高效农药残留物检测酶纳米生物传感器的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期使用农药引起农产品中农药残留超标,对生态环境和人类健康造成极大危害。有机磷和氨基甲酸酯类农药是最常见的两类农药,也是目前为止仍然最广泛使用的农药,它们是一种神经毒物,会抑制人及动物体内胆碱酯酶活性,引起中枢神经系统功能紊乱,出现中毒症状,以至危及生命。近年来,农药残留问题已经受到了世界范围的关注。随着人们食品安全意识的不断增强,改善农药残留检测技术已迫在眉睫。
     农药残留常用的检测方法为气相、液相色谱法、质谱法以及波谱法等,通常耗时长、成本高,难以满足现场快速检测的需要。因此,急需研究一些快速、灵敏、便捷的检测方法,将高农药残留的农产品阻挡在市场之外,以杜绝食品安全事故的发生。生物传感分析技术与传统方法相比具有选择性好、灵敏度高、分析速度快、成本低、能在线检测等优点,在环境监测、食品检验等方面得到高度重视和广泛应用。
     乙酰胆碱酯酶(AChE)生物传感器广泛应用于有机磷和氨基甲酸酯类农药的测定。由于乙酰胆碱酯酶能够选择性的催化底物水解,且其催化活性能被有机磷农药所抑制,利用这一特性可制成用于测定有机磷农药含量生物传感器。为了提高传感器的灵敏度,通常在制备传感器时,在基础电极上修饰某种电化学催化剂,以增强传感器对底物的响应信号。
     纳米材料具有独特的物理和化学特性,能促进生物分子的活性中心与电极间的直接电子交换,同时最大限度地保持生物分子的活性。因此,将纳米技术应用于生物分子电化学分析研究,有利于创新性地建立一些新理论、新技术和新方法,将是一个很有前景的领域。
     本文旨在建立快速检测果蔬中有机磷和氨基甲酸酯农药残留的电化学酶生物传感器。试验以玻碳电极作为信号转换器,分别利用纳米氧化锌和纳米氧化硅以及多壁碳纳米管作为电极修饰材料,构建新型生物传感器,并对其电化学性质进行研究。主要研究结果如下:
     (1)实验中对粗酶液的提取条件进行了研究。采用了Sephadex G-200层析,对鞘翅目昆虫洋虫的头胸部组织粗酶提取液中的乙酰胆碱酯酶进行了分离纯化,并对纯化后的酶液的性质进行了研究。结果表明,洋虫头胸部乙酰胆碱酯酶粗酶的最适提取条件为:pH7.5,Triton X-100浓度为2.0%,按料液比为1:5,4℃下浸提10个小时。采用Sephadex G-200层析纯化粗酶液,AChE的纯化倍数为52.76倍,总蛋白含量2.37 mg,酶比活力达到13.19 OD/(min/mg),酶活回收率为85.67%。纯化后的样品经SDS-PAGE电泳测定其分子量为78.6 KDa。通过纯化后的酶性质研究,确定检测条件为:最佳反应温度为36℃时,抑制时间为35 min。通过敌敌畏抑制试验检测酶的特性,结果表明,敌敌畏在0.2-2μM范围内,AChE抑制率与农药浓度呈良好的线性关系,抑制率等式为I%=(18.38c+11.25)%。当敌敌畏在2-10μM范围内,AChE抑制率与农药浓度呈另一线性关系,抑制率等式为I%=(1.53c+51.66)%。检出限为1.58±0.37μg/L。
     (2)采用薄膜蒸发-冻融法制备AChE脂质体,通过正交设计优化制备工艺,以鱼精蛋白沉淀法分离脂质体与游离酶。通过计算活性包封率,确定AChE脂质体最佳制备工艺为:根据正交试验结果,确定最佳处方工艺,即卵磷脂与胆固醇的质量比为2:1,(卵磷脂+胆固醇)的质量与AChE的质量之比1:2,冻融时的循环次数为30次,旋转速度为150 rpm,最佳处方工艺制得的5组脂质体的活性包封率的平均值为89.5%。AChE脂质体生物反应器有效平均粒径为7.3±0.85μm,其中85%(体系分数)的生物反应器微粒集中在7μm。AChE脂质体生物反应器表面电势-78.6 mV。AChE脂质体生物反应器相比于同等酶含量的游离酶,具有较高的稳定性。Porin蛋白嵌入磷脂层,构成底物进入通道的同时控制酶的逸出,因为酶的大小无法通过孔道。脂质体内酶的活性根据荧光指示剂的信号强度来测定。通过敌敌畏和西维因抑制试验结果表明,AChE抑制率与农药浓度呈良好的线性关系,检出限分别为1.134±0.29μg/L和1.364±0.35μg/L。
     (3)采用三电极系统对玻碳电极进行了预处理及活化,实验结果表明,GCE-(CS/ALB)n对底物ATChCl的催化电流值随着组装层数的增多而明显增大,(CS/ALB)多层膜最适层数为5层,(CS/ALB)5同时体现出了较好的稳定性。抑制率与敌敌畏的浓度在一定范围内存在线性关系。在0.25-1.5μM的范围内抑制率回归方程为I%=(24.45c+12.35)%,相关系数R2为0.9981。在1.75-10μM的范围内抑制率回归方程为I%=(1.86c+58.76)%,相关系数R2为0.9914。检出限为0.86±0.098μg/L。
     (4)采用硅酸钠为硅源,氯化铵为沉淀剂制备纳米二氧化硅。研究了硅酸钠的浓度、乙醇与水的体积比以及pH值对纳米二氧化硅粉末比表面积的影响。利用XRD衍射和扫描电子显微镜对产物进行表征。选用最适体系制备出的纳米氧化硅比表面积平均值为297.3 m2/g,表面电势为-42.5 mV,平均粒径为115.5±1.86 nm。(ALB/SiO2)n最适层数为6。GCE-(ALB/SiO2)6对农药的响应实验结果表明,该电极灵敏度较高且抑制率与农药的浓度在一定范围内存在线性关系。GCE-(ALB/SiO2)6具有较好的重复性和稳定性。
     (5)将多壁碳纳米管(MWNTs)置于混酸(硝酸:硫酸=1:3)中,利用超声波振荡截短碳纳米管、并使其与羧基链接,而后基于阳离子聚合电解质壳聚糖(CS)和带有阴离子的碳纳米管之间的静电作用,通过层层自组装的模式均匀稳定地形成复合壳聚糖多层膜。GCE-(ALB/MWNTs)n最适层数为6层。在GCE-(ALB/MWNTs)6对农药的响应实验结果表明,农药抑制率与农药的浓度在一定范围内存在线性关系,检出限为0.68±0.076μg/L。
     (6)采用溶胶-凝胶法制备Al掺杂的ZnO纳米粉体。结合正交设计对各因素进行优化,得到最适制备条件为:醋酸锌浓度为1.5 mol/L,((NH)3C6H5O7浓度为2 mol/L,Al掺杂质量分数1.5%,V(乙醇):V(H2O)为1.5:1和煅烧温度1200℃。XRD分析和EDS能谱分析表明Al元素已经融合进了ZnO的晶格当中。GCE-(ALB/ZnO)n最适层数为5层。GCE-(ALB/ZnO)5对展现了良好的光电性能,当紫外光与可见光同时存在时,经Al-ZnO修饰的电极具有较高的响应电流。农药抑制率与农药的浓度在一定范围内存在线性关系,检出限为0.76±0.087μg/L
     (7)将纳米ZnO、MWNTs和纳米氧化硅这三种纳米材料,经过有序的组合构建酶最终获得了以(ALB/MWNTs/SiO2/ZnO)4膜为基础的性能优越的电化学生物传感器。根据新型传感器的性能优化工作条件,即反应体系总体积10 mL,底物反应时间15 min,体系温度36℃,同时伴随光源辐射,反应体系pH值为7.4,农药样品抑制12 min,加入1.25 mM底物,反应15 min。在敌敌畏响应实验中,农药抑制率与农药的浓度在一定范围内存在线性关系,检出限为0.53±0.096μg/L。
     (8)实验中考察了新型传感器的抗干扰能力和可再生能力,这两方面的特性直接影响着传感器的实际应用。在研究重金属离子、农药以及其他化合物对AChE生物传感器测定时的影响过程中,发现酶纳米复合结构生物传感器在含有重金属离子和不同农药的溶液中基本不受影响,含有抗坏血酸的体系对传感器的影响较大。筛选出三种物质来活化酶传感器可再生的活化物。通过比较选择碘解磷定(2-PAM)作为传感器可再生的活化物。结果表明,所制备的传感器可以重复使用6次,活性仍在80%以上。
     (9)采用优化好的体系制备酶纳米生物传感器,测定对两类中的8种农药的电化学响应,结果表明8种农药抑制率分别在一定范围内与农药浓度呈良好的线性关系,且具有较低的检出限。利用乙酰胆碱酯酶生物传感器技术,以苹果、小白菜和黄瓜为样品,采用标准加入法进行分析,测定蔬菜水果中有机磷和氨基甲酸酯类农药的残留。酶纳米传感器检测三种果蔬中两类农药残留时,均表现出良好的精确度、重现性和准确性,可以用于实际的检测,且不需要繁琐的样品预处理过程,能够满足快速检测的需要。
With the long-term use of pesticides in agricultural products, excessive pesticide residues has caused considerable hazard on ecological environment and health of human. Organophosphorus and carbamate pesticides are two common pesticides which are still widely used in agriculture production. They can inhibit cholinesterase activity in body and cause poisoning symptom, even endanger the life of human being. So pesticide residues in food have been paid more attention over the world. Now, people would pay growing awareness of food safety, since it's extremely urgent to strengthen the detection of pesticide residues.
     Traditionally, the widely used methods for determination of organophosphorus pesticides are liquid/gas chromatography, mass chromatography and spectroscopy, these methods are sensitive and allow discrimination among different organophosphorus compounds but they are expensive and require a long time not to satisfy the need of fast detection. So research a rapid, sensitive and convenient method for detection pesticide residues is our imperative needs, it will play an important role in prevention high pesticide residues farm products from the marketplace and to reduce the incidents of food safety. Enzymatic biosensors have emerged as an ultra sensitive, selective cost-effective and rapid technique for pesticides residue analysis in environmental monitoring, food and quality control.In recent years, it has been given serious attention and extensive research, becoming important trends for detection pesticide residues.
     The acetylcholinesterase biosensors are applied to detect organophosphorus pesticides widely. The acetylcholinesterase can catalyze the substance to hydrolyze selectively. And the activity of acetylcholinesterase can be restrained by the organophosphorus pesticides. We make use of the characteristic to design the biosensors to detect the content of organophosphorus pesticides. In order to improve the sensitivity of the biosensor, the electrochemical catalyst usually be used in the preparation of the biosensor.
     Due to their special physical and chemical properties, nanosturctured materials can activate while active electrode surface, and promote the direct electron transfer between the active center in biomolecule and the electrode surface. Therefore, the application of nano-technology on electrochemical analysis of biological molecules is a promising area and conducive to the establishment of some new theories, new technologies and new methods.
     In this paper, we will propose a simple and efficient method for detection trace pesticide residues based on immobilization of AChE on nanosturctured materials modified electrode, which called electrochemical biosensor for screening of organophosphorus and carbamate pesticides. In this thesis, the novel biosensors were constructed based on nano-ZnO, nano-SiO2 and multi-walled carbon nanotubes. The electrochemical properties and catalytic effects were studied. The main contents and results are summarized as follows:
     (1) This experiment is mainly for the extraction of the crude enzyme solution. Acetylcholinesterase (AChE) from cephalothorax of Martianus dermestoides Chevrolat., was separated from the crude extract and purified to electrophoretic homogeneity by Sephadex G-200 chromatography. Then the properties of crude extract and purified enzyme were studied. The results show that the acetylcholinesterase from cephalothorax of Martianus dermestoides Chevrolat. optimum conditions for the extraction is,2.0%Trition X-100, pH 8.0, the ratio of material and extract 1:5, the extraction for 10 h at 4℃. The crude enzyme was purified 52.76-fold. And the content of total protein was 2.37 mg. The specific activity of enzyme was 13.19 OD/(min/mg). The 85.67% of activity recovery was obtained. The Molecular weight of the purified enzyme was 78.6 KDa, measured by SDS-PAGE. Studies on the properties of the AChE showed that the optimum temperature of the enzyme was 36℃and the exhibited optimum inhibition time about 35 min. The inhibition efficiency of dichlorvos was a linear function of its concentration from 0.2 to 2 and 2 to 10.00μM. The linearization equation were I%=(18.38c+11.25)% and I%=(1.53c+51.66)%. The detection limit was calculated to be 1.58±0.37μg/L
     (2) The formulation was optimized on the basis of orthogonal design and its entrapment efficiency was performed by the protamine sedimentation method. The film-evaporation combining with freeze-thawing method was used to prepare AChE liposome. The optimal conditions were found to be that the ratio of (cholesterol+egg phospholipid) and AChE was 1:2, the times of freeze-thawing was 30 times, the rotate speed was 150 rpm, the ratio of cholesterol and egg phospholipid was 2:1. The average activity entrapment efficiency of the optimized AChE liposomes was 89.5%. AChE liposomes had a mean diameter of 7.3±0.85μm and 85% (by volume) of the microspheres were below 7μm and a zeta potential of-34.7 mV. AChE liposomes bioreactor compared to the same content of the free enzyme has high stability. Porins are embedded into the lipid membrane, allowing for the free substrate transport, but not that of the enzyme due to size limitations. The enzyme activity within the liposome is monitored using pyranine, a fluorescent pH indicator. The inhibition efficiencies of dichlorvos and sevin were a linear function of their concentrations. The detection limit was calculated to be 1.13±0.29μg/L and 1.36±0.35μg/L, respectively.
     (3) A three-electrode analysis system linked to LK98 electrochemical analyzer was used as a detection system. The results showed that the GCE-(CS/ALB)5 Could improve the catalytic current response to ATChCl significantly with the increased number of the multilayer films. The optimum assembly number was 5. The inhibition efficiency of dimethoate was a linear function of its concentration from 0.25 to 1.5 and 1.75 to 10.00μM. The linearization equation were I%= (24.45c+12.35)% and I%= (1.86c+58.76)%, with the correlation coefficients squre of 0.9981 and 0.9914, respectively. The detection limit was calculated to be 0.86±0.098μg/L.
     (4) Sodium silicane and anmonium chbride were used m prepare nanometer SiO2. The effects of concentration of sodium silicane, volume ratio of ethanol to water and pH value on specific surface area of SiO2 powder were investigated. The nanometer SiO2 was characterized by SEM and XRD. The SiO2 had a specific surface area of 297.3 m2/g. The results showed that SiO2 which were obtained by association had a mean length of 115.5±1.86 nm and a zeta potential of-42.5 mV. The optimum assembly number was 6. The GCE-(ALB/SiO2)6 inhibition efficiency of dimethoate was a linear function of its concentration. The developed GCE-(ALB/SiO2)6 exhibited good reproducibility and acceptable stability, thus providing a new promising tool for analysis of enzyme inhibitors.
     (5) Multiwalled carbon nanotubes (MWNTs) were treated in 1:3 concentrated nitric-sulfuric acid to cut them into short tubes and to create carboxyl groups at their ends. Homogeneous multilayer films of the shortened MWNTs were assembled by a layer-by-layer method, based on electrostatic interaction of positively charged cationic polyelectrolyte chitosan (CS) and the negatively charged and MWNTs. The optimum assembly number was 6. The GCE-(ALB/MWNTs)6 inhibition efficiency of dimethoate was a linear function of its concentration. The detection limit was calculated to be 0.68±0.076μg/L.
     (6) The main content of this chapter was to build the chemically modified electrode for the detection of pesticide residues based on (ALB/ZNO)n multilayer films.ZnO nanoparticles intermingled with Al(Al-ZnO) were gained by the sol-gel method The slid solution structure of Al-ZnO was confirmed by X-ray diffraction (XRD)and energy dispersive spectroscopy (EDS). The optimization experimental conditions were calciming temperature of 1200℃, the ratio of water and alcohol of 1.5, Zn(CH3COO)2 concentration of 1.5 mol/L, concentration of 2 mol/L and the mass fraction of Al3+adulteration of 1.5%. The optimum assembly number of (ALB/ZNO)n was 5. GCE-(ALB/ZnO)5 showed the good optical properties. The Al-ZNO-modified electrode had a higher response current with UV and visible light. The GCE-(ALB/ZNO)5 inhibition efficiency of dimethoate was a linear function of its concentration. The detection limit was calculated to be 0.76±0.087μg/L.
     (7) In this experiment, the nano-ZnO, MWNTs and nano-SiO2 which were through a combination of ordered nano-composite structure constructed enzyme biosensor. We got a superior performance electrochemical biosensor based on (ALB/MWNTs/SiO2/ZnO)4 film by re-optimize their working conditions. The optimal conditions were found to be that the total reaction volume of 10 mL, the reaction time of substrate 15 min, system temperature of 36℃, accompanied by UV and visible light radiation, the reaction system pH value 7.4, inhibition of pesticide samples 12 min, added 1.25 mM substrate, the reaction time 15 min. The GCE-(ALB/MWNTs/SiO2/ZnO)4 inhibition efficiency of dimethoate was a linear function of its concentration. The detection limit was calculated to be 0.53±0.096μg/L.
     (8) The anti-interference ability and reactivation of AChE biosensors were examinated, the characteristics of both were a direct impact on the practical application of the biosensor. The AChE biosensors were tested to study the influence of heavy metal ions, pesticides and other compounds on the corresponding enzyme. It has finally appeared that heavy metal ions and pesticides gave no significant inhibition. For ascorbic acid, the experiments showed that biosensors are quite sensitive to it. In the present study, enzyme reactivations by three oximes were explored for reactivation of the enzyme for repeated use.2-PAM was found to be a more efficient reactivator under repeated use, retaining more than 80% of initial activity after 6 reuses.
     (9) The electrochemical responses of 8 pesticides were detected with enzyme nano-biosensors. The results showed that the biosensor inhibition efficiencies of 8 kinds of pesticides were a linear function of their concentrations and with the low detection limit. Using acetylcholinesterase biosensor technology, taking apples, cucumbers and cabbages examples, the organophosphorus pesticide residues were determined with standard addition method. AChE had shown good accuracy, reproducibility and accuracy. It could be used for wild testing, and did not require tedious sample preparation process. It met the rapidly testing needs.
引文
[1]S.R. Nazir Javed, M. Gowen, K.A. Inam-ul-Haq. Systemic and persistent effect of neem (Azadirachta indica) formulations against root-knot nematodes, Meloidogyne javanica and their storage life. Crop. Prot.2007,26:911.
    [2]L.J. Qu, H.Z. Zhang, J.H. Zhu, et al. Aboul-Enein, Rapid determination of organophosphorous pesticides in leeks by gas chromatography-triple quadrupole mass spectrometry. Food Chem. 2010,122:327-332.
    [3]S.L. Song, X. H. Liu, J.H. Jiang, et al. Wu, Stability of triazophos in self-nanoemulsifying pesticide delivery system. Colloids Surf., A,2009,350:57-62.
    [4]邹明强.农药与农药污染.大学化学,2004,19(6):1-8.
    [5]仲维科,郝歌,孙梅心.我国食品的农药污染问题.农药,2000,39(7):1-4.
    [6]陆德胜,于村,吕伟芝,等.浙江省27年来部分食品中有机氯农药残留趋势分析.中国公共卫生,2000,16(11):1027-1028.
    [7]侯为道,陈灿,高玲,等.成都市城乡居民膳食中农药残留水平及安全性评价.预防医学情报杂志,1999,15(2):77-79.
    [8]王华夫,李微微.中国农药污染情况及防治措施的建议.全国农业面源污染与综合防治学术研讨会论文集,138-141.
    [9]张莹,杨大进,方从容,等.我国食品中有机氯农药残留水平分析.农药科学与管理,1996,17(1):20-22.
    [10]张俊,王定勇.蔬菜的农药污染现状及农药残留危害.农村经济与科技,2003,(3):16-17.
    [11]高贵枝,王圣巍.残留农药污染危害及其防治.延安大学学报(自然科学版),2002,21(1):52-55.
    [12]林铮,黄金祥.全球农药中毒概况.中国工业医学杂志,2005,18(60):376-379.
    [13]曹坳程,郭美霞.21世纪中国农药工业的需求与发展.中国农业科技导报,2005,7(6):37-42.
    [14]赵为武.农产品农药残留问题及治理对策.植物医生,2001,14(3):10-13.
    [15]林玉锁,龚瑞忠,朱忠林.农药与生态环境保护.北京:化学工业出版社,2000,7-123.
    [16]于丽娜,汪东风,苏琳.食品中有机磷农药残留的快速检测方法.粮油食品科技,2005,13(2):32-34.
    [17]伍小红,李建科,惠伟.农药残留对食品安全的影响及对策.食品与发酵工业,2005,31(6):80-84.
    [18]武中平,高巍,杨红.氨基甲酸酯类农药残留测定方法的研究进展.江苏化工,2004,32(5):24-27.
    [19]D.J. Ecobichon. Carbamate insecticides. In:R. Krieger, Editor, Handbook of Pesticide Toxicology. Academic Press, San Diego,2001,2:1087-1106.
    [20]J.F. Risher, F.L. Mink, J.F. Stara. The toxicological effects of the carbamate insecticide aldicarb in mammals:a review. Environ. Health Perspect.1987,72:267-281.
    [21]I. Desi, L. Gonczi, G Simon, et al. Neurotoxicologic studies of two carbamate pesticides in subacute animal experiments. Toxicol. Appl. Pharmacol.,1974,27:465-476.
    [22]P.H. Ruppert, L.L. Cook, L.W. Reiter. Acute behavioral toxicity of carbaryl, propoxur in adult rats, Pharmacol. Biochem. Behav.1983,18:579-584.
    [23]F. Umehara, S. Izumo, K. Arimura, et al. Polyneuropathy induced by m-tolyl methyl carbamate intoxication, J. Neurol.1991,238:47-48.
    [24]李钦云,赵玲玲.有机磷农药对食品的污染及防治.工业卫生与职业病,2005,31(4):260-263.
    [25]崔洪力,李强,刘美良.农药残留及监控对策.农业与技术,2002,22(5):74-76.
    [26]丁常荣,曹学文.农产品中农药残留现状及对策.广东农业科学,2005(3):101-107.
    [27]陈曙,王鸿飞,尹英.我国农药中毒的流行特点和农药中毒报告的现状.中华劳动卫生职业病杂志,2005,23(5):336-339.
    [28]段志敏,余晓萍,段毅宏.蔬菜中农药残留污染状况调查.职业与健康,2005,21(7):1020-1021.
    [29]李英,周艳明,牛森.蔬菜、水果中氨基甲酸酯类农药多残留分析方研究.现代科学仪器,2005,(6):65-70.
    [30]王一龙,曾昭睿,杨敏.固相微萃取联用气相色谱测定有机磷农药.武汉理工大学学报2005,27(10):37-46.
    [31]仲维科,郝歌,樊耀波.食品农药残留分析进展.分析化学,2000,28:904-910.
    [32]F.N. Kok, V. Hasirci. Determination of binary pesticide mixtures by an acetylcholinesterase-choline oxidase biosensor, Biosens. Bioelectron.2004,19:661-665.
    [33]L.A. Terry, S.F. White, L.J. Tigwell. The application of biosensors to fresh produce and the wider food industry. Journal of Agriculture Food Chemistry,2005,53(5):1309-1316.
    [34]邹明强,杨蕊,金钦汉.化学农药与农药污染.大学化学,2004(19):18-34.
    [35]王丽红,张林,陈欢林.有机磷农药酶生物传感器研究进展.化学进展,2006,18(4):440-446.
    [36]R.R. Johnson, B.J. Rego, A.T. Johnson, et al. Computational study of a nanobiosensor:a single-walled carbon nanotube functionalized with the coxsackie-adenovirus receptor. J Phys Chem B, 2009,113(34):89-93.
    [37]F.N. Ishikawa, M. Curreli, H.K. Chang. et al. A Calibration Method for Nanowire Biosensors to Suppress Device-to-Device Variation. ACS Nano,2009,3(12):3969-3976.
    [38]孙承志,麦锦欢.水中五种有机磷农药测定探讨.仪器仪表学报,2001,22(4):385-386.
    [39]杨亚平,林森.气相色谱法测定蔬菜中有机磷农药的残留量.化学分析计量,2003,12(5): 23-25.
    [40]刘忠,谢克锦.气相色谱法测定茶叶中多种有机磷农药残留.福建分析测试,2003,12(1):1698-1699.
    [41]郑丽丽,肖亮洪.氮磷检测器在痕量有机磷农药测定中的应用.汕头科技,1999,2(1):56-57.
    [42]黄聪.键合固定相气相色谱法分离测定蔬菜中有机磷农药的残留量.分析科学学报,1999,15(4):321-323.
    [43]王宗贤,高志贤,马成林.有机磷检测方法的研究进展.中国卫生检验杂志,2003,13(4):401-403.
    [44]N.V. Nanda Kumar, Y. pramcela Devi. Portable and sensitive detector strips for rapid detection of organophosphorus, mercury, copper, cadmium, and silver compounds. Journal of Association Analytical chemistry,1981,64 (4):841-843.
    [45]A.D. Muecio, D.A. Barbini, T.Generali, et al. Clean up of aqueous acetone vegetable extracts by solid matrix Partition for Pyrethroid residue determination by gas ehromatography electron-capture detection. Journal of Chromatograph A,1997,765:39-49.
    [46]GL. Ellman. A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys.1958,74:443-450.
    [47]刘海生,刘伟,章竹君.微阀进样和固定化试剂化学发光微流动注射芯片的研究.分析化学,2005,33(6):811-813.
    [48]李清文,王义明,张新荣,罗国安.溶胶凝胶法制备固定化酶柱并应用于化学发光型的葡萄糖传感器.分析化学,1999,27(11):1274-1277.
    [49]章竹君,秦伟.光纤化学发光和生物发光传感器.分析科学学报,1997,13(1):72-77.
    [50]苏明伟,郑言波,杨海.果蔬农药残留检测的预处理和检测条件优化研究.食品科学,2006,27(5):199-201.
    [51]A. Cristina, C. Claudio, M. Teresa, et al. Biological monitoring of pesticide exposure:A review of analytical met hods. Journal of Chromatography B,2002,769:191-219.
    [52]刘红丽,苏永恒,翟志雷.蔬菜、水果中有机磷农药多残留同时测定的气相色谱法研究.中国卫生检验杂志,2007,1:8-9.
    [53]周爽.用GC-MS法测定食品中11种有机磷农药的残留.中国卫生检验杂志,2008,18(3):442-443.
    [54]杨元,高玲.SPE-GC/MS法测定水中有机磷和氨基甲酸酯.农药中国测试,2009,35(22):86-89.
    [55]M. Femandez, C. Padran, L. Marconi, et al. Determination of organcphosphorus pesticides in honeybees after solid-Phase microextraction. J Chromatogr A,2001,922 (1-2):257-265.
    [56]K.N.T. Norman, S.H.W. Panton. Supercritical fluid traction and quantitative determination of organophosphorus pesticide residues in wheat and maize using gas chromatography with flame photometric and mass spectrometric detection. J Chromatogr A,2001,907(1-2):247-255.
    [57]李育左,张睿,王海涛,等.高效液相色谱串联质谱法对大米中26种三嗪类除草剂多残留的检测.分析测试学报,2009,28(3):315-318.
    [58]韩红岩,李军民,曹生君,等.高效液相色谱法同时测定牛肉及其制品中敌草隆、绿麦隆的残量.色谱,1998,16(4):367-368.
    [59]卜伟,陈军.高效液相色谱法测定土壤中均三氮苯类除草剂.农药,2008,47(4):270-274.
    [60]刘晓颖,吴飞,吴杭.蔬菜中有机磷农药残留的高效液相色谱分析.生物学杂志,2004,6(21):41-42.
    [61]戴华,李拥军,张莹.稻谷中吡虫啉农药残留量的固相萃取高效液相色谱测定.分析测试学报,2002,1(21):70-73.
    [62]金秀华,高斌富,方赤光,等.高效液相色谱法测定甘蓝、油菜中苯甲酰基脲类农药的残留量.中华预防医学杂志,1996,30(2):121-122.
    [63]李立平,郑宇,张莹,等.高效液相色谱法测定水果中单甲脒的农药残留量,食品科学,1998,19(5):48-50.
    [64]仲维科.食品农药残留分析进展.分析化学,2000,28(7):904-910.
    [65]王华,熊汉国,张丁联,等.甲胺磷残留检测直接竞争ELISA试剂盒的研制.食品研究与开发,2007,28(3):122-126.
    [66]许艇,秦治翔,王文,等.甲萘威ELISA方法的建立及初步应用.应用与环境生物学报,2004,10(5):569-572.
    [67]王亮,潘琇,徐婉莉,等.食品农药残留快速检测技术研究进展.食品科技,2005(10):74-77.
    [68]王向红,崔小军,李昕,等.食品中有机磷农药检测方法研究进展.食品研究与开发,2006,27(6):190-194.
    [69]P.D. Tanya, M.M. Vladimir, V. Mathias, et al. Impedometric herbicidesensors based-on molecularly imprinted polymers. Anal Chim Acta,2001,435:157-162.
    [70]F. Immer, L. Francesa, T.Antalet, et al. Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers. Anal Chem,2000,72:3934-3941.
    [71]K. Haupt, A. Dzgoev, K.Mosbach. Assay system for the herbicide 2,4-dichlorophenoxyacetic acid using a molecularly imprinted polymer as an artificial recognition element. Anal Chem, 1998,70:628-631.
    [72]K. Haupt, A.G Mayes, K. Mosbach. Assay using an imprinted polymer-based system analogous to competitive fluoroimmono assays. Anal Chem,1998,70:3936-3939.
    [73]Q.Z. Zhu, K. Haupt, D. Knopp, et al. Molecularly imprinted polymer formetsulfuron-methyl and its binding charaterictics for sulfonylurea herbicides. Anal Chim Acta,2002,468:217-227.
    [74]M. Cuzin. DNA chips:a new tool for genetic analysis and diagnostics. Transfus Clin Biol,2001, 8(3):291-296.
    [75]R. Dalton, A. Abbott. Can researchers find recipe for proteins and chips. Nature,1999, 402(6763):718-719.
    [76]S. Mouradian. Lab-on-a-chip:applications in proteomics. Curr Op in Chem Biol,2002,6(1): 51-56.
    [77]M. Chee, R. Yang, E. Hubbell, et al. A ccessing genetic information with high-density DNA arrays. Science,1996,274:610-614.
    [78]M. Schena, D. Shalon, R.W. Davis, et al. Quantitative monitoring of gene expression patterns with a comple-mentary DNA microarray. Science,1995,270:467-470.
    [79]L. Bertrand, A. Asaph, S. Mark. Overview of DNA chip technology. Mol Breed,1998,4:277-289.
    [80]耿敬章,仇农学.生物传感器及其在食品残留检测中的应用.农药质量控制,2005,13(1):42-43.
    [81]李颖矫,张荣全,叶非.生物传感器在农药残留分析中的应用.农药科学与管理,2003,24(8):11-13.
    [82]L. Pogacnik, M. Franko. Detection of organophoshphate and carbonate pesticides in vegetable samples by a photothermal biosensor. Biosensors and Bioelectronics,2003, (18):1-9.
    [83]吴礼光,刘茉娥,朱长乐.生物传感器研究进展.化学进展,1995,7(4):287-301.
    [84]王建龙,张悦,施汉昌,等.生物传感器在环境污染监测中的应用研究.生物技术通报,2000,3:13-18.
    [85]Y.Z. Dong, C. Shannon. Heterogeneous immunosensing using antigen and antibody monolayers on gold surface with electrochemical and scanning probe detection. Analytical Chemistry,2000, 72(11):2371-2376.
    [86]武宝利,张国梅,高春光,等.生物传感器的应用研究进展.中国生物工程杂志,2004,24(7):65-69.
    [87]司士辉.生物传感器.北京:化学工业出版社,2003,1-4.
    [88]L.C. Clark, C. Lyons. Electrode systems for continuous monitoring in cardiovascular surgey. Annals of the New York Academy of Sciences,1962,102,29-45.
    [89]卢昕.生物传感器-国内研究现状及发展动向.广西师范大学学报,1995,13(3):61-65.
    [90]J. Wang, B. Tian, K.R. Rogers. Thick-film electrochemical immunosensor based on stripping potentiometric detection of a metal ion label. Analytical Chemistry,1998,70 (9):1682-1685.
    [91]O. Niwa, Y. Xu, H.B. Halsall, et al. Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay. Analytical Chemistry,1993,65 (11):1559-1563.
    [92]T. Kalab, P. Skladal. Disposable multichannel immunosensors for 2,4-dichloroph-enoxyacetic acid using acetylcholinesterase as an enzyme label. Electroanalysis,1997,9 (2):293-297.
    [93]J. Wang, L. Chen, S.B. Hocevar, et al. One-step electropolymeric co-immobilization of glucose oxidase and heparin for amperometric biosensing of glucose. The Analyst,2000,125 (8):1431-1434.
    [94]吴礼光,刘茉娥,朱长乐.生物传感器研究进展.化学进展,1995,7(4):287-301.
    [95]S.J. Updike, G.P. Hicks. The enzyme electrode. Nature,1967,214 (6):986-988.
    [96]许春向.生物传感器及其应用.北京:科学出版社,1993:4-6.
    [97]张先恩.生物传感器.北京:化学工业出版社,2006,35-40.
    [98]B.Y. Wu, S.H. Hou, M. Yu, et al. Layer-by-layer assemblies of chitosan/multi-wall carbon nanotubes and glucose oxidase for amperometric glucose biosensor applications. Mater Sci Eng C,2009,29:346-349.
    [99]D. Du, M.H. Wang, J. Cai, et al. One-step synthesis of multiwalled carbon nanotubes-gold nanocomposites for fabricating amperometric acetylcholinesterase biosensor, Sens Actuator B, 2010,143:524-529.
    [100]J.C. Love, L.A. Estroff, J.K. Kriebel, et al. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev,2005,105:1103.
    [101]S. Suwansa-ard, P. Kanatharana, P. Asawatreratanakul, et al. Semi disposable reactor biosensors for detecting carbamate pesticides in water. Biosensors and Bioelectronics,2005, 21(3):445-454.
    [102]W. Limbut, P. Thavarungkul, P. Kanatharana, et al. Comparative study of controlled pore glass,silica gel and Poraver?for the immobilization of urease to determine urea in a flow injection conductimetric biosensor system. Biosensors and Bioelectronics,2004,19(8):813-821.
    [103]朱小山,孟范平,朱琳,等.基于固定化AChE的流动注射型酶传感器研究.环境科学,2006,27(9):1829-1834.
    [104]K. Wan, J.M. Chovelon, N. Jaffrezic-Renault, et al. Sensitive detection of pesticide using ENFET with enzymes immobilized by cross-linking and entrapment method. Sensors and Actuators B,1999,58(1-3):399-408.
    [105]N. Jaffrezic-Renault, A. Senillou, C. Martelet, et al. ISFET microsensors for the detection of pollutants in liquid media. Sensors and Actuators B,1999,59(2-3):154-164.
    [106]S. Timur, U.Anik, D. Odaci, et al. Development of a microbial biosensor based on carbon nanotube (CNT) modified eleetrodes. Eleetroehem. Commun.,2007,9:1810-1815.
    [107]沈广霞,褚道葆,周幸福,等.Ti02修饰电极电催化研究及在有机电合成中的应用.安徽师范大学学报(自然科学版),2001,24(1):98-102.
    [108]李元光,周永新,冯建林,等.丝网印刷胆碱酷酶电极测定神经毒剂沙林、梭曼.分析化学,2000,28(1):95-98.
    [109]R. Rouillon, N. Mioneto. Acetylcholine biosensor involving entrampment of two enzyme optimization of operational and storage conditions. Analytical Chimica Acta,1992, (268):347-350.
    [110]C. Muzzarelli, R.A.A. Muzzarelli. Natural and artificial chitosan-inorganic composites. J Inorg Biochem,2002,92(2):89-94.
    [111]E. Guibal. Heterogeneous catalysis on chitosan-based materials:A review. Prog Polym Sci, 2005,30(1):71-109.
    [112]A. Kaushik, R. Khan, P.R. Solanki, et al. Iron oxide nanoparticles-chitosan composite based glucose biosensor. Biosens Bioelectron,2008,24 (4):676-683.
    [113]F. Li, X.F. Li, S.S. Zhang. One-pot preparation of silica-supported hybrid immobilized metal affinity adsorbent with macroporous surface based on surface imprinting coating technique combined with polysaccharide incorporated sol-gel process. J Chromatogr A,2006,1129 (2): 223-230.
    [114]李赫.半导体材料的电沉积制备及形貌控制研究,浙江大学博士论文,2007.
    [115]X.X. Chen, N. Li, W. Schuhmann, et al. Pulsed eleetrode position of Pt nanoelusters on carbon nanotube smodified carbonmaterials using diffusion restricting viscous electrolytes. Electroehem. Conunun.,2007,9:1348.
    [116]K. V. H. Prashanth, R.N. Tharanathan. Chitin/chitosan:modifications and their unlimited application potential-an overview. Trends Food Sci Technol,2007,18:117-131.
    [117]M. Rinaudo. Chitin and chitosan:properties and applications. Prog Polym Sci,2006,31:603-632.
    [118]M. Rinaudo. Main properties and current applications of some polysaccharides as biomaterials. Polym Int,2008,57:397-430.
    [119]S. Chen, R. Yuan, Y. Chai, et al. Amperometric third-generation hydrogen peroxide biosensor based on the immobilization of hemoglobin on multi wall carbon nanotubes and gold colloidal nanoparticles. Biosensors and Bioelectronics,2007,22(7):1268-1274.
    [120]I. Bontidean, C. Berggren, G Johansson, et al. Detection of heavy metal ions at femtomolar levels using protein-based biosensors. Analytical chemistry,1998,70(19):4162-4169.
    [121]S. Cherian, R.K. Gupta, B.C. Mullin, et al. Detection of heavy metal ions using protein-functionalized microcantilever sensors. Biosensors and Bioelectronics,2003,19(5):411-416.
    [122]J. Gayet, A.Haouz, A. Geloso-Meyer, et al. Detection of heavy metal salts with biosensors built with an oxygen electrode coupled to various immobilized oxidases and dehydrogenases. Biosensors & bioelectronics,1993,8(3-4):177-183.
    [123]K. Maehashi, T. Katsura, K. Kerman, et al. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Analytical chemistry,2007,79(2):782-787.
    [124]D. Ogonczyk, L.Tymecki, I.Wyzkiewicz, et al. Screen-printed disposable urease-based biosensors for inhibitive detection of heavy metal ions. Sensors and Actuators B,2005,106(1): 450-454.
    [125]C. Yang, A.S. Kumar, M. Kuo, et al. Copper-palladiumalloy nanoparticle plated electrodes for the electrocatalytic determination of hydrazine. Anal. Chim. Acta,2005,554:66-73.
    [126]X. Lu, Z. Wen, J. Lin, Hydroxyl-containing antimony oxide bromide nanorods combined with chitosan for biosensors, Biomaterials,2006,27:5740-5747.
    [127]J. Lin, W. Qu, S. Zhang. Disposable biosensor based on enzyme immobilized on Au-chitosan-modified indium tin oxide electrode with flow injection amperometric analysis. Anal. Biochem., 2007,360:288-293.
    [128]M.D. Rubianes, GA. Rivas. Dispersion of multi-wall carbon nanotubes in polyethylenimine:a new alternative for preparing electrochemical sensors. Electrochem. Commun.,2007,9:480-484.
    [129]J. Wang, M. Musameh, Y. Lin. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J. Am.Chem. Soc.,2003,125:2408-2409.
    [130]X.H. Kang, Z.B. Mai, X.Y. Zou. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem.,2007,363:143-150.
    [131]卜海之.聚乙烯醇缩丁醛膜乙酰胆碱酯酶电极的研制.化学传感器,1992,12(2):47-51.
    [132]何奕,王琦深,虞骥.快速检测毒死草残留量的酶膜生物传感器研究.上海环境科学,2003,22(10):687-689.
    [133]孟范平,唐学玺.利用乙酰胆碱酯酶传感器监测海水久效磷.海洋环境科学,2003,22(4):63-67.
    [134]魏福祥,韩菊,刘庆洲,等.计时电位法测定乙酰胆碱酯酶活性.分析科学学报,2004,20(6):663-664.
    [135]S. Lacorte, D. Barcelo. Determination of organophosphorus pesticides and their transformation products in river waters by automated on-line solid-phase extraction followed by thermospray liquid chromatography-mass spectrometry. Journal of Chromatography A, 1995,712(1):103-112.
    [136]A.E. Auletta, K.L. Dearfild, M.C. Cimino. Mutagenicity test schemes and guidelines:US EPA office of pollution prevention and toxics and office of pesticide programs. Environmental and Molecular Mutagenesis,1993,21(1):38-45.
    [137]T.N. Nwosu, G Palleschi, M. Mascini. Comparative studies of immobilized enzyme electrodes based on the inhibitory effect of nicotine on choline oxidase and acetylcholinesterase. Analytical Letters,1992,25(5):821-835.
    [138]F. Botre, E. Podesta, Silvestrini, et al. Toxicity testing in environmental monitoring:the role of enzymatic biosensors, Annali Dell Istituto Superiore DiSatita,2001,37(4):607-613.
    [139]GG Guilbault. Handbook of enzyme methods of analysis, New York:Marcel Dekker Inc., 1976,18-21.
    [140]M. Pohanka, D. Jun, K. Kuca. Amperometric biosensors for real time assays of organophosphates. Sensors,2008,8(9):5303-5312.
    [141]Y.D.T. de Albuquerque, L.F. Ferreira. Amperometric biosensing of carbamate and organophosphate pesticides utilizing screen-printed tyrosinase-modified electrodes. Analytica Chimica Acta,2007,596(2):210-221.
    [142]X.H. Wang, X.W. Xu, F. Tang, et al. In disposable amperometric acetylcholinesterase biosensor for the detection of organophosphorus pesticides, Guillin, PEOPLES R CHINA, Nov 06-09; Northwest Inst Nonferrous Metal Research:Guillin, PEOPLES R CHINA,2005,333-336.
    [143]T.H Wink, S.J. Van-Zuilen, A. Bult, et al. Self-assembled monolayers forbiosensors:A tutorial review Analyst,1997,122(1):43-50.
    [144]K. Nakanishi, H. Muguruma, I. Karube. A novel method of immobilizing antibodies on a quartz crystal microbalance using plasma-polymerized films for immunosensors. Analytical Chemistry,1996,68(10):1695-1700.
    [145]G Decher. Fuzzy nanoassemblies:toward layered polymeric multicomposites.Science,1997, 277(5330):1232-1237.
    [146]G Decher, J.D. Hong, J. Schmitt. Buildup of ultrathin multilayer films by aself-assembly process:Ⅲ. Consecutively alternating adsorption of anionic andcationic polyelectrolytes on charged surfaces. Thin Solid Films,1992,210-211.
    [147]T. Arai, W. Norde. The behavior of some model proteins at solid-liquid interfaces 1. Adsorption from single protein solutions. Colloids Surface,1990,51(1):1-15.
    [148]T. Arai, W. Norde. The behavior of some model proteins at solid-liquid interfaces 2. Sequential and competitive adsorption. Colloids Surface,1990,51(1):17-28.
    [149]C.C. Wang, H. Wang, Z.Y. Wu, et al. A piezoelectric immunoassay based on self-assembled monolayers of cystamine and polystyrene sulfonate for determination of Schistosoma japonicum antibodies. Analytical and Bioanalytical Chemistry,2002,373(8):803-809.
    [150]Z.Y. Wu, L.R. Guan, G L. Shen, et al. Renewable urea sensor based on a self-assembled polyelectrolyte layer. Analyst,2002,127(1):3-7.
    [151]郑世昭,徐伟箭.聚酰胺-胺树形大分子的合成与应用.高分子通报,2004(1):90-94.
    [152]H. Tokuhisa, R.M. Crooks. Interactions between organized, surface-confined monolayers and vapor-phase probe molecules.12. Two new methods for surface-immobilization and functionalization of chemically sensitive dendrimer surfaces. Langmuir,1997,13(21):5608-5612.
    [153]谭惠民,罗运军.树枝形聚合物.北京:化学工业出版社,2002,154-156.
    [154]李清文,王义明,罗国安.溶胶凝胶技术在生物传感器中的应用.化学通报,2000(5):14- 18.
    [155]U. Kunzelmann, H. Bottcher. Biosensor properties of glucose oxidase immobilized within SiO2 gels. Sensors and Actuators B,1997,39(1-3):222-228.
    [156]A.C. Pereira, F.L. Fertonani. Reagentless biosensor for isocitrate using one step modified Pt-Ir microelectrode. Talanta,2001,53(4):801-806.
    [157]H. Zheng, H.G. Xue, Y.F. Zhang. A glucose biosensor based on microporous polyacrylonitrile synthesized by single rare-earth catalyst. Biosensors and Bioelectronics,2002,17(6-7):541-545.
    [158]李泉,曾广斌,席时权.纳米粒子.化学通报,1995,6:29-34.
    [159]邹小智.纳米材料/血红蛋白修饰电极的电化学行为及其应用研究.华中师范大学硕士学位论文,2007,53-69.
    [160]M. Moeremans, G Daneels, J.D. Mey. Sensitive colloidal metal(gold or silver) staining of protein blots on nitrocellulose membranes.Analytical Biochemistry,1985,145(2):315-321.
    [161]R.W. Henkens, J. P. O'Daly, S.C. Perine, et al. Biosensor electrodes using colloidal gold supported oxidase enzymes. Journal of Inorganic Biochemistry,1991,43 (2-3):120-121.
    [162]J.G Stonehuerner, J. Zhao, J.P. O'Daly, et al. Comparison of colloidal gold electrode fabrication methods:the preparation of a horseradish peroxidase enzyme electrode. Biosensors and Bioelectronics,1992,7(6):421-428.
    [163]K.R. Brown, A.P. Fox, M.J. Natan. Morphology-dependent electrochemistry of cytochrome c at Au colloid-modified SnO2 electrodes. Journal of the American Chemical Society,1996, 118(5):1154-1157.
    [164]X. Sun, X.Y. Wang. Acetylcholinesterase biosensor based on prussian blue-modified electrode for detecting organ ophosphorous pesticides. Biosens Bioelectron,2010,25:2611-2614.
    [165]R. Sinha, M.J. Ganesana, S. Andreescu, et al. AChE biosensor based on zinc oxide sol-gel for the detection of pesticides. Anal Chim Acta,2010,661:195-199.
    [166]D. Du, M.H. Wang, J. Cai, et al. Sensitive acetylcholinesterase biosensor based on assembly of β-cyclodextrins onto multiwall carbon nanotubes for detection of organophosphates pesticide. Sens Actuator B,2010,146,337-341.
    [167]Q. Chen, J. Han, H. Shi, et al. Use of chitosan for developing layer-by-layer multilayer thin films containing glucose oxidase for biosensor applications, Sensor Lett,2004,1:102-105.
    [168]Y. Lvov, K. Ariga, I. Ichinose, et al. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption, J Am Chem Soc.1995,117:6117-6123.
    [169]E.J. Calvo, R. Etchenique, L. Pietrasanta, et al. Layer-by-layer self-assembly of glucose oxidase and Os (Bpy)-ClPyCH-NH-poly (allylamine) bioelectrode, Anal Chem,2001,73: 1161-1168.
    [170]A. Guerrieri, L. Monaci, M. Quinto, et al. A disposable amperometric biosensor for rapid screening of anticholinesterase activity in soil extracts. Analyst,2002,127:5.
    [171]S. Iijima. Helical microtubules of graphitic carbon. Nature,1991,354:56-58.
    [172]A.K. Psingh, A.W. Flouders, J.V. Volponi. Development of sensors for directdetection of organophosphates. Part Ⅰ:immobilization, characterization and stabilization of acetylcho-linesteraseand organophosphate hydrolase on silica supports. Biosensors and Bioelectronics, 1999,14:703-713.
    [173]X. Xu, S. Liu, H. Ju. A novel hydrogen peroxide sensor via the direct electrochemistry of horseradish peroxidase immobilized on colloidal gold modified screen-printed electrode. Sensors,2003,3:350-360.
    [174]Y. Cui, Q. Wei, H. Park, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science,2001,293:1289-1292.
    [175]B.R. Azamian, J.J. Davis, M.L.H. Green, et al. Bioelectrochemical Single-Walled Carbon Nanotubes. J Am Chem Soc,2002,124:12664-12665.
    [176]K. Aihara, J. Xiang, R. Apprao, et al. GHz carbon nanotube resonator bio-sensors. IEEE-NANO 2003, San Fransisco, US:IEEE press,2003 (2):612-614.
    [177]Y. Miao, C. Yuan. Construction of a glucose biosensor immobilized with glucose oxidase in the film of polypyrrole nanotubes. Analytical Letters,1999,32(7):1287-1290.
    [178]詹国平,黄可龙.纳米级氧化锌的制备技术与研究进展.化工新型材料.2001,29(7):15.
    [179]马止先,韩跃新,等.纳米氧化锌的应用研究.化工进展,2002,21(1):60.
    [180]马止先,韩跃新,等.纳米氧化锌的制备与应用研究进展.矿产保护与利用,2002,1:37.
    [181]刘珍,梁伟,许并社,等.纳米材料制各方法及其研究进展.材料科学与工艺,2000,8(3):103.
    [182]G Turdean, C.S. Mosneag, I.C. Popescu. Biosensor based on acetylcholinesterase for acetylthiocholine amperometric detection at low applied potential, ACH-Models Chem,2000, 137(4):519-531.
    [183]L. Campanella, C. Colapicchioni, G Favero, et al. Organophosphorus pesticide (Paraoxon) analysis using solid state sensors. Sensor Actuat B-Chem,1996,33(1-3):25-33.
    [184]K.C. Gulla, M.D. Gouda, M.S. Thakur, et al. Reactivation of immobilized acetyl cholinesterase in an amperometr ic biosensor for organophosphorus pesticide. Biochim Biophys Acta-Protein Struct Molec Enzym,2002,1597(1):133-139.
    [185]I. Palchetti, A. Cagnini, M. DelCarlo, et al. Determination of anticholinesterase pesticides in real samples using a disposable biosensor. Analytica Chimica Acta,1997,337(3):315-321.
    [186]G Valdes-Ramirez, M. Gutierrez, M. Del Valle, et al. In Automated resolution of dichlorvos and methylparaoxon pesticide mixtures employing a Flow Injection system with an inhibition electronic tongue. Berlin, GERMANY, May; Berlin, GERMANY,2006,1103-1108.
    [187]B. Prieto-Simon, M. Campas, S. Andreescu, et al. Trends in flowbased biosensing systems for pesticide assessment. Sensors,2006,6(10):1161-1186.
    [188]T.T. Bachmann, B. Leca, F. Vilatte, et al. Improved multianalyte detection of organophosphates and carbamates with disposable multielectrode biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural networks. Biosens Bioelectron, 2000,15(3-4):193-201.
    [189]M. Qamar, M. Muneer. A comparative photocatalytic activity of titanium dioxide and zinc oxide by investigating the degradation of vanillin. Desalination,2009,249:535-540.
    [190]Y.Y. Zhang, J. Mu. One-pot synthesis, photoluminescence, and photocatalysis of Ag/ZnO composites. J Colloid Interface Sci,2007,309:478-484.
    [191]D. Li, H. Haneda. Morphologies of zinc oxide particles and their effects on photocatalysis, Chemosphere.2003,51:129-137.
    [192]H.F. Lin, S.C. Liao, S.W. Hung. The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. J Photochem Photobiol A:Chem,2005,174:82-87.
    [193]G.B.Yang, H.X. Ma, L.G. Yu, et al. Preparation and characterization of layer-by-layer self-assembled polyelectrolyte multilayer films doped with surface-capped SiO2 nanoparticles. Journal of Colloid and Interface Science,2009,333,776-781.
    [194]赵丽,余家国,程蓓,等.单分散二氧化硅球形颗粒的制备与形成机理.化学学报,2003,61(4):562-566.
    [195]J.G. Checmanowski, J. Gluszek, J. Masalski. Role of nanosilica and surfactants in preparation of SiO2 coatings by sol-gel process. Ochrona Przed Korozja,2002,11:214-218.
    [196]张密林,丁立国,景晓燕,等.纳米二氧化硅的制备、改性与应用研究进展.应用科技,2004,31(6):64-66.
    [197]伍林,曹淑超,易德莲,等.纳米二氧化硅的制备及表征.中国粉体技术,2004,10(21):129-131.
    [198]王英,马亚鲁.湿化学法制备超细二氧化硅粉体材料.无机盐工业,2003,35(6):8-11.
    [199]M. Hartmann. Ordered mesoporous materials for bioadsorption and biocatalysis. Chem Mater, 2005,17:4577-4593.
    [200]H.H.P Yiu, P.A. Wright, N.P. Botting. Enzyme immobilization using siliceous mesoporous molecular. Micropor Mesopor Mater,2001,44/45:763-769.
    [201]J. Deere, E. Magner, J.G. Wall, et al. Adsorption and activity of proteins onto mesoporous silica. Catal Lett,2003,85:19-23.
    [202]A. Vinu, V. Murugesan, O. Tangermann, et al. Adsorption of cytochrome c on mesoporous molecular sieves:influence of pH, pore di-ameter, and aluminum incorporation. Chem Mater, 2004,16:3056-3065.
    [203]D. Moelans, P. Cool, J. Baeyens, et al. Immobilisation behaviour of biomolecules in mesoporous silica materials. Cata Commun,2005,6:591-595.
    [204]S.Z. Qiao, H. Djojoputro, Q. Hu, et al. Synthesis and lysozyme adsorption of rod-like large-pore periodic mesoporous organosilica. Prog Solid State Ch,2006,34:249-256.
    [205]M. Miyahara, A. Vinu, K.Z. Hossain, et al. Adsorption study of heme proteins on SBA-15 mesoporous silica with pore-filling models. Thin Solid Films,2006,499:13-18.
    [206]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001.
    [207]朱绍文,贾志杰.碳纳米管及其应用的研究现状.功能材料,2000,31(2):119-120.
    [208]张福华,王荣国,赫晓东,等.碳纳米管聚合物复合材料及其应用.玻璃钢/复合材料,2007,(3):52-55.
    [209]J. Wang, M. Li, Z. Shi, et al. Directelectrochemistry of cytochrome c at a glassy carbonelectrode modified with single-wall carbon nanotubes. Anal. Chem.,2002,74:1993-1997.
    [210]J. Wang, M. Li, Z. Shi, et al. Electrocatalytic oxidation of norepinephrine at a glassy carbon electrode modified with single wall carbon nanotubes. Electroanal,2002,14:225-230.
    [211]Z. Wang, J. Liu, Q. Liang, et al. Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst,2002,127:653-658.
    [212]J. Wang, M. Musameh,Y. Lin. Solubilization of carbon nanotubes by nafion toward the preparation of amperometric biosensors. J Am Chem Soc,2003,125:2408-2409.
    [213]J. Wang, M. Musameh. Carbon naotube/Teflon composite electrochemical sensors and biosensors. Anal Chem,2003,75,2075-2079.
    [214]Y. Tu, Y. Lin, Z. F. Ren. Nanoelectrode arrays based on low site density aligned carbon nanotubes. Nano Lett,2003,3:107-109.
    [215]S. Iijima. Helical microtubules of graphitic carbon. Nature,1991,354:58.
    [216]P.M. Ajayan. Nanotubes from carbon. Chem. Rev.,1999,99:1787-1799.
    [217]R. Andrews, D. Jacques, D. Qian, et al. Multiwall carbon nanotubes:synthesis and application, Acc. Chem. Res.,2002,35:1008-1017.
    [218]D. Tasis, N. Tagmatarchis, A. Bianco, et al. Chemistry of carbon nanotubes. Chem. Rev.,2006, 106:1105-1136.
    [219]H.C. Wu, X.L. Chang, L. Liu, et al. Chemistry of carbon nanotubes in biomedical applications. J. Mater. Chem.,2010,20:1036-1052.
    [220]S.B. Sinnott. Chemical functionalization of carbon nanotubes. J. Nanosci. Nanotechnol.,2002, 2:113-123.
    [221]K. Balasubramanian, M. Burghard. Chemically functionalized carbon nanotubes. Small,2005, 1:180-192.
    [222]何文,夏晶.制备方法对甲氧沙林脂质体体外性质的影响研究.广东药学院学报,2005,6:661.
    [223]王健松,朱家壁.阿奇霉素脂质体的制备及其包封率测定.中国药科大学学报,2004,3 (6):499.
    [224]S. Kim, GM. Martin. Preparation of cell-size unilamellar liposomes with high captured volume and defined size distribution. Biochim Bio-physActa,1983,728:339.
    [225]N. Tomoko, A. Takamura, K. Mohri, et al. Fcators affecting physicochemical propertise of liposomes prepared with hydrogenated purifide egg yolk lecithins by the microencap sulation vesiclesmethod. Colloida and Surfaces B:Biointerfaces,2002:323.
    [226]丁丽燕,杨春,李学明,等.乙醇注入法制备司帕沙星脂质体.南京工业大学学报,2007,1:32.
    [227]H.A.H Rongen, H.H.M. Van der, G.W.K Hugenholtz, et al. Development of liposome immunosorbent assay for human interferong. Analytica Chimica Acta,1994,287(3):191-199.
    [228]H.A.H Rongen, T. Van Nierop, H.H.M. Van der, et al. Biotinylated an streptavidinylated liposomes as labels in cytokine immunoassays. Analytic Chimica Acta,1995,306(2-3):333-341.
    [229]L. Alfonta, A.K. Singh, I. Willner. Liposomes labeled with biotin and horseradish peroxidase: A probe for the enhanced amplification of antigen-antibody oligonucleotide-DNA sensing processes by the precipitation of an insolubl product on electrodes. Analytical Chemistry,2001, 73(1):91-102.
    [230]S. Ahn-Yoon, T.R. DeCory, A.J. Baeumner, et al. Ganglioside-liposom immunoassay for the ultrasensitive detection of cholera toxin. Analytica Chemistry,2003,75(10):2256-2261.
    [231]余效颖.有机磷农药对不同生物来源的胆碱酯酶选择性抑制的研究.环境科学,1996,17(4):41-43.
    [232]李冶祥,翟廷路.应用植物酯酶抑制技术测定蔬菜水果中农药残留量.环境科学学报,1987,7(4):472-478.
    [233]纪淑娟,张爱琳,刘玲,等.植物胆碱酯酶提取纯化方法研究.食品研究与开发,2005,26(4):70-72.
    [234]K.V. Asperen. A study of housefly esterases by means of a sensitive colorimetric method. J Ins Physiol,1962, (3):6401-6416.
    [235]肖建军,华泽钊,徐斐,等.用于测量农药残留的小麦酯酶的选择.分析测试学报,2002,21(2):10-14.
    [236]黄保宏,姚垠.用于检测农药残留的植物酯酶的选择.安徽技术师范学院学报,2004,18(2):15-17.
    [237]张宁.两种酶快速检测有机磷农药残留条件优化研究.江苏农业科学,2006(1):135-137.
    [238]阿然.麦麸中植物酯酶的提取及其在有机磷农药残留检测中的初探.现代农业:38-39.
    [239]赵建庄.乙酰胆碱酯酶分离纯化方法.北京农学院学报,2003(4):249-251.
    [240]彭宇.二化螟体内乙酰胆碱酯酶的分布及纯化方法.昆虫学报,2002(2):209-214.
    [241]高希武.棉铃虫乙酰胆碱酯酶(AChE)的体躯分布及部分纯化.昆虫学报,1998:19-25.
    [242]丁诗华,李清漪.赤子爱胜蚓胆碱酯酶的纯化和性质.应用与环境生物学报,1997,3(3):246-251.
    [243]彭宇,王荫长,韩召军,等.二化螟体内乙酰胆碱酯酶的分布及纯化方法.昆虫学报,2002,45(2):209-214.
    [244]李飞.二棉蚜的杀虫剂神经靶标分子生物学研究.南京:南京农业大学,2003.
    [245]黄志勇,袁园,吕禹泽.蔬菜中有机磷农药残留的两种酶抑制快速检测方法的比较研究.食品科学,2003,24(8):135-137.
    [246]李治祥,黄士忠.应用植物酯酶抑制技术测定蔬菜水果中农药残留量.环境科学学报,1987,7(4):472-478.
    [247]翁霞,李建科.有机磷农残检测用植物酯酶的研究.食品科学,2006,27(4):123-126.
    [248]GL. Ellman, D.K. Courtney, V. Andres. A new and rapid colorimetric determination of Acetylcholinesterase activity. Bioehem Pharmacol,1961,7:88-95.
    [249]李听,王英,张佳,等.家蝇中乙酰胆碱酯酶的提取纯化及应用研究,分析试验室,2008,27(3):87-90.
    [250]张国庆,陈德牛,赵军需.人工养蝎技术[M].北京:金盾出版社,2002.
    [251]汪家政,范明.蛋白质技术手册.北京:科学出版社,2005.
    [252]张振臣.黄瓜花叶病毒运动蛋白基因介导的抗病行研究.中国农业大学博士学位论文,1997.
    [253]侯太平.农药靶标乙酰胆碱酯酶的分离纯化及性质研究.四川大学硕士论文,2007.
    [254]孙维彤,黄桂华,叶杰胜,等.鱼精蛋白凝聚法测定脂质体和纳米脂质体的包封率.中国药学杂志,2006,41(22),1716-1720.
    [255]V. Vamvakaki, N.A. Chaniotakis. Pesticide detection with a liposome-based nano-biosensor. Biosensors and Bioelectronics,2007, (22):2848-2853.
    [256]J. Wang, S.P. Li, Y.Z. Zhang. A sensitive DNA biosensor fabricated from gold nanoparticles, carbon nanotubes, and zinc oxide nanowires on a glassy carbon electrode. Electrochimica Acta, 2010,55:4436-4440.
    [257]X. Sun, X.Y. Wang. Acetylcholinesterase biosensor based on prussian blue-modified electrode for detecting organophosphorous pesticides. Biosensors and Bioelectronics,2010,25:2611-2614.
    [258]张淑平.基于碳纳米管的电流型生物传感器及在农药检测中的应用研究.上海大学博士论文,2008.
    [259]R. Palkovits, H. Althues, A. Rumplecker, et al. Polymerization of w/o microemulsions for the preparation of transparent SiO2/PMMA nanocomposites, Langmuir,2005,21:6048-6053.
    [260]X. Li, Z. Cao, Z. Zhang, et al. Surface-modification in situ of nano-SiO2 and its structure and tribological properties, Appl. Surf. Sci.,2006,252:7856-7861.
    [261]韩静香,佘利娟,翟立新,等.化学沉淀法制备纳米二氧化硅.硅酸盐通报,2010,29(3): 681-685.
    [262]赵丽,余家国,程蓓,等.单分散二氧化硅球形颗粒的制备与形成机理.化工学报,2003,61(4):562-566.
    [263]郑典模,苏学军.化学沉淀法制备纳米Si02的研究.南昌大学学报(工科版),2003,25(2):39-41.
    [264]L. Belyanskaya, S. Weigel, C. Hirsch, et al. Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology,2009,30,702-711.
    [265]D. Cui. Advances and prospects on biomolecules functionalized carbon nanotubes. J. Nanosci. Nanotechnol.2007,7:1298-1314.
    [266]杜峰.Al掺杂ZnO纳米颗粒的制备及工艺参数.南京工业大学学报,2010,32(2):11-15.
    [267]吴莉莉,吕伟,伦宁,等.纳米氧化锌的制备与光学性能表征.山东大学学报,2005,35(2):1-4.
    [268]孟军霞,马书懿,陈海霞,等.Al掺杂ZnO薄膜的微结构及光学特性研究.功能材料,2010,8(41):1317-1320.
    [269]R.T. Andres, R. Narayanaswamy. Fibre-optic pesticide biosensor based on covalently immobilized acetylcholinesterase and thymol blue. Talanta,1997,44:1335-1352.
    [270]J.M. Marty, N. Mionetto, T. Noguer. Enzyme sensors for the detection of pesticides. Biosens. Bioelectron.,1993,8:273-280.
    [271]K. Wan, J.M. Chovelon, N. Jaffrezic-Renault, et al. Sensitive detection of pesticides using ENFET with enzymes immobilized by cross linking and entrapment method. Sens. Actuat. B, 1999,58:399-408.
    [272]K.C. Gulla, M.D. Gouda, M.S. Thakur, et al. Reactivation of immobilized acetyl cholinesterase in an amperometric biosensor for organophosphorus pesticide. Biochimica et Biophysica Acta,2002,1597:133-139.
    [273]M.H. Nadja, A. Nadine, E. Peter, et al. Comparative study of oxime-induced reactivation of erythrocyte and muscle AChE from different animal species following inhibition by sarin or paraoxon. Toxicology Letters,2010,194:94-101.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700