微小直径装药起爆与传爆特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微小型化、灵巧化是现代爆炸序列的发展方向,也是我国未来爆炸序列发展的重点之一。但在微小直径装药情况下,爆轰波会表现出很多非常规传播现象——非理想爆轰现象,使得其起爆与传爆规律出现了新问题,给小型爆炸序列的深入研究带来重重困难,因此研究微小装药直径的起爆与传爆特性就迫在眉睫。本文对微小装药直径的起爆与传爆特性进行了理论、实验和仿真研究。
     (1)对非理想爆轰的国内外研究状况从理论、实验和仿真三方面进行了综述,并在此基础上提出本文的研究内容。
     (2)研究了微小直径装药非理想爆轰,从侧向稀疏波对爆速、爆压、波阵面的影响进行了具体分析;对流管理论和弯曲波阵面理论进行了推导与分析,得出了它们的具体适用范围。
     (3)研究了微小直径装药空气隙衰减爆压规律,得出JO-9C传爆药在同一装药密度下,45#钢和PMMA约束下不同装药直径的爆轰波衰减压力与空气隙厚度的函数关系;得出小尺度装药爆轰输出冲击波经空气隙衰减呈指数型规律,衰减系数随着直径的增大而减小。由此可知,药柱经不同厚度空气隙衰减后,爆轰压力随之发生相应变化,因此可以通过调整空气间隙控制装药的爆轰性能。
     (4)研究了微小直径装药驱动飞片运动规律,采用电磁法测试了不同条件的飞片速度:1)研究了飞片材料对微小直径装药飞片速度的影响规律,得出在相同装药直径、相同约束下,飞片速度随着飞片材料密度的增大而减小;2)研究了飞片厚度对微小直径装药飞片速度的影响规律,得出在相同装药直径、相同约束、相同飞片材料下,飞片速度随着飞片厚度的增大而减小,且最大飞片速度出现位置发生前移;3)研究了装药直径对微小直径装药飞片速度的影响规律,得出在相同飞片材料、相同飞片厚度、相同约束下,飞片速度随着装药直径的增大而增大,且最大飞片速度出现位置发生前移;4)在三者叠加的前提下,可以通过控制飞片材料、飞片厚度和装药直径,可靠起爆下一级火工品,也可以为微小传爆序列的可靠起爆与传爆提供实验支持和技术指导。
     (5)建立了微小直径装药空气隙衰减爆轰波传播的计算模型,利用非线性动力学三维有限元程序LS-DYNA,使用ALE算法和流固耦合方法对JO-9C传爆药在微小装药直径空气隙衰减传爆过程进行了数值模拟,数值模拟结果与实验结果基本吻合。
Micro miniaturization and smart system direct a way in the explosive trains and it is one of the most important development in the future. Non-ideal detonation phenomena could be appeared in micro-diameter charge, and a new problem also appeared in initiation and detonation transfer. Layer upon layer difficulties appeared in studying explosive trains, the characteristic of initiation and detonation transfer must be studied in the face. In the paper, micro-diameter charge initiation and detonation transfer rule are studied from the perspective of theory, experiment and simulation.
     (1) The current domestic and international research on theory, experiment and simulation has been summarized in the paper and then the research questions were put forward.
     (2) Non-ideal detonation in micro-diameter charge was studied, based on the analysis of side rarefaction wave influencing detonation velocity, detonation pressure and wave front. The flow pipe theory and curved front theory are deduced and analyzed; conclusions of specific applicability are obtained.
     (3)The rule of air gap attenuation detonation pressure was studied on micro-diameter charge constraint condition, thus the experiential relational expressions of JO-9C booster explosive in same density and different diameter charge were obtained in constraint condition of 45# steel or PMMA. The air-gap decaying model of micro-diameter charge detonation wave was obtained. The results indicate that the bigger charge diameter is, the smaller decaying coefficient is. With different air-gap thickness, detonation pressure can be also correspondingly changed. Detonation performance can be controlled by adjusting air-gap thickness.
     (4) The rule of micro-diameter charge driving flyer was studied on testing flyer velocity by electromagnetic method. 1) The influence rule between flyer material and flyer velocity was studied. The results indicate at the same diameter charge and constraint, the bigger flyer material density is, the smaller flyer velocity is. 2) The influence rule between flyer thickness and flyer velocity was studied. The results indicate at the same diameter charge, constraint and flyer material, the bigger flyer material density is, the smaller flyer velocity is. The position of maximal flyer velocity was forward lead. 3) The influence rule between diameter charge and flyer velocity was studied. The results indicate at the same flyer material, flyer thickness and constraint, the bigger diameter charge is, the bigger flyer velocity is. The position of maximal flyer velocity was forward lead. 4) At the premise of superposition, the next propellant was credibility ignition by adjusting flyer material, flyer thickness and diameter charge. It also supply experiment support and technique guide to credibility ignition and detonation transfer of the micro explosive trains.
     (5) Air-gap decaying detonation wave transfer calculated models of micro-diameter charge were founded by adopting nonlinear dynamic 3D-finite programming of LS-DYNA, ALE algorithm and constrained Lagrange in solid method in order to simulate the air-gap decaying detonation transfer process for JO-9C booster explosive in micro-scale charge. The numerical simulation results are in accordance with experiments.
引文
[1] Campell A W Engelke.The Diameter Effect in High Density Heterogeneous Explosives. The Proceedings of the 6th Symposiumon Detonation,1976
    [2] Campell A W. The Comer-Tunring Test, LA -UR-88-475,1988
    [3] Mader C L.Detonation Wave Interactions, The Proceedings of the 7th Symposium on Detonation, 1981
    [4] Wanrer R K,O vermanE. A Methods of Achieving Safe Stationary Explosivetrains, 1970
    [5]贺树兴.离散爆轰及其实用义.火工品,1984,4
    [6]刘举鹏,陈福梅.爆炸逻辑网络研究与发展.现代兵器,1990, 8
    [7] Berthelot M, Vieille P. Compt. Rend. 1881, 93: 18-22
    [8] Berthelot M., Vieille P. Conpt. Rend. 1882, 94: 149-152
    [9] Mallard E, Lechatelier H L. Compt. Rend. 1881, 93: 145-148
    [10] Sobrero.Imploding detonation wave.Mech.Res.Comm.vol,3,1845:52-60
    [11] Eyring H, Powell R E, Duffey G H and Parlin R B. The Stability of Detonation. Chem. Rev. 1949, 45: 69-181
    [12] Chapman D L. Phil Mag. 1899, 47: 90-104
    [13] Campell A W, Engelke R. The Diameter Effect in High Density Heterogeneous Explonation Coranado California: 1976, Washington, D.C. Office Research-Department of the Navy, 1977. 642
    [14] Eden G, Belcher R A.The Effect of Inert Walls on the Velocity of Detonation in EDC35, An Insensitive High Explosive. In: Proceeding of Ninth Symposium (International) on Detonation. Oregon:The Naval Surface Warfare Center,1989
    [15] Collyer A M,Dunnett J D,Swift D C,eta1.WBL detonation wave propagation for EDC35 and EDC37[A].Proceedings of Eleventh Symposium(Internationa1) on Detonation[C].Colorado:Office of Naval Research,1997:12-20
    [16] Tran T D, Tarver C M.Characterization of Detonation Wave Propagation in LX-17 Near the Critical Diameter. In: Proceeding of Twelth Symposium (International) onDetonation. San Diego,2002
    [17] Aslam T D,Bdzil J B,Hill L G.Extensions to DSD theory:analysis of PBX- 9502 rate stick data[A]. Proceedings of Eleventh Symposium(Internationa1)on Detonation [C].Colorado:Office of Naval Research,1997:21-29
    [18] Lambourn B D,Swift D C.Application of Whitham's shock dynamics theory to the propagation of divergent detonation wave[A].Proceedings of Ninth Symposium (Internationa1)on Detonation[C].Oregon:The Naval Surface Warfare Center,1989:784-797
    [19] Collyer A M,Dunnett J D,Swift D C,et a1.WBL detonation wave propagation for EDC35 and EDC37[A] . Proceedingsof Eleventh Symposium(Internationa1)on Detonation[C].Colorado:Office of Naval Research,1997:12-20
    [20]刘举鹏.爆轰波的拐角绕射现象机理及其应用研究: [学位论文].北京:北京理工大学, 1990
    [21]毛金生.爆炸逻辑网络技术及其非理想爆轰现象研究: [学位论文].北京:北京理工大学, 1992
    [22] Feng Changgen, Wang Shushan, Jiao Qingji etc.The Time Delay of Detonation at Turning Corner. In: The Proceedings of the 20th International Pyrotechnics Seminar, Colorado Springs, Colorado, USA, July 25-29, 1994.309-314
    [23] Feng Changgen, Wang Shushan, Jiao Qingjie etc. Experimental Phenomenon of Detonation Propagating along a Curved Small Charge. In: The 26th International Annual Conference of ICT, Karlsruhe, Germany,1994. 73
    [24]王树山,焦清介,冯长根等.有限尺寸弯曲装药的爆速亏损.北京理工大学学报, 1994, 14(S1): 36-39
    [25]王树山,焦清介,冯长根.爆轰波转弯传播的延迟现象.北京理工大学学报,1994,14(4): 337-340
    [26]李生才.注装TNT中爆轰波拐角现象研究:[博士论文].北京:北京理工大学,1998
    [27]陈朗,张寿齐,赵玉华.不同铝粉尺寸含铝炸药加速金属能力的研究.爆炸与冲击.Vol. 19 , No. 3:250-255
    [28]赵继波,谭多望,赵锋等.带壳钝感炸药非理想爆轰实验研究.含能材料. 2005,13(4).217-221
    [29]邹立勇,谭多望,文尚刚等.低温下小尺度钝感炸药非理想爆轰实验研究,爆炸与冲击:2007,04:325-329
    [30] Berthelot M, Vieille P. Compt. Rend. 1881, 93: 18-22
    [31] Berthelot M., Vieille P. Conpt. Rend. 1882, 94: 149-152
    [32]Мехалъсон.Теориядетонадии.Госнэдат.1890:23-26
    [33] Schuste.23th Symposium(Intern.) on Detonation,1983.1311
    [34] Chapman D L. Phil Mag. 1899, 47: 90-104
    [35] Jouguet E, J. Math. 1905, 347-425
    [36] Luxis.Shock Initiation of Detonation in Explosives.Physics in Fluids.1930,4(4):498-453
    [37] Zeldovich Ya B. Zh. Experim. Teor. Fiz. 1940, 10: 542-568
    [38] Von Neumann J. OSRD Report, 1942, 549
    [39] Doering W. Ann. Phys. 1943, 43 (5): 421-436
    [40]格鲁会卡H D,韦肯F.爆轰的气体动力学理论.周光泉译.北京:科学出版社, 1986
    [41] Khariton,Yu.B.and Rozing,V.0.,Dokl.AN SSSR,Vol.26,1940,p.360.Thjrough Ref.7 and 8.Khariton,Yu.B.,Collection:”Problems of the Theory of Explosives,”Izd-vo AN SSSR, Moscow,1947.7-8
    [42] Jones H. A Theory of the Dependence of The Rate of Detonation of Solid Explosive on The Diameter of The Tharge. Proc. Roy. Soc. A. 1941, 189: 415-427
    [43] Eyring H, Powell R E, Duffey G H and Parlin R B. The Stability of Detonation. Chem. Rev. 1949, 45: 69-181
    [44] Wood W W, Kirkwood J G. Diameter Effect in Condensed Explosives: The Relation Between Velocity and Radius Curvature of the Detonation Wave. J. Chem. Phys. 1954, 22(11): 1920-1924
    [45] Evans M W.J.Chem.Phys.,1962..36:193-200
    [46] Bdzil J B, Stewart D S. J. Fluid Mech. 1981, 121: 1
    [47]孙承纬,赵峰,高文.研究爆速直径效应的爆轰冲击波动力学的方法.爆炸与冲击,1996,16(3):193-201
    [48]浣石.非均质炸药冲击起爆和二维稳态爆轰的研究.[学位论文],北京:北京理工大学, 1988
    [49]浣石,丁儆.二维定常爆轰波的CJ条件与流线形状.爆炸与冲击. 1989, 9 (1): 12-16
    [50]何远航.定常二维轴对称爆轰波阵面研究. [学位论文].北京:北京理工大学, 1993
    [51]孙锦山,朱建士.理论爆轰物理.北京:国防工业出版社,1995
    [52] Tarver C M and Hallquist J O. Modeling Two-Dimensional Shock Initiation and Detontion Wave Phenomena in PBX 9404 and LX-17. In. Short J M, ed. The Proceedings of the 7th Symposium(Inter.) on Detontion. Annaplis MD, 1981 White Oak MD: Naval Weapons Center,1981
    [53] Huang,Y.K.,Arbuckle,A.L.Numerical experiments on the shock sensitivity of munitions.Technical report ARBRL-TR-02387,1982:56
    [54] Murply,M.J.,Lee,E.L.Composition-B shock initiation report,DE95-011425,1994:206
    [55] Aslam,T. D.,Bdzil,J.B.,Stewart,D.S. Level set methods applied to modeling detonation shock dynamics. J. Comput. Phys.,1996,126:390-409
    [56] Liu, M.B.,Liu, G.R.,Lam, K.Y.etal. Meshfree particle simulation of the detonation process for high explosives in shaped charge unlined cavity configurations. Shock Waves,2003,12: 509-520
    [57] Lu, J.P.,Christo,F.C.,Kennedy,D.L. Detonation Modelling of Corner-Turning Shocks in PBXN-111.15th Australasian Fluid Mechanics Conference .The University of Sydney, Sydney, Australia.2004,11:13-17
    [58]丁刚毅,徐更光.含铝炸药二维冲击起爆的爆轰数值模拟.兵工学报,1994,4:25-29
    [59]孙锦山,曹菊珍,张铁桥等.钝感炸药爆轰性能的数值模拟.爆炸与冲击,1995,Vol.15(1):28-36
    [60]张旭.曲线坐标系中钝感炸药非理想爆轰传播的LS方法.[硕士学位论文].绵阳:中国工程物理研究院,1999
    [61]张震宇.固体非均质炸药冲击波起爆反应速率方程的研究.中国国防科学技术报告,1999
    [62]文尚刚、赵锋、孙承纬.三维爆轰波传播规律的研究.中国国防科学技术报告,2001
    [63]冯长根,柯加山,陈朗.固体炸药冲击起爆尺寸效应的数值模拟.火炸药学报,2002,4:16-18
    [64]梁斌,陈忠富,卢永刚等.不同材料壳体装药对爆破威力影响分析.解放军理工大学学报(自然科学版). Vo l. 8 No. 5(O ct. 2007):429-433
    [65] Chapman D L. Phil Mag. 1899, 47: 90-104
    [66] Jouguet E, J. Math. 1905, 347-425
    [67] Jouguet E. Mecanique des Explosifs. Paris: O. Doinet Fils, 1917
    [68] Zeldovich Ya B. Zh. Experim. Teor. Fiz. 1940, 10: 542-568
    [69] Von Neumann J. Progress Report on the Theory of Detonation Waves .OSRD Report, 1942, 549
    [70] Doering W. Ann. Phys. 1943, 43 (5): 421-436
    [71] Wood W W, Kirkwood J G ,Diameter Effectin Condensed Explosives: The Relation Between Velocity and Radius Curvature of the Detonation Wave, J,Chem, Phys, 1954,22(11):1920-1924
    [72] Jones H, A Theory of The Dependence of The Rate of Detonation of Solid Explosive on The Diameter of The Charge,Proc,Roy,Soc,A ,1941,189:415-427
    [73] Eyring H,Powell R E, Duffey G H and Parlin R B,The Stability of Detonation, Chem, Rev, 1949,45: 69-181
    [74] Khariton,Yu.B.,Collection:“Problems of the Theory of Explosives”, Izd-vo AN SSSR,Moscow,1947:7- 8
    [75]张守中主编.爆炸基本原理.北京:国防工业出版社,1988,16
    [76]孙锦山,朱建士.理论爆轰物理.北京:国防工业出版社,1995:172-175
    [77] Jones H.The Theory of the Dependence of the Rate of Detonation of Solid Explosives on the Diameter of the Charge[J],Proc.Roy.Soc.,Vol.A189,1947, 415
    [78] Gruschka H D,Wecken F.Gasdynamic Theory of Detonation. New York: Gorden andBreach,1971;Wecken F. Non- ideal detonation with constant lateral expansion. Proc. of 4th Symp.(Int.) on Detonation,1965,107-116
    [79] Eyring H, Powell R E, Duffey G H and Parlin R B. The Stability of Detonation. Chem. Rev. 1949, 45: 69-181
    [80] Ficket,W and W.C., Detonation, 1979
    [81] Wood W,Kirkwood J G,J. Chem Phys, 1954, 22:1920-1924
    [82] Bdzil J B, Stewart D S. J. Fluid Mech. 1981, 121: 1
    [83]蔡瑞娇编著.火工品设计原理[M].北京:北京理工大学出版社,2002
    [84]杨慧群,王泽山,魏晓安.装药中的不同间隙对炸药爆轰性能的影响[J].含能材料.2005,8(2):214-216
    [85]王凯民,于宪峰,蔡瑞娇等.传爆序列飞片起爆理论研究及应用[J].探测与控制学报.2007,29(4):57-60
    [86]严楠,韩秀凤,蔡瑞娇.锰铜压阻法测量雷管输出的压力波形分析[J].含能材料,2004,12(5):257~258
    [87]尹芳,王桂兵.利用传感器测量爆压的研究[J].兵工学报.火化工分册,1997,1:60-61
    [88]邵丙璜,张凯.爆炸焊接原理及其工程应用[M].大连:大连理工学院出版社, 1987
    [89] Olin K.McDaniel,Ⅲ,“爆炸箔起爆器评述”,《火工情报》,1997,2:3
    [90] Parker N .Velocity measurment of Mylar flyers using the VISAP, UCID-16846[R].Livermore: Law rence:Livermore Laboratory, 1975
    [91] Paul W Cooper. Explosives engineering [M]. New York: Wiley VCH, Inc. , 1997
    [92] Kennedy J E, Schwarz A C. Detonation transfer by flyer plate impact [A]. 8th Symposium on Explosives and Pyrotechnics, Philadelphia [C], 1974, (191): 1-12
    [93]陈福梅.火工品原理与设计[M ].北京:兵器工业出版社, 1990
    [94]蔡瑞娇.火工品设计原理[M].北京:北京理工大学出版社, 1999
    [95]谢兴华,胡学先.工业雷管轴向飞片速度理论[J].爆破器材, 1995, 24 (5): 1-4
    [96]宋浦.爆轰驱动破片飞散速度的工程计算[A].火炸药技术及钝感弹药研讨会论文集[C ], 2002, 350-353
    [97] Yadav H S. Flyer plate motion by thin sheet of explosive [J]. Propellants ExplosivesPyro technics.1988, (13): 17-22
    [98]张厚生,张珊珊.计算炸药飞片速度的示性值公式[J].火炸药学报(原兵工学报,火、化工分册) , 1983, (3-4) : 8-11
    [99]耿俊峰,蔡瑞娇,姚文炳.对雷管破片速度的实验研究和理论新估算[A].中国兵工学会1990年火工与烟火技术专业学会年会学术论文集(京工分册) [C].北京理工大学力学工程系. 1990, 51-59
    [100]李国新,程国元,焦清介.火工品实验与测试技术[M ].北京:北京理工大学出版社, 2007
    [101]李裕春,吴腾芳,徐全军等.线型聚能装药射流形成过程的数值模拟[J].解放军理工大学学报(自然科学版).2002,(3):71-75
    [102] Hallquist J O. LS–DYNA User's Manual. LSTC 1998
    [103] LS-DYN 970 manual-k.LSTC 2003
    [104] Noh. A time-dependent two-space-dimension coupled Eulerian-Lagrangian code. In: Alder B, fembach S, cds. Methods in computational Physics 3. New York: Academic Press, 1964
    [105] Hirt C W, amsden A A, Cook J L. An arbitrary lagrangian eulerian computing method for all flow speeds[J ].Comptational Physics,1974,14(3):22 7-253
    [106] Donea J, Giulianis, Halleux J P. An arbitrary Lagrangian-Eulerian finite element method ortransient dynamic fluid-structurein teraction. Computer Methods Appl Mech Engrg.19 82,33:69 8-723
    [107] Ramswamy B, Kawahara M. Arbitrary Lagrangian-Eulerian finite element method for unsteady, convective, incompressible viscous free surface fluid flow. Int Numerical Methods in Fluid.1987,7( 10):1053-1075
    [108] LiuW K, Chang H, Belytsko T. Arbitrary Lagrangian-Eulerian Retrov-Galerkin elements for nonlinear continua. Methods Appl Mech Engrg, 1988
    [109]常向阳,王自力.爆炸成型弹丸侵彻钢靶的ALE算法[A].解放军理工大学学报(自然科学版)2004 (3):71
    [110]张雄,陆明万,王建军,任意拉格朗日-欧拉描述法研究进展[J],计算力学学报,1997, 14 (1): 91-102
    [111]章冠人,陈大年编著.凝聚炸药起爆动力学.北京:国防工业出版社,1991
    [112] LSTC.LS-DYNA User Manual.Version 940.Non Linear Dynamic Analysis of Structures in Three Dimensions.Livermore Software Technology Corporation, LSTC, Livermore, June 1997
    [113] Steinberg D J.An Equation of State for Polymethylmetharcylate.Lawrence Livemore Laborotory report UCID-16982, 1975
    [114]时党勇,李裕春,张胜民编著.基于ANSYS/LS-DYNA 8.1进行显式动力分析.北京:清华大学出版社,2005
    [115] Kery J W, Honig H C and Lee E L. Metal Acceleration by Chemical Explosives[A]. 4th Symposium (International) on Detonation[C]. USA, White Oak,1965

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700