Zr基大块非晶合金本构关系及微齿轮挤压成形工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以大块非晶合金Zr_(55)Al_(10)Cu_5Ni_(30)为研究对象,利用单轴压缩实验研究大块非晶合金在过冷液相区的流变行为,基于虚拟应力模型,通过参数优化和拟合,建立新的、精度较高的本构模型。采用DEFORM-3D有限元分析软件对非晶合金在过冷液相区内进行正挤压成形模拟,分析各类参数对其成形工艺的影响规律,设计和制造微齿轮挤压成形模具,成形出各类齿轮。具体内容如下:
     (1)通过单轴压缩实验,分析Zr_(55)Al_(10)Cu_5Ni_(30)大块非晶合金在过冷液相区的流变行为,基于虚拟应力模型,利用MATLAB遗传算法优化拟合弹性模量,最大应力和最大松弛时间与温度和应变速率的关系,提高了模型对应力峰值及稳态应力值的计算精度;提出了时间调整因子的概念,提高了对应变变化历史的描述准确度,从而得到描述过冷液相区内不同温度、不同应变速率下非晶合金应力-应变关系的新的本构模型,通过单轴压缩实验与虚拟应力模型计算结果的对比,以及正挤压成形模拟与实验的对比,验证了本构模型的正确性。
     (2)利用已建立的本构模型,对DEFORM-3D有限元分析模拟软件进行二次开发,将非晶合金本构嵌入到材料库中,并对非晶合金进行正挤压成形模拟,分析挤压比、挤压速度、挤压角度和摩擦条件对非晶合金正挤压成形工艺的影响规律,总结非晶合金理想的成形工艺参数。
     (3)对非晶合金正挤压成形工艺不同变形阶段,不同挤压角度和不同挤压速度下,流动速度场、等效应力、等效应变和等效应变速率分布进行了有限元分析,为实际应用提供了理论指导。并通过模拟微齿轮挤压成形,找出了实际生产中可能出现的问题,提出了解决方案,保证实验的顺利进行及成形齿轮的表面质量和精度。
     (4)结合微齿轮成形的特点、模拟结果及实验材料本身的特点,设计和制造与微3K-2型行星齿轮减速器中四种齿轮相对应的两套模具,对关键部件进行表面珩磨处理,保证表面光洁度。通过参数调节和控制,成功挤出四种齿轮,内外齿轮齿形清晰饱满,表面平整,基本满足要求,为微齿轮的大规模塑性加工提供了有力参考。
The deformation behavior of Zr_(55)Al_(10)Ni_5Cu_(30) bulk metallic glass in the supercooled liquid region was investigated in this thesis through the axial compression experiments. Based on fictive stress model, a new constitutive model with high precision was established through the optimization and fitting of parameters. The Micro-forward-extrusion forming of Zr55Al10Ni5Cu30 in the supercooled liquid region was simulated by the finite element analysis software DEFORM-3D. The influences of all kinds of parameters on the forming process have been obtained. At last, the extrusion molds for micro gears were designed and fabricated and micro internal and external gears were extruded successfully.
     The research work can be summarized as below:
     (1) The deformation behavior of Zr_(55)Al_(10)Cu_5Ni_(30) bulk metallic glass in the supercooled liquid region was summarized through the axial compression tests. Based on fictive stress model, the relationships of Young’s modulus, maximum stress and maximum relaxation time with temperature and strain rate were established by using MATLAB Genetic Algorithm, so that the values of stress-overshoot and steady-state could be predicted more precisely. A time adjusting factor was also proposed to better describe the stress history. Thus, a new constitutive model was established to describe the stress-strain curves of bulk metallic glass under different temperatures and strain rates in the supercooled liquid region. Not only the comparison between calculated results of model and axial compression test results, but the comparison between simulation and experiment of micro-forward-extrusion proves the accuracy of the new model.
     (2) After adding the new constitutive model to the DEFORM-3D, the micro-forward-extrusion experiments of bulk metallic glass were simulated. The influences of extrusion ratio, extrusion velocity, extrusion angle and friction on the forming process have been obtained, so that the optimized process parameters can be got.
     (3) The finite element analysis of flow velocity field distribution, effective stress, effective strain and effective strain rate of micro-forward-extrusion was conducted under different deformation stages, different extrusion angles and different extrusion velocities, which provided academic guidance for the practical application. Through the simulation of extrusion process of micro gears, the possible problems of actual production were found and the corresponding resolution was also proposed to make sure the experiment runs perfect and guarantee the surface quality and dimension accuracy of formed parts.
     (4) Considering the forming characters of micro gears, simulation results and the properties of material, two sets of mold were designed and fabricated corresponding to the four kinds of gears of micro 3K-2 planetary gear reducer. The surface of key components is treated by Abrasive Flow Machining to ensure good surface finish. Through the adjustment and control of parameters, four kinds of gears were extruded successfully. The SEM photographs show that both the internal and external gears have clear outline and teeth and the surfaces are smooth, which satisfy the need basically and provide the useful theory reference for the mass plastic production of micro gears.
引文
[1]. Geiger, M.,Kleiner, M.,Eckstein, R., etc. Microforming[J]. CIRP Annals - Manufacturing Technology, 2001, 50 (2): 445-462.
    [2]. Engel, U.,Eckstein, R. Microforming—from basic research to its realization[J]. Journal of Materials Processing Technology, 2002, 125: 35-44.
    [3].马欣涛,周建忠,戴亚春.微型模具及微成形技术的发展[J].机械设计与制造, 2005, (012): 152-154.
    [4].赵亚西,童国权.微型齿轮挤压成形[J].模具工业, 2006, 32 (011): 48-50.
    [5].单德彬,袁林,郭斌.精密微塑性成形技术的现状和发展趋势[J].塑性工程学报, 2008, 15 (2): 46-53.
    [6].马智慧,董湘怀,梅琼风等.微细塑性成形工艺实现及最新研究进展[J].模具技术, 2008, (3): 12-15.
    [7]. Geiger, M.,Engel, U.,Vollersten, F., etc. Metal forming of Microparts for Electronics[J]. Production Engineering, 1994, 2 (1): 15-18.
    [8]. Geiger, M.,Messner, A.,Engel, U. Production of Microparts-Size Effects in Bulk Metal Forming, Similarity Theory[J]. Production Engineering, 1997, 4 (1): 55-58.
    [9]. Geiger, M.,Messner, A.,Engel, U., etc. Design of Micro-Forming Processes Fundamentals, Material Data and Friction Behavior[J]. Proceeding of the 9th International cold forging conference, 1995, 155-164.
    [10]. Kals, R. T. A. Fundamentals on the miniaturization of sheet metal working processes: Bericht aus dem Lehrstuhl für Fertigungstechnologie[M]. Meisenbach Verlag, 1999.
    [11]. Fleck, N.,Muller, G.,Ashby, M., etc. Strain gradient plasticity: theory and experiment[J]. Acta Metallurgica et Materialia, 1994, 42 (2): 475-487.
    [12]. St?lken, J.,Evans, A. A microbend test method for measuring the plasticity length scale[J]. Acta materialia, 1998, 46 (14): 5109-5115.
    [13]. Eckstein, R.,Geiger, M.,Engel, U. Specific Characteristics of Micro Sheet Metal Working [A]. In Proceeding of SheMet[C], 1999; 529-536.
    [14]. Raulea, L.,Govaert, L.,Baaijens, F. Grain and specimen size effects in processing metal sheets[J]. Advanced Technology of Plasticity, 1999, 2: 19-24.
    [15]. Raulea, L.,Goijaerts, A.,Govaert, L., etc. Size effects in the processing of thin metal sheets[J]. Journal of Materials Processing Technology, 2001, 115 (1): 44-48.
    [16]. Eckstein, R.,Engel, U. Behavior of the grain structure in micro sheet metal working[A]. In 2000; 453-459.
    [17]. Shen, Y.,Yu, H.,Ruan, X., etc. The test study of micro copper cylinder upsetting[J]. ZR Wang, TA Dean. Proceeding of the 1st ICNFT, 2004, 165-170.
    [18].申昱,于沪平,阮雪榆.微小尺度镦挤复合成形研究[J].塑性工程学报, 2006, 13 (001): 58-61.
    [19]. Engel, U.,Egerer, E. Basic research on cold and warm forging of microparts[J]. Key Engineering Materials, 2002, 233: 449-456.
    [20]. Jeong, H. W.,Hata, S.,Shimokohbe, A. Microforming of three-dimensional microstructures from thin-film metallic glass[J]. Microelectromechanical Systems, Journal of, 2003, 12 (1): 42-52.
    [21]. Engel, U.,Messner,A,Tiesler, N. Cold Forging of Microparts - Effect of Miniaturization on Friction[A]. In Proceedings of the 1st ESAFORM Conf. on Materials Forming[C], Sophia Antipolis, France, 1998; 77-80.
    [22]. Guo, B.,Gong, F.,Wang, C., etc. Size effect on friction in scaled down strip drawing[J]. Journal of materials science, 2010, 45 (15): 4067-4072.
    [23].王长丽.锌合金和铝合金超塑性微挤压研究[D].哈尔滨工业大学硕士论文2001.
    [24]. Inoue, A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta materialia, 2000, 48 (1): 279-306.
    [25]. Stenmark, E.,Puthucode, A.,Kaufman, M. Structure and Properties of Bulk Metallic Glasses[A]. In 2004; 4006.
    [26]. Kato, A.,Horikiri, H.,Inoue, A., etc. Microstructure and mechanical properties of bulk Mg70Ca10Al20 alloys produced by extrusion of atomized amorphous powders[J]. Materials Science and Engineering: A, 1994, 179: 707-711.
    [27].孙建春,曹鹏军.大块非晶合金的研究现状[J].重庆科技学院学报(自然科学版), 2006, 8 (3): 24-28.
    [28].褚维,陈国钧.大块非晶合金的研究进展[J].磁性材料及器件, 1999, 2: 7-11.
    [29].张黎楠,谌祺,柳林. Zr55Cu30Al10Ni5块体非晶合金在过冷液态区的流变行为及本构关系[J].金属学报, 2009, 45 (004): 450-454.
    [30]. Saotome, Y.,Inoue, A. New amorphous alloys as micromaterials and the processing technologies[A]. In The 13th Annual Int. Conf. on Micro-Electro-Mechanical Systems [C], 2000; 288-293.
    [31]. Saotome, Y.,Hatori, T.,Zhang, T., etc. Superplastic micro/nano-formability of La60Al20Ni10Co5Cu5 amorphous alloy in supercooled liquid state[J]. Materials science & engineering. A, Structural materials: properties, microstructure and processing, 2001, 304: 716-720.
    [32]. Saotome, Y. Z., T ; Inoue, A. Microforming of MEMS parts with amorphous alloys[J]. MATERIALS RESEARCH SOCIETY, 1999, 554: 385-390.
    [33].唐娜,王新云,汤莹莹等. Zr基大块非晶合金在过冷液相区内的本构关系的研究[J].中国科学:物理学,力学,天文学, 2010, 40 (3): 303-310.
    [34].郑志镇,李建军.大块非晶合金超塑性变形的研究现状与发展[J].塑性工程学报, 2008, 15 (2): 37-41.
    [35]. Lu, J.,Ravichandran, G.,Johnson, W. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures[J]. Acta materialia, 2003, 51 (12): 3429-3443.
    [36]. Shen, J.,Wang, G.,Sun, J., etc. Superplastic deformation behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk metallic glass in the supercooled liquid region[J]. Intermetallics, 2005, 13 (1): 79-85.
    [37]. Nieh, T.,Wadsworth, J.,Liu, C., etc. Plasticity and structural instability in a bulkmetallic glass deformed in the supercooled liquid region[J]. Acta materialia, 2001, 49 (15): 2887-2896.
    [38]. Kawamura, Y.,Shibata, T.,Inoue, A., etc. Superplastic deformation of Zr65Al10Ni10Cu15 metallic glass[J]. Scripta materialia, 1997, 37 (4): 431-436.
    [39]. Kawamura, Y.,Nakamura, T.,Kim, K. B. Superplasticity in Pd40Ni40P20 metallic glass[A]. In 1999; 349-354.
    [40]. Kawamura, Y.,Itoi, T.,Nakamura, T., etc. Superplasticity in Fe-based metallic glass with wide supercooled liquid region[J]. Materials Science and Engineering: A, 2001, 304: 735-739.
    [41]. Reger-Leonhard, A.,Heilmaier, M.,Eckert, J. Newtonian flow of Zr55Cu30Al10Ni5 bulk metallic glassy alloys[J]. Scripta Materialia(USA), 2000, 43 (5): 459-464.
    [42]. Chan, K.,Liu, L.,Wang, J. Superplastic deformation of Zr55Cu30Al10Ni5 bulk metallic glass in the supercooled liquid region[J]. Journal of Non-Crystalline Solids, 2007, 353 (32-40): 3758-3763.
    [43].沈军,孙剑飞,王刚等.大块非晶合金过冷液相区的超塑性流变行为[J].材料导报, 2004, 18 (007): 22-25.
    [44].王敬丰,柳林,蒲健等.大块金属玻璃Zr41Ti14Cu12.5Ni10Be22.5的流变行为研究[J].物理学报, 2004, 53 (6): 1916-1922.
    [45]. Liu, L.,Chan, K.,Zhang, T. The effect of temperature on the crystallization of Zr55Cu30Al10Ni5 bulk metallic glass in the glass transition region[J]. Journal of alloys and compounds, 2005, 396 (1-2): 114-121.
    [46].程明,张士宏.镁基大块非晶合金在过冷液相区流变行为本构关系[J].中国有色金属学报, 2006, 15 (11): 1682-1686.
    [47]. Spaepen, F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses[J]. Acta Metallurgica, 1977, 25 (4): 407-415.
    [48].沈军,王刚,孙剑飞等. Zr基块体非晶合金在过冷液相区的超塑性流变行为[J].金属学报, 2004, 40 (5): 518-522.
    [49]. Vollertsen, F.,Hu, Z.,Niehoff, H. S., etc. State of the art in micro forming and investigations into micro deep drawing[J]. Journal of Materials Processing Technology, 2004, 151 (1): 70-79.
    [50]. Yoshida, K.,Fukazawa, M.,Kubold, I. FEM Analysis and Experimental on Multistage Forging for Wrist Watch Parts[J]. M. Geiger. Proceeding of the 6th ICTP, 1999, 901-906.
    [51]. Yoshida, K.,Maejima, M. Optimum Drawing Conditions for Shaped Microwire of 100-400m Size[A]. In P.F.Bariani.Proceeding of the 8th ICTP[C], Verona Italy, 2005.
    [52].谢建新,周成,张志豪.非晶合金精细零部件的超塑性成形技术[J].材料导报, 2003, 17 (2): 8-11.
    [53]. Saotome, Y.,Itoh, A.,Amada, S. Superplastic micro forming of double gear for milli-machines[A]. In 1993.
    [54]. Saotome, Y.,Iwazaki, H. Superplastic extrusion of microgear shaft of 10μm in module[J]. Microsystem technologies, 2000, 6 (4): 126-129.
    [55]. Saotome, Y.,Inoue, A. Superplastic micro-forming of microstructures[A]. In 1994; 343-348.
    [56]. Saotome, Y. Superplastic nano/microforming of bulk metallic glasses and the application to micromachines[A]. In 2003; 11-16.
    [57].张志豪,刘新华,周成等. Zr基大块非晶合金的超塑性成形性能[J].中国有色金属学报, 2004, 14 (7): 1073-1077.
    [58].程明.镁基大块非晶合金微塑性成形数值模拟与实验研究[D].沈阳:中国科学院金属研究所2006.
    [59].单德彬,郭斌,王春举等.微塑性成形技术的研究进展[J].材料科学与工艺, 2005, 12 (5): 449-453.
    [60].于同敏,宫德海.微型模具制造技术研究与发展[J].中国机械工程, 2005, 16 (002): 179-183.
    [61]. Saotome, Y.,Iwazaki, H. Superplastic backward microextrusion of microparts for micro-electro-mechanical systems[J]. Journal of Materials Processing Technology, 2001, 119 (1): 307-311.
    [62]. Cao, J.,Krishnan, N.,Wang, Z., etc. Microforming: experimental investigation of the extrusion process for micropins and its numerical simulation using RKEM[J]. Journal of manufacturing science and engineering, 2004, 126: 642-652.
    [63]. Tanaka, S.,Nakamura, T.,Hayakawa, K. Miniature incremental forming of millimeter-sized thin sheet structures[J]. Proceeding of the 7^th ICTP, 2002, 403-408.
    [64]. Kurimoto, S.,Hirota, K.,Nakano, Y., etc. Improvement of ultra-fine piercing by means of vacuum system[J]. Advanced Technology of Plasticity, 2002, 1 (2002): 391-396.
    [65].张凯锋,王长丽. Zn-Al22合金超塑微成形[J].机械工程学报, 2004, 40 (5): 82-86.
    [66].王春举,曲东升,周健等.精密微塑性成形系统的研制[J].锻压技术, 2005, 3 (4): 56-59.
    [67].王春举.微型器件精密微塑性成形技术研究[D].哈尔滨工业大学硕士学位论文2003.
    [68].孙振锋,齐乐华,毛军等.超塑性微挤压装置温度控制系统研究[J].计算机工程与应用, 2008, 44 (005): 246-248.
    [69].毛军,齐乐华,孙振锋等.基于PCI-1710的运动控制系统研究[J].机械与电子, 2006, (9): 30-32.
    [70].陈勇,齐乐华,周计明等.超塑性微挤压成形控制系统研究[J].计算机仿真, 2009, (002): 301-304.
    [71].付佳伟,齐乐华,周计明等.微挤压成形系统的设计与实现[J].塑性工程学报, 2010, (001): 32-35.
    [72]. Inoue, A.,Zhang, T.,Nishiyama, K. Preparation of 16mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy[J]. Materials transactions-JIM, 1993, 34: 1234-1237.
    [73]. Peker, A.,Johnson, W. A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Applied Physics Letters, 1993, 63 (17): 2342-2344.
    [74]. Inoue, A.,Nakamura, T.,Nishiyama, N., etc. Mg-Cu-Y bulk amorphous alloyswith high tensile strength produced by a high-pressure die casting method[J]. Materials Transactions, JIM(Japan), 1992, 33 (10): 937-945.
    [75]. Kato, A.,Inoue, A.,Horikiri, H., etc. Production of bulk amorphous Mg85Y10Cu5 alloy by extrusion of atomized amorphous powder[J]. Materials transactions-JIM, 1994, 35: 125-125.
    [76].高玉来,沈军.大块非晶合金制备新技术—非晶粉末固结成形法[J].材料导报, 2002, 16 (010): 31-34.
    [77]. Kündig, A.,Cucinelli, M.,Uggowitzer, P., etc. Preparation of high aspect ratio surface microstructures out of a Zr-based bulk metallic glass[J]. Microelectronic engineering, 2003, 67: 405-409.
    [78]. Kawamura, Y.,Nakamura, T.,Kato, H., etc. Newtonian and non-Newtonian viscosity of supercooled liquid in metallic glasses[J]. Materials Science and Engineering: A, 2001, 304: 674-678.
    [79].张黎楠. Zr基大块非晶合金在过冷液相区中的塑性变形行为及有限元模拟[D].华中科技大学2008.
    [80]. Kato, H.,Inoue, A.,Chen, H. Fictive stress model calculations of viscoelastic behaviors in a Zr-based glassy alloy[J]. STRENGTH FRACTURE AND COMPLEXITY, 2004, 2: 21-33.
    [81]. Chen, H.,Kato, H.,Inoue, A. A fictive stress model and nonlinear viscoelastic behaviors in metallic glasses[J]. Materials transactions-JIM, 2001, 42 (4): 597-605.
    [82]. Seop Kim, H.,Kato, H.,Inoue, A., etc. Finite element analysis of compressive deformation of bulk metallic glasses[J]. Acta materialia, 2004, 52 (13): 3813-3823.
    [83]. Kato, H.,Kawamura, Y.,Chen, H. S., etc. A fictive stress model calculation of nonlinear viscoelastic behaviors in a Zr-based glassy alloy: Stress growth and relaxation[J]. Japanese Journal of Applied Physics, 2000, 39: 5184-5187.
    [84]. Chen, H. S.,Kato, H.,Inoue, A. A Fictive Stress Model Calculation of Stress-Overshoot: A Nonlinear Viscoelastic Behavior in Metallic Glass[J]. Japanese Journal of Applied Physics, 2000, 39: 1808-1811.
    [85]. Kim, H. S. Fictive stress model based finite element analysis for bulk metallic glasses at an elevated temperature[J]. Metals and Materials International, 2004, 10 (5): 461-466.
    [86]. Lu, J. Mechanical behavior of a bulk metallic glass and its composite over a wide range of strain rates and temperatures[M]. 2002.
    [87]. Johnson, W. L.,Lu, J.,Demetriou, M. D. Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquids--A self consistent dynamic free volume model[J]. Intermetallics, 2002, 10 (11-12): 1039-1046.
    [88]. Slipenyuk, A.,Eckert, J. Correlation between enthalpy change and free volume reduction during structural relaxation of Zr55Cu30Al10Ni5 metallic glass[J]. Scripta materialia, 2004, 50 (1): 39-44.
    [89]. Bletry, M.,Guyot, P.,Blandin, J. J., etc. Free volume model: High-temperature deformation of a Zr-based bulk metallic glass[J]. Acta materialia, 2006, 54 (5): 1257-1263.
    [90]. Ramachandrarao, P.,Cantor, B.,Cahn, R. Free volume theories of the glasstransition and the special case of metallic glasses[J]. Journal of materials science, 1977, 12 (12): 2488-2502.
    [91].惠希东,陈国良.块体非晶合金[M].化学工业出版社, 2007.
    [92]. Inoue, A.,Zhang, T.,Masumoto, T. Zr--Al--Ni Amorphous Alloys With High Glass Transition Temperature and Significant Supercooled Liquid Region[J]. Mater. Trans., JIM, 1990, 31 (3): 177-183.
    [93]. Somekawa, H.,Inoue, A.,Higashi, K. Superplastic and diffusion bonding behavior on Zr–Al–Ni–Cu metallic glass in supercooled liquid region[J]. Scripta materialia, 2004, 50 (11): 1395-1399.
    [94]. Chu, J.,Chiang, C.,Mahalingam, T., etc. Plastic flow and tensile ductility of a bulk amorphous Zr55Al10Cu30Ni5 alloy at 700 K[J]. Scripta materialia, 2003, 49 (5): 435-440.
    [95]. Inoue, A.,Zhang, T. Impact fracture energy of bulk amorphous Zr55Al10Cu30Ni5 alloy[J]. Materials transactions-JIM, 1996, 37 (11): 1726-1729.
    [96].吴浩扬,常炳国.遗传算法的一种特例—正交试验设计法[J].软件学报, 2001, 12 (001): 148-153.
    [97].李传民,王向丽,闫华军. DEFORM 5.03金属成形有限元分析实例指导教程[M].机械工业出版社, 2007.
    [98].王燕.非晶合金的微成形性能研究[D].上海交通大学2008.
    [99]. Kawamura, Y.,Shibata, T.,Inoue, A., etc. Workability of the supercooled liquid in the Zr65Al10Ni10Cu15 bulk metallic glass[J]. Acta materialia, 1998, 46 (1): 253-263.
    [100].吴晓,李建军,王新云等. Zr基块体非晶合金超塑性微挤压成形数值模拟[J].锻压技术, 2009, 34 (004): 39-44.
    [101].陈文元,张卫平.微3K-2型行星齿轮减速器中微齿轮啮合模型和参数计算[J].上海交通大学学报, 2000, 34 (3): 381-383.
    [102].张卫平,陈文元.基于LIGA技术的3K-2型微行星齿轮减速器的设计和制造[J].中国机械工程, 2003, 14 (005): 374-376.
    [103].陈文元,丁涛.用于φ2mm电磁型微马达的微3K-2型行星齿轮减速器的研究[J].微细加工技术, 1997, (004): 49-54.
    [104]. Becker, E.,Ehrfeld, W.,Hagmann, P., etc. Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process)[J]. Microelectronic engineering, 1986, 4 (1): 35-56.
    [105].关岳.微型机器超小型行星减速机[J].世界发明, 1993, 16 (1): 7-10.
    [106]. Geiger, M.,Vollertsen, F.,Kals, R. Fundamentals on the manufacturing of sheet metal microparts[J]. CIRP Annals-Manufacturing Technology, 1996, 45 (1): 277-282.
    [107].武利生,李元宗.磨料流加工研究进展[J].金刚石与磨料磨具工程, 2005, (1): 69-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700