大型循环流化床锅炉混流式流化床冷渣器研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着循环流化床锅炉的快速发展,高温灰渣的冷却问题越来越受到人们的重视。作为循环流化床锅炉的重要辅机,灰渣冷却装置的正常运行至关重要。为了满足高参数大容量CFB锅炉(特别是600MW超临界CFB锅炉)对冷渣器的要求,作者在综合考虑目前大型循环流化床锅炉冷渣器的实际现场运行情况与存在的主要问题的基础上,研制出一种混流式流化床冷渣器,并申请国家发明专利一项。研制过程中,作者自行设计搭建了混流式流化床冷渣器的可视化冷态试验台,采用电厂筛分灰渣作为工作床料,对混流式流化床冷渣器内的灰渣流动特性与冷渣器结构特性等进行了系统的冷态试验研究,解决了以下关键问题:
     ①选择仓与冷却仓内的灰渣流动特性及其影响因素;
     在选择仓内,灰渣床层高度、流化风量和隔墙高度是决定灰渣分选特性的关键因素;在冷却仓内,非均等配风有利于灰渣颗粒的定向流动与混合,存在着一个最有利的平均流化速度及流化速度梯度的控制范围;通过监测冷渣器悬浮空间压力变化可以有效地预测冷渣器内扬析量的变化,悬浮空间压力可作为一个检测扬析量大小的参考标准。
     ②混流式流化床冷渣器不同结构下的运行特性。
     采用模块化分隔墙等方式,改变试验台中冷渣器的结构,通过分析不同结构下的运行特性,得到了冷渣器结构布置的优化方案:在保证足够的床层高度(满足受热面布置要求)的前提下,排渣口尽量布置低端,保证灰渣的顺利排放;第一分隔墙高度存在一个合理的布置范围,使粒度分布和分选率达到有效的优化组合;其余分隔墙高度在布置上沿灰渣流动方向呈阶梯逐步下降的趋势。
     基于冷态试验结果,采用CFD软件完成了混流式流化床冷渣器的冷态数值模拟计算。计算结果显示:
     ①运用FLUENT软件中两相流动欧拉模型,能够正确反映冷渣器内部气固两相流动的特征;
     ②不同粒度颗粒在相同用风工况下颗粒运动效果截然不同;在非均等配风状态下,颗粒定向流动存在一个有利的流化速度梯度控制范围,与冷态试验结果相一致。
     此外,借助研究室的研究成果,确定了冷却仓的传热特性;在上述研究成果基础之上,对混流式流化床冷渣器结构进行了全面优化,同时根据实际CFB锅炉的底渣粒径分布特性,设计了一台15t/h混流式流化床冷渣器,并投入工业制造与安装。
With the rapid development of the circulating fluidized bed boiler, an increasing attention is paid to the high-temperature ash cooling. As an important auxiliary equipment of the circulating fluidized bed (CFB) boiler, the normal running of ash cooling equipment is critical. In order to meet the requirements of the high parameter and large capacity CFB boiler, especially the 600MW supercritical CFB Boiler, the author developed an omnibus-flow fluidized bed bottom ash cooler and has already declared a nation invention patent. The research is based on the current actual scene operations and the major problems of the large-scale circulating fluidized bed boiler ash coolers.
     In the development of the new ash cooler, a visual cold experimental apparatus was designed and set up. A series of researches and analysis on the running characteristics and structural characteristics of the new ash cooler was carried out with the bed material of screening bottom ash. Through the research, the key problems were resolved as follows:
     ①Flowing characteristics of the ash in the selective chamber and cooling chambers and the influencing factors;
     The key factors of effect on particles selecting are the bed height、fluidized airflow and the height of separation partitions in the selective chamber. Non-uniform air distribution makes for the particles directional flow and mixture in bubbling beds. There is a most favorable control range of the average fluidized velocity and velocity gradient. The elutriation can be predicted effectually by monitoring the variation of the pressure in suspension space. The pressure in suspension space can be regarded as a reference for the elutriation measure.
     ②Running characteristics with different structures of the omnibus-flow fluidized bed bottom ash cooler.
     In the research, the structure of the ash cooler is changed by using modularized separation partitions. an optimization scheme of the structure arrangement in the ash cooler is got by analyzing running characteristics with different structures: On the premise of ensuring adequate bed height(to meet the demand of heating surface layout),ash discharge port should be located lower to help ash discharge smoothly; a rational range of the height of the first separation partition can be selected to get the optimized combination of the particle size attribution and ash flux,and he height layout of other separation partitions took a decreasing trend along ash flowing. Based on the cold experimental tests, the cold numerical simulation of the omnibus-flow fluidized bed bottom ash cooler was completed by using CFD software.
     The simulation results indicate that:
     ①By using Two-phase Flow Eulerian Model in software Fluent., the simulation to the gas-solids flow characteristics in the bottom ash cooler with numerical simulation could reflect the behavior of the gas-solids flow in the bottom ash cooler;
     ②Different sizes particles have distinct motion effects with the identical fluidized airflow; there is a favorable control range of the fluidized velocity gradient with the non-uniform air distribution in the particles directional flow. The result corresponds with the cold test results.
     Moreover, heat transfer characteristics of cooling chambers were determined based on the research result of the laboratory. On the basis of the above research result, the structure of the ash cooler was optimized completely; according to particle size attribution characteristics of the actual bottom ash in CFB boilers, the industrial design of the omnibus-flow fluidized bed bottom ash cooler with 15t/h was carried out, and it will be put into industrial manufacture and installation.
引文
[1] 王革华等. 能源与可持续发展. 化学工业出版社. 2005年: 1~2
    [2] 毛健雄等. 煤的清洁燃烧. 科学出版社. 1998 年: 30~35
    [3] 俞珠峰等. 洁净煤技术及其在我国能源消费结构调整中的作用. 中国能源. 2001(5):14~16
    [4] 成玉琪等. 中国洁净煤技术发展述评. 洁净煤技术. 1999,5(1): 8~9
    [5] Ningshen C. Research and Development on PFBC-CC in China and Jiawang Pilot Power Plant. Journal of Thermal Science, 1994, 3(3):205-209
    [6] Elseviers W F, Mierlo T V, Van deV, et al. Thermodynamic simulations of lignite-fired IGCC with in situ desulphurization and CO2 capture. Fuel, 1996, 75(12): 1449-1456
    [7] Chen L, Dick W A, Nelson S. Flue gas desulphurization by-products additions to acid soil: alfalfa productivity and environmental quality. Environmental Pollution, 2001, 114(2): 161-168.
    [8] Stamatelopoulos, Seeber and Skowyra. Advancement in CFB Technology: A combination of excellent environmental performance and high efficiency. 18th International Conference on Fluidized Bed Combustion, Toronto: Canada, May 22-25, 2005
    [9] Bo Leckner. Fluidized Bed Combustion: Mixing and Pollutant Limitation. Prog. Energy Combust. Sci. 1998, 24: 31-61.
    [10] M.M.Marchetti. ALSTOM’s Large CFBS and Results. Proceedings of 17th International Fluidized Bed Combustion Conference, ASME, New York, 2003:1
    [11] Thierry LE, etc. Fuel Flexibility and Petroleum Coke Combustion at Provence 250MW CFB,17th International Fluidized Bed Combustion Conference, ASME, New York,2003
    [12] I. Ven?l?inen, R. Psik. 460 MWe Supercritical CFB Boiler Design for Lagisza Power Plant. POWER-GEN Europe, Barcelona, SPain, May 25-27, 200
    [13] 汪播. 法国循环流化床技术大型化最新发展. 山东电力技术. 2003(4):81
    [14] 卢啸风. 大型循环流化床锅炉设备与运行. 北京:中国电力出版社. 2006:125-133
    [15] Stephen J Goidich. The Utility CFB Boiler–Present Status, Short and Long Term Future with Supercritical and Ultra-Supercritical Steam Parameters. Power-Gen Europe 2002. 2001.
    [16] Wu Yuxin, Lu Junfu. Conceptual Design of an 800 MWe Supercritical Pressure CFBB and its Performance Prediction. The 8th International Conference on Circulating Fluidized Beds. 2005.
    [17] 冯俊凯等. 循环流化床燃烧锅炉. 北京:中国电力出版. 2003: 22~23
    [18] Zhongyang Luo, Kefa Cen. Research and Development on Circulating Fluidized Bed Combustion Technology in China. The 8th International Conference on Circulating Fluidized Beds. 2005.
    [19] 刘德昌,陈汉平. 循环流化床锅炉大型化中的问题. 东方锅炉. 1996(4): 12~14
    [20] 庄惠颖. 循环流化床大型化的几个关键问题探讨. 华北电力技术. 1998(10): 26~28
    [21] 周一工. 国外大型循环流化床锅炉的发展和问题. 北京节能. 1999(2):7~10
    [22] W.Fr, Staab. Difficult to Burn Fuels in Mid-Size to Large CFB Applications Latest Experience and Outlook. Proceedings of 16th International Conference on Fluidized Bed Combustion. May 13-16, 2001, RENO, NEVEDA.
    [23] Barsin, J. A. “Coal Fired Power Boiler System for Bottom Ash Removal Without Water”, presented to the International Joint Power Generation Conference in Denver, Co, November 1996.
    [24] Carrea E., Scavizzi G. C., and Barsin, J. A.. Dry Bottom Ash Removal-Ash Cooling vs. Boiler Efficiency Effects. presented to the International Joint Power Generation Conference in Baltimore, MD, August 1998.
    [25] 吕俊复,岳光溪等. 循环流化床锅炉运行与检修. 2003年1月: 220~229
    [26] 巴苏 P, 弗雷泽 SA 著. 循环流化床锅炉的设计和运行. 1994 年: 72~75
    [27] 吴文超. 大型循环流化床锅炉冷渣器的选型. 电力设备. 2007(8): 64~67
    [28] 马立慧. 循环流化床锅炉冷渣器的选型. 河北电力技术. 2005(6): 26~67
    [29] 孙振龙. 风水滚筒式冷渣机的研究. 电站系统工程. 2002(2): 26~27
    [30] Jeff W. Kerner, Gary W. Stetler. Ash Cooling Screws-A Retrospective And Looking Ahead, Proceedings of 17th International Fluidized Bed Combustion Conference, May 18-21, 2003, Jacksonville, Florida USA.
    [31] 程真何,刘义成等. 负压式超强钢带冷渣器在循环流化床锅炉忠的应用. 电力设备. 2005(6): 43~47
    [32] 邓学志,黄长军. 流化床冷渣器的设计与故障分析.锅炉技术. 2005(11): 56~70
    [33] Yufeng Duan. An Innovative Vibration Fluidized Bed Ash Cooler, Proceedings of the 15th International Conference on Fluidized Bed Combustion, May 16 - 19, 1999, Savannah, Georgia.
    [34] 毛鸿禧. CFBC锅炉安全、经济运行中三大顽症的治理. 全国电力行业CFB机组技术交流会议论文集. 2006: 52-75
    [35] John J. Butler, Nancy C.Mohn, Jean-Claude Semedard, Richard Skowyra, Bruce Wilhelm. CFB Technology: Can the original clean coal technology continue to compete. Power Gen International, Nevada: USA, 6-9 December 2005
    [36] 舒茂龙等. 大型CFB锅炉流化床冷渣器技术探讨. 电站系统工程. 2007(2): 29-31
    [37] 尹斌,章明川, 卢啸风. 410t/hCFB锅炉流化床冷渣器冷模试验研究. 华东电力. 2002(4): 5-8
    [38] Dallas W.Thrape, Iqbal Abulally. An update of operating experiences burning petroleum coke ina utility scale CFB the Nisco cogeneration project. Fluidized Bed Combustion, Volume 1, ASME 1997
    [39] LiXuan-tian. Development of New Ash Coling Method for Atmospheric Fluidized Beds. Proceedings of 13th International Conference on Fluidized Bed Combustion, Ed. By Heinshel, KayJ., ASME, 181~184
    [40] Stephen J.Goidich. Foster Wheeler ComPact CFB Boilers for Utility Scale. Proceedings of 16th International Conference on Fluidized Bed Combustion, may 13-16, 2001, RENO, NEVEDA.
    [41] PK.Chelian. Operating Experience of Pyroflow Boilers in a 250MWe Unit. Fluidized Bed combustion, 1995(2): 1095
    [42] 蔡新春,叶宁等. 流化床选择性冷渣器运行技术探讨. 锅炉制造. 2002(1): 4~6
    [43] 丁岩峰,樊泉桂. 大型循环流化床锅炉选择性排灰冷渣器运行分析. 华北电力技术. 2005(6): 22~26
    [44] 朱廷玉. PYROFLOW型选择性冷渣器运行及改造建议. 能源研究与利用. 2003(4): 45~47
    [45] Nowak W. Design and Operation Experience of 230MWe CFB Boilers at Turow Power Plant in Poland. Proceedings of the 15th International Conference on Fluidized Bed Combustion. ASME, New York,1999
    [46] Xiaofeng Lu and Ryo S. Amano. Feasible Experimental Study on the Utilization of a 300MW CFB Desulfuration Bottom Ash for Construction Applications. 5th International Symposium on High Temperature Air Combustion and Gasification .Oct, 2002, Yokohama, JaPan
    [47] 张缦,别如山. 风水联合冷渣器运行问题及改进措施. 电站系统工程. 2006,22(3): 29~30
    [48] 刘升,李广平,张宏彪. 风水联合式冷渣器在工程实践中的应用. 中国电力. 2003(4): 71~73
    [49] 金涌,祝京旭,汪展文等. 流态化工程原理. 北京:清华大学出版社. 2001: 86~90
    [50] S. J. Goidich,T Hypp?nen. “Foster Wheeler ComPact CFB Boilers for Utility Scale,” Proceedings of 16th International Conference on Fluidized Bed Combustion, Reno, Nevada, May 13-16, 200
    [51] Xiaofeng Lu, Dajun Wang, Qinghua Chen, Ryo S. Amano. Operational Experience And Design Consideration Of A Large Scale Anthracite Fired CFB Boiler In China. Proceedings of the 17th International Conference on Fluidized Bed Combustion. May 18-21, 2003, Jacksonville, Florida, USA.
    [52] Nowak W., etc. Design and Operation Experience of 230MWe CFB Boilers at Turow Power Plant in Poland, Proceedings of the 15th International Conference on Fluidized Bed Combustion, ASME, New York,1999
    [53] 叶学民,李贵元等. 风水冷选择性冷渣器的技术特性分析. 锅炉技术. 2005(1): 12~15
    [54] Enwald H., Peirano E., Almstedt A.E. Eulerian two-phase flow theory applied to fluidization,Int.J. Multiphase Flow. 1996, 22: 21~66
    [55] Mathiesen V., Solberg T., An experimental and computational study of multiphase flow behavior in a circulating fluidized bed. International Journal of Multiphase Flow. 2000:387~419
    [56] 许用权等. 循环流化床锅炉冷渣器内气固两相流场的数值模拟. 西安交通大学学报. 2005.39(5): 472~475
    [57] 田华,刘衍平,齐纪渝. 循环流化床锅炉风水联合冷渣器的数值模拟. 现代电力. 2006.23(2): 48~51
    [58] Tao Guo, Xiaofeng Lu, Hanzhou Liu, Jihui Chen. Cold Model Experiments and Numerical Simulation on a Selective Fluidized Bed Bottom Ash Cooler in a 410t/h CFB Boiler. 19th International Conference on Fluidized Bed Combustion, Vienna: Austria, May 21-24, 2006
    [59] 刘德昌,陈汉平. 循环流化床锅炉运行及事故处理. 中国电力出版社. 2005: 29~32
    [60] Howard,J.R.Fluidized Bed Technology-Principles and Applications. Adam Hilger, Bristol, UK. 1989: 18
    [61] 李生军. 流化床布风板的阻力分析和计算. 有色金属(冶炼部分) . 1995 (03)
    [62] 李志旺,赵秉庆,王伟东. UG—75/5.3—M_3型流化床锅炉布风板阻力的试验研究. 热能动力工程. 1997 (01)
    [63] Kuramoto M,Kunii D,Furusawa T. Powder Technol.. 1986,47:141~149
    [64] Jones D R M, Davidson J F. Rheol Acta. 1965,4:180~197
    [65] Lanauze R D.Powder Techol. 1976,15:117~127
    [66] De Jong J A H. Powder Techol. 1975,12:197~200
    [67] Lim C J, and Mathur K B. Modeling of Particle Movement in Spouted Beds. Cambridge University Press. Cambridge,1978:104-109
    [68] Kutuoglu E, Grace J R. Particle Segretion in Spouted Beds. Can.J. Chem.Eng. 1983:308-316
    [69] 田凤国,章明川等. 流化床微观混合过程的定量评价. 动力工程. 2007(27):45~49
    [70] 叶学民,李春曦,樊旭等. 非均等配风下的风水冷选择性冷渣器冷态排渣特性. 热能动力工程. 2005(1):73~76
    [71] 田凤国,章明川等. 布风方式对流化床混合特性的影响. 化学工程. 2007(35):26~29
    [72] 田文栋,魏小林等. 非均匀和均匀布风流化床中颗粒的运动分析. 工程热物理学报. 2001(22): 161~164
    [73] Leva M. Elutriation of fines from fluidized system. Chem.Eng. Prog. 1951,47(1):39
    [74] Wen C Y and Hangshinger R F. Elutriation of solid practical from a dense phase fluidized bed, AICH E, J.1960.6(2): 220
    [75] 周力行. 湍流气粒两相流动和燃烧的理论与数值模拟. 科学出版社. 1994: 177~207
    [76] Tsuji Y, Kawaguchi T, Tanaka T. Discrete Particle simulation of two-dimensional fluidized bed.Powder Technology, 1993, 77: 79~87
    [77] Ding J, Lyczkowski R W. Three dimensional kinetic theory modeling of hydrodynamic and erosion in fluidized beds. Powder Technology, 1992, 73: 127~138
    [78] Gidaspow D. Multiphase Flow and Fluidization: Continuum and kinetic Theory Description. Boston: Academic Press
    [79] 李勇等. 介绍流体力学通用软件——FLUENT. 水动力学研究与进展. 2001.16(2): 254~258
    [80] 洪若瑜,李洪钟等. 基于双流体模型的流化床的模拟. 化工学报. 1995, 46(3): 349~355
    [81] Ackson, R. The mechanics of fluidized beds. Trans. Inst. Chem. Eng. 1963:41.13-28.
    [82] Jenkins J T, Savage S B. A theory of the rapid flow of identical, smooth, nearly ealstic, spherical Particles. J.Fluid.Mech.1983,130,187~202.
    [83] Enwald, H.,Peirano, E., Almstedt, A.E. Eulerian two-phase flow theory applied to fluidization. Int. J. Multiphase Flow. 1996:22,21~66
    [84] 陆慧林,何玉荣等. 多组分颗粒稠密气固两相流动的数值模拟. 工程热物理学报. 2002.23(3): 369~371
    [85] Fluent, Inc. Fluent 6.2: Fluent user’s guide. 2005
    [86] C Y Wen, Y H Yu. Mechanics and fluidization. Chem Eng Prog Symp Series, 1966, 62:100~111
    [87] M Syamlal. The Particle-Particle drag term in a multi-Particle model of fluidization. National technical information service. Springfield, VA.1987, DOE/MC/2353~2373
    [88] C Lun, S Savage, D Jeffrey, N Chepurniy. Kinetic theories for granular flow: inelastic Particles in coquette flow and slightly inelastic Particles in a general flow field. Journal of Fluid Mechanics, 1984, 140: 223~256
    [89] 张晓杰等. 循环流化床水冷式冷渣器的传热计算方法探讨. 东北电力技术. 1999(12):10~12
    [90] 赵广播等. 风水共冷式冷渣器各参数的选取与优化. 热能动力工程,1993(8): 17~33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700