Micro structure evolution during homogenization of a τ-type Mg-Zn-Al alloy[J]. Journal of Alloys and Compounds,2008, 448(1-2):316-320
    [137]Wu L M, Wang W H, Hsu Y F, et al. Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al-Zn-Mg-Sc-Zr alloy[J]. Journal of Alloys and Compounds,2008,456(1-2):163-169
    [138]Totik Y, Sadeler R, Kaymaz I, et al. The effect of homogenisation treatment on cold deformations of AA 2014 and AA 6063 alloys[J]. Journal of Materials Processing Technology,2004,147(1):60-64
    [139]Wang T, Yin Z M, Sun Q. Effect of homogenization treatment on micro structure and hot workability of high strength 7B04 aluminium alloy[J]. Transactions of Nonferrous Metals Society of China,2007,17(2):335-339
    [140]Fan X, Jiang D, Meng Q, et al. The micro structural evolution of an Al-Zn-Mg-Cu alloy during homogenization[J]. Materials Letters,2006, 60(12):1475-1479
    [141]Hillert A.合金扩散和热力学[M].赖和怡,刘国勋,译.北京:冶金工业出版社,1999
    [142]Shewman P G. Diffusion in Solids[M]. New York:McGraw-Hill,1963
    [143]Poirier J P.晶体的高温塑性变形[M].关德林,译.大连:大连理工大学出版社,1989
    [144]沈健.2091铝合金高温塑性变形的研究[D].长沙:中南工业大学,1996
    [145]Jonas J J, Sellars C M, Tegart M W J. Strength and structure under hot working conditions [J]. International Metallurgical Reviews,1969,14:1-24
    [146]Sheppard T, Parson N C, Zaidi M A. Dynamic recrystallization in Al-7Mg alloy[J]. Metal Science,1983,17(10):481-490
    [147]Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow of steel[J]. Journal of Appllied Physics,1944,15(1):22-27
    [148]Taku S. Dynamic Recrystallization micro structures under hot working conditions [J]. Journal of Material Procession Technology,1995,53:349-361
    [149]林启权,张辉,彭大暑,等.2519铝合金热压缩变形流变应力行为[J].热加工工艺,2002,3:3-5
    [150]李慧中,张新明,陈明安,等.2519铝合金热变形流变行为[J].中国有色金属学报,2005,15(4):621-625
    [151]Luo J, Li M, Yu W. Prediction of flow stress in isothermal compression of Ti-6A1-4V alloy using fuzzy neural network[J]. Materials & Design,2010, 31(6):3078-3083
    [152]Ping L, Kemin X, Yan L, et al. Neural network prediction of flow stress of Ti-15-3 alloy under hot compression[J]. Journal of Materials Processing Technology,2004,148(2):235-238
    [153]Reddy N S, Lee Y H, Park C H, et al. Prediction of flow stress in Ti-6A1-4V alloy with an equiaxed α+β micro structure by artificial neural networks[J]. Materials Science and Engineering A,2008,492(1-2):276-282
    [154]Chatterjee A, Maitra M, Goswami S K. Classification of overcurrent and inrush current for power system reliability using Slantlet transform and artificial neural network[J]. Expert Systems with Applications,2009,36(2, Part 1):2391-2399
    [155]Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural Networks,1989,2(5):359-366
    [156]Chun M S, Biglou J, Lenard J G, et al. Using neural networks to predict parameters in the hot working of aluminum alloys[J]. Journal of Materials Processing Technology,1998,86(1-3):245-251
    [157]Prasad Y V R K, Seshacharyulu T. Processing maps for hot working of titanium alloys[J]. Materials Science and Engineering A,1998,243(1-2):82-88
    [158]Cavaliere P. Hot and warm forming of 2618 aluminium alloy[J]. Journal of Light Metals,2002,2 (4):247-252
    [159]Gronostajski Z. The deformation processing map for control of micro structure in CuA19.2Fe3 aluminium bronze[J]. Journal of Materials Processing Technology,2002,125-126:119-124
    [160]陈森灿,叶庆荣.金属塑性成形原理[M].北京:清华大学出版社,1984
    [161]崔忠祈,刘北兴.金属学与热处理原理[M].哈尔滨:哈尔滨工业大学出版社,2004
    [162]周细林.2D70铝合金的高温变形特性及其热加工图研究[D].南昌:南昌航空大学,2007
    [163]曾卫东,周义刚,周军,等.加工图理论研究进展[J].稀有金属材料与工程,2006,35(5):673-677
    [164]Pfost D, Crawford P, Mendez J, et al. The effect of solution treatment and rolling mode on the mechanical properties of 2090 Al-Li alloy[J]. Journal of Material Procession Technology,1996,56(1-4):542-551
    [165]Senkov O N, Shagiev M R, Senkova S V, et al. Precipitation of Al3(Sc,Zr) particles in an Al-Zn-Mg-Cu-Sc-Zr alloy during conventional solution heat treatment and its effect on tensile properties [J]. Acta Materialia 2008, 56(15):3723-3738
    [166]余宗森,田中卓.金属物理[M].北京:冶金工业出版社,1981
    [167]Han N M, Zhang X M, Liu S D, et al. Effect of solution treatment on the strength and fracture toughness of aluminum alloy 7050[J]. Journal of Alloys and Compounds,2011,509(10):4138-4145
    [168]Hono K, Sano N, Babu S S, et al. Atom probe study of the precipitation process in Al-Cu-Mg-Ag alloys[J]. Acta Metallurgica et Materialia,1993, 41(3):829-838
    [169]宋旼,陈康华,黄兰萍.Al-Cu-Mg-Ag合金中时效析出相的析出及生长动力学[J].中国有色金属学报,2006,16(8):1313-1319
    [170]Fonda R W, Cassada W A, Shiflet G J. Accomodation of the misfit strain surrounding{111} precipitates Ω in Al-Cu-Mg-(Ag)[J]. Acta Metallurgica et Materialia,1992,40(10):2539-2546
    [171]晏井利,孙扬善,薛烽,等.纯Mg的蠕变行为研究[J].金属学报,2008,44(11):1354-1359
    [172]Spigarelli S, Evangelista E, Cucchieri S. Analysis of the creep response of an Al-17Si-4Cu-0.55Mg alloy[J]. Materials Science and Engineering A,2004, 387-38(15):702-705
    [173]齐义辉,郭建亭,崔传勇.NiAl-Cr(Zr)金属间化合物合金的高温蠕变[J].金属学报,2001,9(37):957-960
    [174]Mukherjee A K, Bird J E, Dorn J E. Experimental correlation for high-temperature creep[J]. Transactions of the ASME,1969,62:155-166
    [176]沙桂英,韩恩厚,于涛,等.Mg-Y-Nd合金的蠕变行为及其微观机制[J].金属学报,2003,39(10):1025-1030
    [177]林兆荣.金属超塑性成形原理及应用[M].南京:航空工业出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700