自生生物动态膜反应器在城市污水处理中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用一种孔径为0.1mm左右的筛绢包裹膜组件制成平板型过滤膜组件,代替微滤膜或超滤膜形成自生生物动态膜反应器,分别对城市污水和模拟高浓度污水进行了研究。试验在所优化设计的装置中,对动态膜的生成与再生规律及其影响因素进行了分析和比较;研究了工艺对城市污水和模拟高浓度有机废水的处理效果,并将动态膜的分离效果与普通膜进行了比较,肯定了动态膜良好的分离效果和耐负荷冲击能力。并且在试验过程中,对系统中的生物相进行了分析,发现高浓度蠕虫的出现,有利于膜污染的减缓和有机物的去除,但会影响总磷和浊度的去除。试验还通过将MBR技术与强化污泥系统后生动物(蠕虫)的方法相结合,来实现减量剩余污泥的排放的研究。
     试验结果表明,两边侧向曝气装置明显优于单边侧向曝气装置,且在两边侧向曝气系统中,动态膜的生成较其前几次再生要快,但动态膜的再生速度呈递增的趋势;在动态膜稳定阶段,保持水力停留时间约5h,平均容积负荷为0.67kgCOD/m3.d,膜通量为16.5L/m2.h的条件下,动态膜生物反应器对COD的平均去除率为80%左右,能够保证出水COD在40mg/L左右;对NH3-N的平均去除率为93.1%,有时高达99.5%,出水能保持在8mg/L以下,绝大多数情况在2mg/L以下;对浊度的去除率高达99%,能够保证出水浊度约为3NTU。TP的去除受污泥排放量的影响,当系统有适量污泥排放的情况下,动态膜生物反应器对TP的平均去除率约为74%,出水总磷能保持在1mg/L以下。同时,试验还发现大量蠕虫的存在,对出水水质的影响不大,但能够改善污泥特性,减缓动态膜污染,污泥浓度能自平衡于4000mg/L左右;并在近40天内,在没有排泥的情况下,无污泥量的增加,即实现了减量剩余污泥排放。
The self-forming bio-dynamic membrane reactor (SFDMB) was equipped with plate membrane that was made of a 0.1mm nylon mesh as filter material instead of a micro-filtration membrane or an ultra-filtration membrane, and municipal sewage and artificial organic wastewater in high concentration were treated with the reactor. In the optimum designed device, the rules of the forming and regeneration of the bio-dynamic membrane were studied in the paper, furthermore, factors which had effects on those rules were also investigated. Compared with the effluents of static membrane, the bio-dynamic membrane showed desirable removal efficiencies by analyzing the treatment results of municipal sewage and artificial organic wastewater in high concentration. Then, biological phase of the system was observed, and it was found that the appearance of predations could have contributions to the reduction of membrane fouling and increases of the removals of the organic pollutants, but it was unfavorable to the removals of total phosphorus and turbidity. Finally, it also achieved the aim of treating sewage with less sludge production discharged by combining MBR and the technology of intensified function of these metazoans, such as predations.
     It was found that the effect of both sides lateral aeration was obviously better than that of unilateral aeration. In the system of both sides lateral aeration, compared with the increase of the regeneration velocity of the bio-dynamic membrane, the primary forming of the bio-dynamic membrane was faster than its regeneration. When HRT was about 5h, the average volume loading was 0.67kgCOD/m3.d, and water flux of membrane was 16.5L/m2.h, the SFDMB, in stabilization period, reached an average COD removal of 80% and the COD in the effluent could be kept under 40mg/L. And the average NH3-N removal efficiency was 93.1%, even reached 99.5% sometimes, and the concentration of NH3-N in the effluent were under 8mg/L, most times under 2mg/L. Furthermore, the reactor achieved a turbidity removal of 99% and the turbidity could be kept under 3NTU in the effluent. When there was some sludge production discharged, the removal of TP, which was greatly contributed by the sludge production, was about 74% and the TP was under 1mg/L in the effluent. Finally it was found that the present of Oligochaetes not only brought better characteristics of the sludge such as good settleabilily, but also minished the membrane fouling greatly, and did not affect the effluent quality. And most important of all, in the case of almost no sludge production discharged, MLSS could be kept nearly 4000mg/L in more than 40 days when Oligochaete was present, which meant that there was no sludge production in the process.
引文
[1] 朱伟萍,何亚丽,殷磊.城市污水资源化的应用.平顶山工学院学报,2004,13 (4):35~38.
    [2] N. Becker. A Comparative Analysis of Water Price Support Versus Drought Compensation Scheme [J].Agricultural Economics, 1999, (21):81~92.
    [3] 蒋耀新.水环境现状及水污染防治[J].甘肃环境研究与监测,2003,16(4): 454~455.
    [4] 白晓慧,陈英旭.我国水环境污染成因分析及控制技术对策研究[J].中国人口?资源与环境,2001,11(51):59~61.
    [5] 李天章,李京京.我国水资源浪费和污染的现状及治理.河南大学学报,2003,43 (6):44~48.
    [6] 夏光.2005 年中国环境公报.开放导报,2006,(1):20~25.
    [7] 白韬光.城市污水处理技术及其发展.机电设备,2003,(3):38~42.
    [8] 李春喜.超声波技术在污水处理中的应用与研究进展[J].环境污染治理技术与设备,2001,2(2):64~69.
    [9] Lubbeke S, Volgelpohl M, Dewjanin W. Wastewater treatment in a biological high-performance system with high biomass concentration. Wat. Res., 1995, (29): 732~802.
    [10] 刘锐,黄霞,刘若鹏等.膜-生物反应器和传统活性污泥工艺的比较.环境科学,2001,22(3):20~24.
    [11] Stephenson T. Type of membrane bioreactor for wastewater treatment-An introduction[C] ?proceedings of the 1st International Meeing On Membrane Bioreactors for Wastewater Treatment. Cranfiel-University, 1997,(5):14~16
    [12] Stephenson T, Judd S, Jefferson B, et al. Membrane bioreactors for wastewater treatment [M]. London: IWA Publishing, 2000:44~46.
    [13] 王 晓 东 , 赵 新 华 , 李 霞 . 膜 曝 气 生 物 反 应 器 的 研 究 进 展 . 化 工 进展,2005,24(10):1141~1146.
    [14] Pankhania M, Stephenson T, Semmens M J. Hollow fiber bioreactor for wastewater treatment using bubble less membrane aeration [J]. Water Res., 1994, 28(10): 2233~2236.
    [15] 王永波,赵文蕾,赵文蓓.膜生物反应器的实验研究及在水处理中的应用.水利科技与经济,2003,9(4):291~293.
    [16] 张再利,朱宛华,江荣.膜分离技术及膜生物反应器的发展和展望.安徽化工,2001,(2):24~27.
    [17] 杨小丽,王世和.膜生物反应器研究现状与展望.污染防治技术,2002,15(4):28~30.
    [18] 张军,王宝贞.复合淹没式中空膜生物反应器处理生活污水的特性研究.中国给水排水,1999,(15):13~16.
    [19] 许振良.污水处理膜分离技术的研究进展 (二). 净水技术,2000,19(4):3~7.
    [20] 张琳,张元月.新型污水处理装置-膜生物反应器.重庆环境科学,1996,18(4):51~55.
    [21] 袁 志 容 , 赵 敏 . 膜 生 物 反 应 器 技 术 及 膜 污 染 的 探 讨 . 环 境 科 学 与 管理,2005,30(6):77~79.
    [22] 王维军,周红星,刘大江.污水再生利用处理技术-膜生物反应器.河北建筑工程学院学报,2005,23(3):9~10.
    [23] 李凤亭,王亮,刘华等.膜生物反应器在水处理中的应用与新发展.工业水处理,2005,25(1):10~13.
    [24] 顾 小 红 , 黄 种 买 , 吴 浪 . 在 污 水 处 理 中 存 在 问 题 的 研 究 [J]. 西 南 给 排水,2003,25(1):16~19.
    [25] 付 国 楷 , 余 健 , 郑 宪 明 等 . 膜 生 物 反 应 器 的 研 究 与 展 望 . 工 业 水 处理,2003,23(10):1~4.
    [26] 付国楷,余健,郑宪明等.MBR 在水处理中的应用研究.净水技术,2004, (2) :34~38.
    [27] ZHENG Xiang, FAN Yao-bo, WEI Yuan-song. A pilot scale anoxic/oxic membrane bioreactor (A/O MBR) for woolen mill dyeing wastewater treatment. Journal of Environmental Science, 2003, 15(4):449~455.
    [28] 蔡 惠 如 等 . 膜 生 物 反 应 器 与 SBR 法 处 理 染 料 废 水 的 比 较 . 水 处 理 技术,2002,28(6):347~349.
    [29] 余健,郑宪明,梁军等.氧化沟膜生物反应器处理城市污水试验研究.湖南大学学报, 2005,32(2):71~75.
    [30] 郑斐,朱文亭.生物膜法新工艺- 无泡曝气膜生物反应器.工业用水与废水,2004,35(3):11~14.
    [31] 孟 凡 生 , 王 业 耀 . 膜 生 物 反 应 器 在 我 国 的 研 究 发 展 展 望 . 水 资 源 保护,2005,21(4):1~3.
    [32] 张颖,张铁峰,王爱杰.膜生物反应器 (MBR) 技术关键及应用.东北农业大学学报,2002,33(1):96~99.
    [33] 许宜平,陈少华,陈明.厌氧-膜生物反应器处理垃圾渗滤液中多环芳烃的研究. 环境化学,2004,23(6):691~694.
    [34] 邓雁平,叶亚平,钱维兰等.不同物理清洗方式对一体式膜生物反应器过滤特性的影响. 环境科学研究,2005,18(6):59~63.
    [35] 孙振龙,陈绍伟,吴志超.一体式平片膜-生物反应器运行过程中膜性能的研究. 环境工程,2003,21(2):7~9.
    [36] 刘锐,黄霞,汪诚文等.一体式膜-生物反应器长期运行中的膜污染控制.环境科学,2000,(2):58~61.
    [37] 徐国华,杨德武,王冬冬等.脉冲过滤实验研究.过滤与分离,2003,13(3):10~11.
    [38] 李军,夏定国,赵琦等.淹没复合式膜生物反应器技术.城市环境与城市生态,2001,14(4):5~7.
    [39] Ahmed T. and Semmens M. J. Use of sealed end hollow fibers for bubbleless membrane aeration: experimental studies. J. Mem. Sci., 1992, (8):54~56.
    [40] 张再利,朱宛华,江荣.膜分离技术及膜生物反应器的发展和展望.安徽化工,2001,(2):24~27.
    [41] 郑领英.膜分离与分离膜.高分子通报,1999,(3):134~137.
    [42] L. M. Freitas dos Santos, G. Lo Biundo. Treatment of pharmaceutical industry process wastewater using the extractive membrane bioreactor. Environmental progress. 1999,(16):105~107..
    [43] 沈树宝,陈英文,夏明芳等.仿生膜生物反应器处理高浓度有机农药废水的研究.工业水处理,2003 ,23(3) :40~43.
    [44] 熊丽,濮文虹,杨昌柱等.动态膜生物反应器处理生活污水的特性.化学与生物工程,2005,(1):31~33.
    [45] Chiemchaisri C, Wong Y K, Urase T, etal. Organic stabilization and nitrogen removal in membrane separation bioreactor for domestic wastewater treatment [J]. Water Sci Technol, 1992, 25(10):231~240.
    [46] 武小鹰,郑平,徐红亮等.动态膜技术及其在环境工程中的应用.膜科学与技术,2003,23(3):49~53.
    [47] Marcinkow sky E, Philips K A, Johnson H O, et al. Hyper-filtration studies Saltrejection by dynamically formed hydrous oxide membrane [J]. J Am Chem Soc, 1966, 88(5):5744~5746.
    [48] Kishihara S, Tamaki H, Fuji S, et al. Clarification of sugar solution through a dynamic membrane formed on a porous ceramic tube [J]. J M embr Sci, 1984, (41): 103~114.
    [49] Tsapiuk E A. Ultrafiltration separation of aqueous solutions of poly (ethylene glycol) s on the dynamic membrane formed by gelatin[J]. J Membr Sci, 1996, 116(55): 17~29.
    [50] Al-Malack M H, Anderson G K. Coagulation-crossflow microfiltration of domestic wastewater [J]. J Membr Sci, 1996, 121(5):59~70.
    [51] Al-Malack M H, Anderson G K, Almasi A. Treatment of anoxic pond effluent using crossflow microfiltration [J]. WaterResearch, 1998, 32(6):3738~3746.
    [52] 范彬,黄霞.动态膜-生物反应器对城市污水的处理[J].环境科学,2002,23(6):51~56.
    [53] 张捍民,乔森,叶茂盛等.预涂动态膜-生物反应器处理生活污水试验研究.环境科学学报,2005,25(2):249~253.
    [54] Lee J, Ahn W Y, Lee C H. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor [J]. Water Res., 2001, 35(10):2435~2445.
    [55] 范彬,黄霞,栾兆坤等.出水水头对自生生物动态膜过滤性能的影响.环境科学,2003,24(5):65~69.
    [56] Jiraratananon R, Uttapap D, Tangamornsuksun C. Self-forming dynamic membrane for ultrafiltration of pineapple juice [J]. J Membr Sci, 1997, 129(5):135~143.
    [57] Yoshiaki kiso.Wasterwater treatment performance of a filtration bio-reactor equipped with a mesh as filter material [J]. Wat. Rea. 2000, 34(17):4143~4150.
    [58] 李克国.城市污水处理厂建设的环境经济政策分析.环境保护,2001,(2):11~12.
    [59] Xing C H, Wen X H, Qian Y, Tardieu E. Microfiltration membrane-coupled bioreactor for urban Wastewate reclamation.Desalination,2001,141(1):63~73.
    [60] Holler S, Troosch W. Treatment of urban wastewater in membrane bioreactor at high organic loading rates.J.Biotechnol., 2001,92(5):95~101.
    [61] 叶立,黄卫星,杨平等.膜生物反应器及其在工业废水处理中的应用. 化工环保. 2003, 23(3): 142~146.
    [62] 范 彬 , 黄 霞 等 . 微 网 生 物 动 态 膜 过 滤 膜 过 滤 性 能 的 研 究 [J]. 环 境 科学,2003,24(1):91~97.
    [63] 毛玉红,李杰,王亚娥.膜生物反应器研究及应用现状与存在问题探讨.甘肃科技,2004,20(9) :98~99.
    [64] 周 群 英 , 高 廷 耀 . 环 境 工 程 微 生 物 学 [M]. 第 二 版 . 北 京 : 高 等 教 育 出 版社,2002(5):223~232.
    [65] Wouter Ghyoot, Willy Verstraete. Reduced sludge production in a two-stage membrane-assisted bioreactor. Wat. Res. 1999, 34(1):205~215.
    [66] Natusck. M. Lee, Thomas Welander. Reducing sludge production in aerobic wastewater treatment through manipulation of the ecosystem. Wat. Res. 1996, 30(8):1781~1790.
    [67] J. Lapinski, A. Tunnacliffe. Reduction of suspended biomass in municipal wastewater using bdelloid rotifers. Water Research, 2003, (55): 2027~2034.
    [68] 魏 源 送 , 樊 耀 波 . 蠕 虫 污 泥 减 量 效 果 及 其 影 响 因 素 分 析 . 环 境 科学,2005,26(1):76~83.
    [69] J.H.Rensink, W.H.Rulkens. Using metazoa to reduce sludge production. Wat.Sci.Tech, 1997, 36(11):171~179.
    [70] 魏源送, R. T. Van Houten, A. R. Borger 等. 蠕虫在膜生物反应器和活性污泥法中的污泥减量研究. 环境科学学报,2004,24(3):405~412.
    [71] 魏源送,刘俊新.利用寡毛类蠕虫反应器处理剩余污泥的研究.环境科学学报,2005,25(6):803~808.
    [72] Yuansong Wei, Renze T, Van Houten, Arjan R.Borger, Dick H.Eicelboom, Yaobo Fan. Minimization of excess sludge production for biological wastewater treatment. Water Research.2003, (37):4453-4467.
    [73] Pirt, S. J. The maintenance energy of bacteria in growing cultures. London: Proc. Roy. Soc,1965: 24~231.
    [74] Pirt, S. J. Maintenance Energy: A general model for the energy-sufficient growth, Arch. Microbial., 133, 1982, (55):300~302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700