304不锈钢薄板微冲压成形中尺寸效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近现代工业的发展,各行业对微型零件的需求也大大增加,而微型零件的加工技术中,微塑性成形技术以其高效率、高精度和低成本为主要特点,越来越受到广大研究者的重视。微塑性成形过程中,由于材料的晶粒尺寸越来越趋近零件的几何尺寸等,导致材料的力学性能呈现出与常规成形不同的尺寸效应现象。关于金属薄板尺寸效应方面的研究工作尚不够深入,制约了金属薄板成形技术的发展。因此本文针对尺寸效应开展研究。
     首先,将不同板厚304不锈钢薄板在不同温度下进行了热处理,然后进行了单向拉伸实验。由于表面韧性钝化膜具有类似于晶界的强化作用,导致板料的屈服应力随板料的减薄而增加,即表现出所谓“越薄越强”的尺寸效应现象,在经典霍尔-佩奇公式中添加相对厚度项,对不同板厚屈服应力进行了较好的预测;由于板料厚向晶粒数减少,使变形的不均匀性增加,导致板料的延伸率和抗拉强度随板料的减薄而降低,即表现出所谓“越薄越脆”的尺寸效应现象。
     其次,对不同条件下热处理后的304不锈钢薄板进行了微弯曲实验,观察到板料的回弹角和无量纲弯矩随板厚减薄而增加的“越薄越强”的尺寸效应现象,采用修正的Nix-Gao应变梯度硬化模型预测了这种现象,所得结果与实验吻合。
     最后,进行了304不锈钢薄板的微拉深实验,实验结果表明:板料的极限拉深比随板厚和筒形件尺寸的减薄而降低,表现出“越薄越脆”的尺寸效应现象。分别从极限拉深比计算公式和凸模在拉深过程的作用方面解释了这种现象。建立含有径向应变梯度项的最大拉深力计算公式,较好的预测了不同板厚材料拉深过程中的的最大拉深力。
With the development of modern industry, the demands of micro-parts in various fields have been greatly increased, in metal microforming process, plastic microforming technology is investigated by more and more researchers recently for its advantages including high efficiency, high quality and low cost. Size effect is found during plastic microforming process for the grain size is much closer to the micro-parts size. However, the current research in the metal foil of this area is infrequent, which limits the development of metal foil microforming technology. Therefore, the study of this paper is based on size effect to do research.
     Firstly, 304 stainless steel foils of various thicknesses are heated at different temperature, and uniaxial tensile tests are investigated. the results show that yield stress increases with the foil thickness decreasing, i.e. a size effect“smaller is stronger”, there is a layer of passive film out of the foil surface, the role of this passive film is similar to the enhanced role of the grain boundary, in this paper, the Hall-Petch equation was modified by introducing the influence of foil relative thickness, and applied to calculate yield stress with better agreement with test results; The results also show that limit elongation and tensile stress decreases with the thickness decreasing, i.e. a size effect“smaller is crispier”, the reason is that the numbers of the grain through the foil decrease with the foil thickness decreasing, this makes the forming process more unevenly.
     Secondly,microbending tests of 304 stainless steel foils are investigated, the results show that springback angle and non-dimensi- onal bending moment increase with the foil thickness decreasing, i.e. a size effect“smaller is stronger”, this phenomenon can be explained by modified Nix-Gao strain gradient hardening model, and the results agree with the experimental data.
     At last, micro-deep drawing tests of 304 stainless steel foils are investigated, the results show that limit drawing rations(LDR) decrease with the foil thickness and cylinder diameter decreasing, this can be explained by LDR equation and the role of punch in forming separately. An formula with radial strain gradient is established to forecast the drawing force, and the results agree with the experimental data.
引文
[1]. M. Geiger, M. Kleiner, R. Eckstein, et al. Microforming,Cirp annals-manu- facturing technology 50 (2001): 445-462.
    [2]. U. Engel, R. Eckstein, Microforming - from basic research to its realization, Journal of Materials Processing Technolgoy 125 (2002): 35-44.
    [3]. U. Engel, A. Rosochowski, S. Gei?d?rfer, et al. Microforming and Nanomat- erials, Advances in Material Forming(2007): 99-124.
    [4]. V.K. Varadan, MEMS and NEMS based smart devices and systems, Electro- nics and Structures for Mems II 4591(2001): 28-38.
    [5]. Y. Saotome, A. Inoue, Superplastic micro-forming of microstructure, MEMS, Proceedings, IEEE (1994): 343-348.
    [6]. Y. Saotome, H. Iwazaki, Superplastic extrusion of microgear shaft of 10 mu- m inmodule, Microsystem Technologies 6(2000): 126-129.
    [7]. Saotome, H. Iwazaki, Superplastic backward microextrusion of microparts for micro-electro-mechanical systems, Journal of Materials Processing Technolgoy 119(2001): 307-311.
    [8]. Y.P. Liu, L.A. Liew, R.L. Luo, L.N. An, M.L. Dunn, V.M. Bright, J.W. Daily, R. Raj, Application of microforging to SiCN MEMS fabrication, Sensors and Actuators A-Physical 95(2002): 143-151.
    [9]. K. Yoshida, M. Maejima,Optimum drawing conditions for shaped microwire of 100-400μm size,ICTP, 2005.
    [10].李凡国,童国权,温度对黄铜微成形镦粗的影响规律研究,锻压技术5(2006):15-18.
    [11].倪红海,童国权, H62黄铜微成形镦粗实验研究,机械制造与自动化4(2005) : 21-23.
    [12].赵亚西,童国权,微型齿轮挤压成形,模具工业11 (2006): 48-50.
    [13].赵亚西,童国权,李凡国,尺寸效应对黄铜镦粗微成形影响规律的研究,电加工与模具6 (2006): 44-46+49.
    [14]. U. Engel, Tribology in microforming, Wear 260(2006): 265-273.
    [15]. N. Krishnan, J. Cao, K. Dohda, Microforming: Study of friction conditions and the impact of low friction/high-strength die coatings on the extrusion of micropins, Manuf Eng Div Asme 16(2005): 331-340.
    [16].申昱,于沪平,阮雪榆,微小尺度镦挤复合成形研究,塑性工程学报13 (2006):58-61.
    [17].童忠财,于沪平,微成形热挤压试验及模具设计,模具技术2(2007): 17-20.
    [18].赵丹阳,王敏杰,宋满仓.面向MEMS的微型挤出成形技术.电加工与模具2 (2004): 55-57.
    [19].孙振锋,齐乐华,毛军等,超塑性微挤压装置温度控制系统研究,计算机工程与应用600 (2008): 246-248.
    [20].孙敬,杨方,齐乐华,超塑性微挤压尺度效应有限元模拟与分析,航空制造技术No.364 (2010): 73-75+95.
    [21].付佳伟,齐乐华,周计明,张彬,杨方,微挤压成形系统的设计与实现,塑性工程学报80(2010): 32-35+97.
    [22]. Gap-Yong Kim, Muammer Koc, Jun Ni.Experimental and Numerical Investigations on Microcoining of Stainless Steel 304. Journal of Manufacturing Science and Engineering 130 (2008):1-6.
    [23]. H. Ike, M. Plancak, Coining process as a means of controlling surface micro- geometry, Journal of Materials Processing Technolgoy (1998):101-107.
    [24].张敏,陆辛,电磁脉冲驱动力在微成形工艺中的试验研究,锻压技术3 (2009):72-74.
    [25]. Saotome Y,Yasuda K,Kaga H, Microdeep drawability of very thin sheet steels,Journal of Materials Processing Technolgoy(2001):641-647.
    [26]. R.Erhardt, F.Schepp,D.Schmoeckel, Micro forming with local part heating by laser irradiation in trasnsparent tools.Proceedings of the 7th International Conference on Sheet Metal. Bamberg, Germany (1999):497-505.
    [27]. F. Vollertsen, H.S. Niehoff, Z. Hu, State of the art in micro forming, International Journal of Machine Tools & Manufacture 46(2006): 1172-1179.
    [28]. F. Vollertsen, Z. Hu, H.S. Niehoff, C. Theiler, State of the art in micro forming and investigations into micro deep drawing, Journal of Materials Processing Technolgoy 151(2004): 70-79.
    [29]. K. Fujimoto, M. Yang, M. Hotta, H. Koyama, S. Nakano, K. Morikawa, J. Cairney,Fabrication of dies in micro-scale for micro-sheet metal forming, Journal of Materials Processing Technolgoy 177(2006): 639-643.
    [30]. M. Yang, K.I. Manabe, K. Ito, Micro press forming and assembling of micro parts in a progressive die, Journal of Mechanical Science and Technology 21(2007): 1452-1455.
    [31].马宁,董湘怀,第2类尺度效应对微拉深成形的影响.塑性工程学报14 (2007):115-119.
    [32].席庆标,董湘怀,微拉深成形工艺及模具设计研究,锻压技术32 (2007):57-61.
    [33].席庆标,微拉深工艺的实验研究及计算机模拟,硕士学位论文,上海:上海交通大学,2007.
    [34].张凯峰,丁水,雷鹍等,电沉积纳米镍薄板的超塑微拉深性能,中国机械工程18 (2007):983-987.
    [35].童敏杰,电沉积法制备细晶铜的微成形性能,硕士学位论文,哈尔滨:哈尔滨工业大学, 2006.
    [36].贾莲莲, C2680黄铜箔微圆筒拉深工艺研究,硕士学位论文,哈尔滨:哈尔滨工业大学, 2007.
    [37].王姚舟,微小型接插件冲压工艺研究,硕士学位论文,哈尔滨:哈尔滨工业大学, 2009.
    [38].徐杰,郭斌,单德彬,T2铜箔精密微冲孔工艺,纳米技术与精密工程8(3) (2010): 263-268.
    [39]. B.Y.Joo, S.H.Rhim, S.I.Oh, Micro-hole fabrication by mechanical punchin process, Journal of Materials Processing Technolgoy 170(2005):593-601.
    [40]. T. Mori, K. Hirota, D. Tokumoto, Improvement of ultra-fine piercing by vacuum system, Mhs 2000: Proceedings of the 2000 International Symposium on Micromechatronics and Human Science (2000): 77-82.
    [41]. T. Mori, K. Hirota, S. Kurimoto, Y. Nakano, Die making of ultra-fine piercing by electric discharge machining, Mhs2002: Proceedings of the 2002 International Symposium on Micromechatronics and Human Science: 61-66.
    [42]. S. Kurimoto, K. Hirota, D. Tokumoto, T. Mori, Improving high precision and continuous process of ultra-fine piercing by SiC fiber punch, JSME International Journal-Series C 47(2004): 398-404.
    [43]. Otto A,V Brandt V, Closed control loop system for laser bending of extrusion, Advanced Technology of Plasticity 6(1999) :1019-1024.
    [44]. M.H. Fu, K.C. Chan, W.B. Lee, L.K. Chan, Springback in the roller forming of integrated circuit leadframes, Journal of Materials Processing Technolgoy 66(1997): 107-111.
    [45]. K.C. Chan, S.H. Wang, Theoretical analysis of springback in bending of integrated circuit leadframes, Journal of Materials Processing Technolgoy 91(1999): 111-115.
    [46]. Y.Saotome, T.Okamoto, An in-situ incremental microforming system for three-dimensional shell structures of foil materials, Journal of Materials Processing Technolgoy 113(2001):636-640.
    [47]. S.Tanaka, T.Nakamura, K.Hayakawa, Miniature incremental forming of millimeter-sized thin sheet structures, Proceedings of the 7th ICTP, Japan (2002): 403-408.
    [48]. T.A.Kals, R.Eckstein, Miniaturization in sheet metal forming, Journal of Materials Processing Technology 103(2000):95-101.
    [49]. R.Kals, F.Vollertsen, M.Geiger, Scaling effects in sheet metal forming, Proceedings of the 4th SheMet (1996):65-75.
    [50]. M.Geiger, F.Vollertsen, R.Kals, Fundamentals on the manufacturing of sheet metal microparts, Annals of the CIRP 45(2) (1996):227-282.
    [51]. J.F.Michel, P.Picart, Size effects on the constitutive behaviour for brass in sheet metal forming, Journal of Materials Processing Technolgoy 141(3) (2003): 439-446.
    [52]. L.V.Raulea, A.M.Goijaerts, L.E.Govaert, et al.Size effects in the processing of thin metal sheets,Journal of Materials Processing Technolog 115(2001): 44-48.
    [53]. L.V.Raulea, L.E.Govaert, F.P.T.Baaijens.Grain and specimen size effects in processing metal sheets. Proceedings of the 6th ICTP (1999):19-24.
    [54]. N.A. Fleck, G.M. Muler, M.F. Ashby, J.W. Hutchinson, Strain gradient plasti city: theory and experiment, Acta Materialia 42(1994): 475-487.
    [55]. W.D. Nix, H.J. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, International Journal of Solids and Structures 46(1998): 411-425.
    [56]. J.S. St?lken, A.G. Evans, A microbend test method for measuring the plasticity length scale, Acta Mater 46(1998): 5109-5115.
    [57]. H.D.Espinosa,B.C.Prorok,B.Peng, Plasticity size effects in free-standing submicron polycrystalline FCC films subjected to pure tension, Journal of the Mechanics and Physics of Solids 52(2004): 667~689.
    [58]. K. Suzuki, Y. Matsuki, K. Masaki, et al. Tensile and microbend tests of pure aluminum foils with different thicknesses, Materials Science and Engineering 513-14(2009): 77-82.
    [59]. J.T. Gau, C. Principe, M. Yu, Springback behavior of brass in micro sheet forming, Journal of Materials Processing Technology 191(2007): 7-10.
    [60]. Li H.Z, Dong X.H, Shen Y, Diehl A, et al. Size effect on springback behavior due to plastic strain gradient hardening in microbending process of pure aluminum foils . Material Science and Engineering 527(2010): 4497-4504.
    [61]. Li H.Z, Dong X.H, Wang Q, et al. Determination of material intrinsic length and strain gradient hardening in microbending process. International Journal of Solids and Structures 48 (2011): 163-174.
    [62].李河宗,董湘怀,申昱等,CuZn37黄铜板料微塑性成形中的尺寸效应研究,材料科学与工艺8(2011):15-19.
    [63].李河宗,董湘怀,申昱等,采用应变梯度硬化模型预测黄铜薄板微弯曲弯矩,上海交通大学学报11(2011):1668-1672.
    [64]. T.A.Kals, R.Eckstein, Miniaturization in sheet metal forming.Journal of Materials Processing Technology, 103(2000):95-101.
    [65]. N.A. Fleck, J.W. Hutchinson, Strain gradient plasticity, Advances in Applied Mechanics 33(1997): 295-361.
    [66]. N.A. Fleck, J.W. Hutchinson, A reformulation of strain gradient plasticity, International Journal of Solids and Structures 49(2001): 2245-2271.
    [67]. N.A. Fleck, M.F. Ashby, J.W. Hutchinson, The role of geometrically necessary dislocations in giving material strengthening, Scripta Materialia 48(2003): 179-183.
    [68]. N.A. Fleck, J.R. Willis, A mathematical basis for strain-gradient plasticity theory-Part I: Scalar plastic multiplier, International Journal of Solids and Structures 57(2009): 161-177.
    [69]. N.A. Fleck, J.R. Willis, A mathematical basis for strain-gradient plasticity theory. Part II: Tensorial plastic multiplier, International Journal of Solids and Structures 57(2009): 1045-1057.
    [70].黄克智,邱信明,姜汉卿,应变梯度理论的新进展(一)——偶应力理论和SG理论,机械强度2 (1999): 81-87.
    [71].黄克智,邱信明,姜汉卿,应变梯度理论的新进展(二)——基于细观机制的MSG应变梯度塑性理论,机械强度3(1999): 161-165.
    [72]. W.D.Nix, H.Gao.Indentation size effects in crystalline materials:a law for strain gradient plasticity.International Journal of Solids and Structures 46 (1998): 441-425.
    [73]. H. Gao, Y. Huang, W.D. Nix, et al. Mechanism-based strain gradient plasticity - I. Theory, Journal of the Mechanics and Physics of Solids47(1999): 1239-1263.
    [74].周健,铜箔力学性能的尺寸效应及微拉深成形研究,博士学位论文,哈尔滨:哈尔滨工业大学,2010.
    [75].李河宗,微弯曲成形中应变梯度硬化效应的研究,博士学位论文,上海:上海交通大学,2011.
    [76]. Chi-Han Chen, Jenn-Terng Gau, et al.,An Experimental and Analytical Study on the Limit Drawing Ratio of Stainless Steel 304 Foils for Microsheet Forming,Materials and Manufacturing Processes 24(2009): 1256–1265.
    [77]. Denis. Y. Yu, F. Spaepen,The yield strength of thin copper films on Kapton,Journal of Applied Physics 95(2004):2991-2997.
    [78]. A. Di Schino, I. Salvatori, J. M. Kenny, Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel,Journal of Materials Science 37(2002): 4561– 4565.
    [79].胡钢,许淳淳,张新生, 304不锈钢在闭塞区溶液中钝化膜组成和结构性能,北京化工大学学报30(2003):20-23.
    [80]. Frost H, Ashby M F.Deformation Mechanism Maps, Pergamon, Oxford, 1982.
    [81]. Y. Xiang, J.J. Vlassak. Bauschinger and size effects in thin-film plasticity. Acta Materialia 54(2006): 5449-5460.
    [82].郭斌,周健,单德彬,王慧敏,黄铜箔拉伸屈服强度的尺寸效应,金属学报44(2008): 419-422.
    [83].崔忠圻,金属学与热处理,机械工业出版社,1988.
    [84].周健,郭斌,单德彬,铜箔抗拉强度及延伸率的尺寸效应研究,料科学与工艺18 (2010): 445-449.
    [85].《钢铁材料手册》总编辑委员会,钢铁材料手册第五卷不锈钢,中国标准出版社,2001.
    [86]. W. Wang, Y. Huang, K.J. Hsia, et al. A study of microbend test by strain gradient plasticity, Int J Plasticity 19(2003): 365-382.
    [87]. Y. Huang, H. Gao, W.D. Nix, J.W. Hutchinson, Mechanism-based strain gradient plasticity - II. Analysis, International Journal of Solids and Structures 48(2000): 99-128.
    [88]. G.I. Taylor, Plastic strain in metals, Journal Institute of Metals 62(1938): 307-324.
    [89]. Z. Xue, Y. Huang, M. Li, Particle size effect in metallic materials: a study by the theory of mechanism-based strain gradient plasticity, Acta Materialia 50(2002): 149-160.
    [90]. D.M. Duan, N.Q. Wu, W.S. Slaughter, et al. Length scale effect on mechanical behavior due to strain gradient plasticity, Material Science and Engineering 303(2001): 241-249.
    [91]. R.S. Lee, C.H Chen, J.T. Gau,Effect of Thickness to Grain Size Ratio on Drawability for Micro Deep Drawing of AISI 304 Stainless Steel ,ICTP2008.
    [92].肖景容,姜奎华,冲压工艺学,机械工业出版社,1988.
    [93].汪大年,金属塑性成形原理,机械工业出版社,1985.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700