平面冲击加载下A95陶瓷动态力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷材料具备耐高温、耐磨、耐腐蚀、抗氧化、电绝缘性好、压缩强度大等优良性能,广泛应用于电子、计算机、激光、核反应堆、宇航、兵器等尖端技术领域,由于陶瓷材料中存在气孔、缺陷、晶界,使得对陶瓷性能及使用效能的研究较为复杂,引起了材料科学家、力学家的广泛关注。特别是对陶瓷材料动态力学响应研究,近几十年以来已成为国际冲击动力学领域十分活跃的研究课题。
     本文主要研究冲击压缩条件下氧化铝陶瓷的动态响应特性。在充分调研陶瓷材料在高压、高率条件下动力学响应特性等诸多关键问题研究现状的基础上,开展了一级轻气炮加载、VISAR测试的氧化铝陶瓷平板正撞实验。获得了A95陶瓷的Hugoniot弹性极限,分析了厚度对σHEL的影响;观察到无氧铜飞片层裂现象,并对其产生的机理进行了分析;修正了Drucker-Prager屈服准则,使之适用于分析陶瓷类脆性材料。本文的主要研究内容和结论如下:
     ①对陶瓷材料的失效准则、本构模型、应变率效应、平面载荷作用下陶瓷材料的破坏机制等问题进行了调研,明确了陶瓷材料动态性能研究的进展和存在的问题。从陶瓷材料的物质结构及显微组织等方面对陶瓷材料的结构进行了分析,得出影响陶瓷材料性能的因素。
     ②针对陶瓷材料的物理力学性能及其影响因素开展了分析,从陶瓷材料的变形、断裂特征及弹塑性性质、晶粒尺寸对陶瓷性能的影响关系,高应变率下陶瓷材料的力学性能和破坏行为等方面进行了重点论述。并对冲击波物理实验原理及方法、现有的加载手段和测试方法进行了讨论。
     ③采用超声波测试获得了氧化铝陶瓷样品的基本物理力学参量,通过电镜扫描观察了氧化铝陶瓷的细观结构,电镜扫描结果显示氧化铝陶瓷具有强烈的细观非均匀性结构特征。
     ④开展了氧化铝陶瓷一级轻气炮加载实验,采用VISAR测试了不同厚度的氧化铝陶瓷样品在一维应变冲击压缩条件下自由面质点速度历程,得到了氧化铝陶瓷样品Hugoniot弹性极限。实验结果表明:随着样品厚度的增加,氧化铝陶瓷的σHEL呈下降趋势;当冲击压力在6GPa-8GPa范围内,陶瓷样品自由面质点速度历程存在二次再压缩现象,判断是由于陶瓷内产生的破坏阵面(Failure front)所造成的,与玻璃中的破坏波现象具有可比性。
     ⑤根据A95陶瓷的平板冲击实验结果,修正了Drucker-Prager屈服准则,提出适用于陶瓷材料Hugoniot弹性极限表征的修正公式,并计算了A95陶瓷的σHEL值,分析理论值与实验结果存在差异的原因。
     ⑥实验观察到异质材料撞击时,在飞片中会产生层裂现象,且无氧铜飞片中晶粒长大,分析了延性金属与陶瓷材料撞击时的层裂机理。
     ⑦开展了氧化铝陶瓷动态特性数值模拟,采用ANSYS/LS-DYNA有限元软件模拟了氧化铝陶瓷平板冲击压缩实验结果,对比实验结果与数值模拟结果,分析其中的异同。对弹丸侵彻钢靶和陶瓷/钢复合装甲过程进行了数值模拟,对比了不靶板的抗侵彻能力。
Ceramics has been widely used in the key fields such as electronics, computer, laser, nuclear reactor, space navigation and weapon industry due to its excellent properties including heat-resistant, wearable, anticauterization, antioxidant, good insulation and high compressive strength. That the pores, defects and grain-interface in ceramics makes the mechanical behaviors and its application effects of ceramics complicated and numerous researchers in the field of material and mechanics are attracted to pay attention to the material behaviors. The research for dynamic response of ceramic materials under shock loadings has been becoming the most active subject in dynamical behaviors of materials in recent years.
     In this dissertation, the dynamic responses of alumina ceramic under plate shock loading were studied. The dynamic behaviors of ceramics under high-pressure and high strain-rates were reviewed. The plate impact experiments for alumina ceramics specimen were taken with one-stage light gas gun and VISAR measurement was performed. Hugioniot elastic limit was checked for different loading conditions. Effects ofσHEL with different thicknesses were analyzed and compared. Spallation in OFHC was observed and spallation mechanism was analyzed. The Drucker-Prager yield criterion was utilized to modify the dynamic strength formulation of brittle materials. The principal investigation and conclusions of the dissertation are as follows:
     ①An insight was made into the failure mechanism, constitutive models, strain-rate effect and damage mechanisms of ceramic materials under plane shock loadings. The art-of-state and problems of dynamic behaviors of ceramics were clarified. Ceramic configuration was analyzed from material structure as well as microscopic structure. The fundamental elements affecting ceramic material behaviors were pointed out.
     ②The physical and mechanical behaviors as well as the affecting factors were presented. The focus was placed on the deformation performance, fracture feature, elasto-plastic property and grain size in analysis, especially on the mechancal properties and failure behaviors of ceramics at high strain-rates. The shock wave experiment principle and methods, loading process and measurement methods were discussed in the dissertation.
     ③The basic physical and mechanical parameters of alumina ceramics specimens were measured in ultrasonic experiments. The meso-scopic structure was observed by Scanning Electron Microscope (SEM). The remarkable meso-scopic heterogeneity of alumina ceramics was revealed with SEM.
     ④Plate impact experiments of alumina specimens with one-stage light gas gun were designed and carried out. The surface particle velocity history of alumina specimens with different thicknesses was measured by VISAR. And theσHEL for alumina specimens was calculated and checked with the experimental results. Hugoniot Elastic Limit decreases as the specimen thickness increases. The recompression phenomenon was found in the particle velocity history of alumina specimens while as the impact pressure between 6GPa-8GPa. The recompression signals occurring in alumina under shock loaings are similar to those in glass where failure waves have been widely recognized.
     ⑤The modified formulation for theσHEL was further investigated. Hugoniot Elastic Limit of A95 alumina ceramics was presented by use of the modified form of Drucker-Prager yield criterion. Comparisons were made between the calculational and experimental results.
     ⑥Spallation phenomenon in flyer was observed when the target was impacted by different material flyer and the grain size in OFHC flyer was increased in the process. The spallation mechanism for the ductile metal when impacting ceramics was analyzed.
     ⑦Numerical simulation for the dynamic behaviors of alumina ceramics under plate shock compressive loadings was made by ANSYS/LS-DYNA. In comparison of the experimental results with numerical simulating results the similarity and difference were analyzed. Projectile penetration into a metal target and a ceramic/metal composite target were numerical modeled and the anti-penetration capability of material was discussed.
引文
[1]胡玉龙,蒋凡.装甲陶瓷的发展现状和趋势[J].兵器材料科学与工程.1996,19(5):37-42.
    [2]张晓晴,杨桂通,黄小清.陶瓷/金属复合靶板受可变形弹体撞击问题的理论分析模型[J].应用数学和力学.2006,27(3):260-266.
    [3]任会兰,宁建国.强冲击载荷下氧化铝陶瓷的力学特性及本构模型[J].北京理工大学学报.2007,27(9):791-796.
    [4]郑修麟主编.材料的力学性能[M].西安:西北工业大学出版社.1996:234-238.
    [5] Griffith A A.Theory of rupture[C].First international congress applied mechanics,Delft,1924:55-63.
    [6] Chen W,Ravichandran G.Dynamics compressive failure of a glass ceramic under lateral confinement[J].Journal of the Mechanics and Physics of Solids.1997,45(8):1303-1328.
    [7] Chen W,Ravichandran G.Failure mode transition in ceramics under dynamic multiaxial compression[J].International Journal of Fracture.2000,101(1):141-159.
    [8] Ashby M F,Sammis C G,The damage mechanics of brittle solids in compression[J].Pure and Applied Geophysics,1990,133:489-521.
    [9] Chen W.Dynamic failure behavior of ceramics under multiaxial compression[D].Ph.D Thesis,California Institute of Technology,Pasadena,California.1995.
    [10] Rajendran A M,Cook W H.A Comprehensive Review of Modeling of Impact Danage in Ceramic[R].AD-A203477.1989.
    [11] Steinberg D J.Computer studies of the dynamics strength of ceramics[C].Shock Compression of Condensed Matter-1991.Elsevier Science Publisher B.V.1992:447-450.
    [12] Addessio F L,Johnson J N.A constitutive model for the dynamic response of brittle materials[J].Journal of Applied Physics.1990,67(7):3275-3286.
    [13] Rajendran A M,Kroupa J L.Impact Design Model for Ceramic Materials[J].Journal of Applied Physics.1989,66(8):3560-3565.
    [14] Curran D R,Seaman L,Copper T,et al.Micromechanical model for comminution and granular flow of brittle material under high strain rate application to penetration of ceramic targets[J].International Journal of Impact Engineering.1993,13:53-83.
    [15] Rajendran A M,Grove D J.Modelling the impact behavior of AD85 ceramic composite armours[J].International Journal of Impact Engineering.1994,15(6):749-768.
    [16] Grove D J,Rajendran A M,Baron E,Brar N S.Damage Evolution in a Ceramic Rod[C].Shock Compression of Condensed Matter-1991.Elsevier Science Publisher B.V.1992:971-975.
    [17] Espinosa H D,Dwivedi S,Zavattieri P D,Yuan G.Numerical investigations of penetration in multilayered material/structure systems[J].International Journal of Solids Structures.1998,35(22):2975-3001.
    [18] Johnson G R,Holmquist T J.A Computational Constitutive Model for Brittle Materials Subjected to Large Strains,High Rates and High Pressure[M].Shock Wave and High Strain Rates and High Pressures.Marcel Dekker Inc.New York.1992:1075-1081.
    [19] Grady D E.Shock wave compression of brittle solids[J].Mechanics of materials.1998,29(3):181-203.
    [20] Rosenberg Z,Yeshurun Y.Determination of the dynamic response of AD-85 Alumina with in-material Manganin gagues[J].Journal of Applied Physics.1986,58:3077-3080.
    [21] Rosenberg Z.Dynamic uniaxial stress experiments on alumina with in-material manganin gaguges[J].Journal of Applied Physics.1985,57:5087-5088.
    [22] Cook W H.Compressive damage and fracture modeling of ceramic subjected to high-velocity impact[D].Ph.D Thesis.University of Florida,1991.
    [23]黄良钊,张安平.Al2O3陶瓷的动态力学性能研究[J].中国陶瓷.1999,35(1):13-15.
    [24]李英雷.装甲陶瓷的本构关系和抗弹机理研究[D].博士学位论文.合肥:中国科学技术大学.2003.
    [25]姚国文.冲击压缩下氧化铝陶瓷中的破坏波研究[D].博士学位论文.重庆:重庆大学.2003.
    [26]常敬臻.冲击加载下氧化铝陶瓷动态力学响应分析[D].硕士学位论文.重庆:重庆大学.2006:32-40.
    [27] Marom H,Sherman D,Rosenberg Z.Decay of elastic waves in alumina[J].Journal of Applied Physics.2000,88:5666-5669.
    [28] Rasorenov S V,Kanel G I,Fortov V E,Abasehov M M.The fracture of glass under high-pressure impulse loading[J].High Pressure Research.1991,6:225-232.
    [29] Brar N S,Rosenberg Z,Bless S J.Spall strength and failure waves in glass[J].Journal de physique IV.1991,1(C3):639-642.
    [30] Brar N S,Bless S J.Failure waves in glass under dynamic compression[J].High Pressure Research.1992,10:773-784.
    [31] Bourne N K,Rosenberg Z.The dynamic response of soda-lime glass[C].Shock Compression of Condensed Matter-1995,Washington,USA,1995.Elsevier Science Publishers BV.1996:567-572.
    [32] Bourne N K , Rosenberg Z , Ginzburg A . The ramping of shock waves in three glasses[C].Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences.1996,452:1491–1496.
    [33] Clifton R J.Analysis of failure waves in glasses[J].Applied Mechanics Review.1993,46(12-1):540-546.
    [34]Г.П.切列帕诺夫著,黄克智等译.脆性断裂力学[M].北京:科学出版社.1990:360-380.
    [35] Nikolaevskii V N . Limit velocity of fracture front and dynamic strength of brittle solids[J].International Journal of Engineering Science.1981,19:41-56.
    [36]赵剑衡,孙承纬,段祝平.冲击压缩下玻璃等脆性材料中失效波的研究进展[J].物理学进展.2001,21(2):157-175.
    [37] Kanel G I,Rasorenov S V,Fortov V E.The failure waves and spallations in homogeneous brittle materials[C].Shock Compression of Condensed Matter-1991.Virginia,USA,1991.Elsevier Science Publishers BV.1992:451-454.
    [38] Bourne N K,Millett J,Rosenberg Z.On the origin of failure waves in glass[J].Journal of Applied Physics.1997,81(10):6670-6674.
    [39] He H L.Dynamic response and microstructure damage of brittle materials under shock wave compression[D].Ph.D Thesis.Sichuan,Southwest Institute of Fluid Physics.1997:24-31.
    [40]王承遇,陶瑛.玻璃表面和表面处理[M].北京:中国建材工业出版社,1993.
    [41] Raiser G F,Wise J L,Clifton R J,Grady D E,Cox D E.Plate impact response of ceramics and glasses[J].Journal of Applied Physics.1994,75(8):3862-3869.
    [42] Millett J,Bourne N K,Rosenberg Z.Observations of the Hugoniot curves for glasses as measured by embedded stress gauges[J].Journal of Applied Physics.1998,84(2):739-741.
    [43] Espinosa H D,Xu Y P.Micromechanics of failure waves in glass: I Experiments[J].Journal of American Ceramics Society.1997,80(8):2061-2073.
    [44] Grady D E.Dynamic failure of brittle solids[R].Sandia Technical Report.TMDG0694.1994.
    [45]刘孝敏.工程材料的微细观结构和力学性能[M].合肥:中国科技大学出版社.2003:215-220.
    [46]金志浩等编著.工程陶瓷材料[M].西安:西安交大出版社,2001:2-60.
    [47]关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社.1992.
    [48]包亦望,金宗哲,孙立.脆性的定量化和冲击模量[J].材料研究学报.1994, 8(5):419-423.
    [49]苏翼林主编.材料力学(第二版) [M].北京:高等教育出版社.1987:26-27.
    [50] Cook W H.Compressive damage and fracture modeling of ceramic subjected to high-velocity impact[D].Ph.D Thesis.University of Florida,1991.
    [51] Ravichandran G,Subhash G.A micromechanical model for high strain rate behavior of ceramics[J].International Journal of Solids and Structure.1995,32(17/18):2627-2646.
    [52] Nemat-Nasser S,Deng H.Strain-rate effect on brittle failure in compression[J].Acta Metal.Mater.1994,42(3):1013-1024.
    [53] Rosenberg Z.On the relation between the Hugoniot elastic limit and yield strength of brittle materials[J].Journal of Applies Physics.1993,74(1):752-753.
    [54] Rosenberg Z.On the correlation between dynamic compressive strengths of strong ceramics and their indentation hardness[C] . Shock Compression of Condensed Matter-1995.Washington,USA,1995.Elsevier Science Publishers BV.1996:543-546.
    [55] Kanel G I,Razorenov S V,Frotov V F.Shock-Wave phenomena and the properties of condensed matter[C].2004 Springer-Verlag New York,Inc.2004:147-152.
    [56] Ahrens T J,Gust W H,Royce E B.Material strength effect in the shock compression of alumina[J].Journal of Applies Physics.1968,39(10):4610-4616.
    [57] Gust W H,Royce E B.Dynamic Yield strength of B4C,BeO and Al2O3 ceramics[J].Journal of Applied Physics.1971,42:276-295.
    [58] Rosenberg Z,Yaziv D,Yeshurun Y,Bless S J.Shear strength of shock-loaded alumina as determined with longitudinal and transverse manganin gauges[J] . Journal of Applied Physics.1987,62(3):1120-1122.
    [59] (a)经福谦.实验物态方程导引(第二版) [M].北京:科学出版社.1999. (b)谭华.实验冲击波物理引导到[M].中国工程物理研究院流体物理研究所.2007.
    [60] Longy F,Cagnoux J.Plasticity and microcracking in shock-loaded alumina[J].Journal of American Ceramics Society.1989,72(6):971-979.
    [61] Cagnoux J.Spherical waves in pure alumina.Effect of grain size on flow and fracture [C].Shock Compression of Condensed Matter-1989.North-Holland,Amsterdam.1989:445-448.
    [62] Wang Y,Mikkola D E.Response of alpha-aluminum oxide to shock impact[C].Shock-Wave and High-Strain-Rate Phenomena in Materials.Marcel Dekker,New York:1031-1040.
    [63] Rice R W.Strength/grain-Size effects in ceramics[J].Proceedings of British Ceramic Society.1972,20:205-213.
    [64] Becher P F,Rice R W.Strengthening effects in press forged KCl[J].Journal of Applied Physics.1973,44(6):2915-2916.
    [65] Kim H E,Moorhead A J.Effect of doping on the strength and infrared transmittance of hot-pressed cesium iodide[J].Journal of the American Ceramic Society.1991,74(1):161-165.
    [66] Roy D W,Natale P E.Processing and properties study of IR windows[R].Final report No.AFAL-TR-66-349,for Contract AF.1966,33(615):2733.
    [67] Gupta Y M. Shock wave experiments at different length scales: recent achievements and future challenges[C]. Shock Compression of Condensed Matter-1999. Utah, USA, 1999. AIP. 2000:3-10.
    [68] Meyers M A. Dynamic behavior of materials [M]. USA, A Wiley-Interscience Publication. 1994:585-596.
    [69]王礼立.应力波基础[M].北京.国防工业出版社.1985:21-50.
    [70]吴家龙.弹性力学[M].上海:同济大学出版社.1996.
    [71]马晓青,韩峰.高速碰撞动力学[M].北京.国防工业出版社.1998:79-84.
    [72]胡绍楼.激光干涉测速技术[M].北京:国防工业出版社.1996:27-40.
    [73] Senf H,Straβburger E,Rothenh?usler H.Visualization of fracture nucleation during impact in glass[C].Metallurgical and Materials Applications of Shock-wave and High-Strain-Rate Phenomena,edited by LE Murr,KP Staudhammer,MA Meyers,Elsevier Science BV.1995:163-170.
    [74] Tang Z P,Xu S L,Dai X Y,et al,S-wave tracing technique to investigate the damage and failure behavior of brittle materials subjected to shock loading[J].International Journal of Impact Engineering.31(9):1172-1191.
    [75]李大红,王悟.陶瓷物态方程实验研究[J].高压物理学报.1993, 7(3):226-231.
    [76]范镜泓,高芝晖.非线性连续介质力学基础[M].重庆:重庆大学出版社.1987:40-41.
    [77]李平.陶瓷材料的动态力学响应及其抗长杆弹侵彻机理[D].博士学位论文.北京.北京理工大学.2002:45-59.
    [78]龚江宏.陶瓷材料断裂力学[M .北京:清华大学出版社.2001:99-135.
    [79]匡震邦,顾海澄,李中华.材料的力学行为[M].北京:高等教育出版社.1998:299-308.
    [80] Johnson G R,Cook W H.A constitutive model and data for metals subjected to large strain,high strain rates and high temperatures[C].Proceedings of the 7th international symposium on ballistics.Netherlands,Hague.1983:541-547.
    [81] Zerilli F J,Armstrong R W.Dislocation-mechanics-based constitutive relations for material dynamics calculations[J].Journal of Applied Physics.1987,61(5):1816-1825.
    [82] Bodner S R,Partom Y.Constitutive equations for elastic-viscoplastic strain-hardening materials[J].Journal of Applied Mechanics.1975.42(2):385-389.
    [83] Field J E,Walley S M,Proud W G,Goldrein H T,Siviour C R.Review of experimental techniques for high rate deformation and shock studies[J].International Journal of Impact Engineering.2004,30:725-775.
    [84] Rohr I,Nahme H,Thoma K.Material characterization and constitutive modeling of ductile high strength steel for a wide range of strain rates[J] . International Journal of Impact Engineering.2005,31:401-433.
    [85] Suresh S,Brockenbrough J R.Theory and experiments of fracture in cyclic compression:single phase ceramics,transforming ceramics and ceramic composites[M] .Acta Metal.1988,36(6):1455-1470.
    [86] Pickup I M,Barker AK.Damage kinetics in silicon carbide[A] . Shock Compression of Condensed Matter-1997.Massachusetts,USA,1997.AIP. 1998:513-516.
    [87] Pickup I M,Barker A K.Deviatoric strength of silicon carbide subject to shock[A] .Shock Compression of Condensed Matter-1999.Utah,USA,1999.AIP. 2000:573-576.
    [88] Pickup I M, Bourne NK. The failure of aluminum nitride under shock[A]. Shock Compression of Condensed Matter-2001, Georgia, USA. AIP. 2002: 771-774.
    [89]王仁,黄文彬,黄筑平.塑性力学引论[MJ].北京:北京大学出版社.1999:83-104.
    [90]李克安.脆性材料杆件的轴向压缩破坏研究(一) [J].岳阳大学学报.1994,7(1-2):35-39.
    [91]袁绍国,雷化南.对岩体内摩擦角取值的商榷[J].西部探矿工程(岩石、钻掘和矿业工程).1995,7(2):32-33.
    [92] Murray N H , Bourne N K , Rosenberg Z . The dynamics compressive strength of aluminas[J].Journal of Applied Physics.1998,84(9):4866-4870.
    [93]刘占芳,姚国文.Al2O3陶瓷压剪复合冲击实验研究[J].固体力学学报.2002, 23(专辑):103-107.
    [94]桂毓林,孙承伟,路中华等.一维拉伸下无氧铜的动态断裂与破碎[J].爆炸与冲击.2007,27(1):40-44.
    [95]谢书港,范春雷,陈大年等.无氧铜层裂的实验与数值研究[J].爆炸与冲击.2006,26(61):533-536.
    [96]康丽霞,王耀华,何春霞等.爆炸载荷下紫铜断裂机理的实验研究[J].兵器材料科学与工程.2002,25(3):11-13.
    [97]胡时胜.材料动力学[M].合肥:中国科学技术大学五系教材.2002: 60-62.
    [98] Staehler J M,Predebon W W.Testing of high strength ceramics with the split Hopkinson pressure bar[J].Journal of American Ceramic Society.1993,76(2):536-538.
    [99] Davies E D H,Hunter S C.The dynamic compression testing of solids by the method of the split hopkinson pressure bar[J] .Journal of American Ceramic Society.1994,77(1):263-267.
    [100]张凯.冲击载荷下材料动力学性能的研究.本科毕业论文[D].重庆:重庆大学.2004: 21-22.
    [101]刘占芳,常敬臻,姚国文等.冲击压缩下氧化铝陶瓷中破坏阵面的传播[J].力学学报.2006,38(5):626~632.
    [102] Johnson G R,Holmquist T J.An improved computational constitutive model for brittle materials[C].In:Schmidt S C,Shaner J W et al.editors.High Pressure Science and Technology-1993,New York:AIP Press,1994,(2):981-984.
    [103]饭田修一等合编(张质贤等译).物理学常用数表[M].北京:科学出版社.1979:89-93.
    [104] Anderson C E,Johnson G R,Holmquist T J.Ballistic experiments and computations of confined 99.5% Al2O3 ceramic titles[C].Proceedings of the 15th international symposium on ballistics.Israel,Jerusalem.1995,2:65-72.
    [105] Liang R Q.Elastic-plastic constitutive modeling of tantalum and Aermet 100 steel due to quasi-static and dynamic loading[D].Doctoral dissertation.USA,University of Maryland:1999.
    [106] Tate A.A theory for the deceleration of long rods after impact[J] .Journal of Mechanics Solids.1967,15:387.
    [107]李玉龙,周宏霞,徐绯等.组成成分分布规律对功能梯度防护装甲动态响应的影响[J].复合材料学报.2005,22(4):58.
    [108]韩辉,李军,焦丽娟等.陶瓷-金属复合材料在防弹领域的应用研究[J].材料导报.2007,21(2):34-37.
    [109] (a) H.D.Espinosa, N.S.Brar, G.Yuan, Y.Xu, V.Arrieta. Enhanced ballistic performance of confined multi-lateres ceramic targets against long rod penetrators through interface defect[J]. International Journal of Solids and Structures, 2000,37:4893-4913. (b)杜忠华,赵国志,欧阳春等.多层陶瓷复合轻装甲结构的抗弹性分析[J].南京理工大学学报.2002,26(2):148-151.
    [110]李平,李大红,宁建国等.Al2O3陶瓷复合靶抗长杆弹侵彻性能和机理实验研究[J].爆炸与冲击.2003,23(4):289-294.
    [111] LS-DYNA User Manual . Version 970[M] . LSTC , Livermore Software Technology Corporation.April 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700