非线性滤波在通信与导航中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现实物理世界中的多数系统本质上是非线性的,对其进行线性化近似是一种有效的处理方法,其中以卡尔曼滤波为经典代表的线性滤波方法在过去几十年里取得了丰硕的成果。但是,随着计算能力的提高、数学方法的丰富以及对精度的进一步要求,对非线性系统直接进行研究的需求日趋增多,非线性滤波就是在这样的背景下逐渐发展起来的。
     伴随着控制与计算机技术的飞速发展,非线性滤波已在通信与信号处理、航空航天、导航定位、计算机视觉甚至金融分析等众多领域得到了越来越广泛的应用。本文针对具有代表性的两种非线性滤波算法:无迹卡尔曼滤波(UKF)和粒子滤波(PF)展开研究,并将这两种算法应用于OFDM系统载波频偏估计、捷联惯导系统初始对准与故障诊断中。本文主要研究内容及贡献包括:
     1)针对非线性动态系统滤波的基本问题,在递归贝叶斯估计理论下深入研究了三类重要的非线性滤波方法扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波和粒子滤波。
     着重讨论了无迹卡尔曼滤波算法,包括UT变换、采样策略在内的核心原理、算法步骤;粒子滤波的序贯重要性采样、重采样等关键技术的原理及粒子退化和匮乏等问题;综合比较了各方法的适用条件、优点和不足。
     2)针对OFDM系统的载波频偏问题,提出一种基于自适应UKF的频偏值估计算法。
     OFDM系统的载波频偏是一个非线性问题,传统的滤波算法如EKF通过泰勒展开对频偏的观测方程进行近似。本文将其建模为非线性、高斯的动态状态空问模型,提出将UKF用于该模型下的频偏估计问题,并与EKF进行了性能对比。结果表明UKF在提高估计精度的同时,在稳定性、收敛性上都优于EKF。给出了基于最大后验概率准则的Sage-husa噪声估计器及其指数衰减记忆改进型,并与标准UKF结合得到了一种自适应UKF算法。进一步,本文提出了基于该自适应UKF算法的OFDM载波频偏估计方法,提高了UKF在噪声统计特性未知或时变时的鲁棒性,在初始方差设置与实际值存在偏差时,该方法的滤波估值依然准确。
     3)研究了基于Stirling公式的中心差分卡尔曼滤波(CDKF),并基于加权统计线性回归的理论给出了统一UKF与CDKF算法的Sigma-point卡尔曼滤波器框架。进而,本文将Sigma-point卡尔曼滤波器用于满足一阶自回归过程的时变频偏的估计,实验结果表明在时变情况下,Sigma-point卡尔曼滤波器仍能获得较好的估值结果。从降低计算复杂度的角度出发,进一步研究了平方根形式的Sigma-point卡尔曼滤波器,仿真示例表明其在保证精度的同时能降低一定的计算量。最后探讨了UKF与并行计算的融合,给出了一种并行UKF算法框架。
     4)针对捷联惯导系统初始对准与故障诊断问题,提出了一种抗差无迹粒子滤波算法。
     标准粒子滤波常选择先验转移概率密度作为重要性采样函数,而这忽略了观测信息,不利于解决粒子退化的问题。本文研究了基于UKF的无迹粒子滤波(UPF),其由UKF得到更为准确的统计特性从而提高了粒子滤波算法的精度。本文将UPF用于本质上为非线性的初始对准问题,获得了比EKF、UKF、PF更好的估计性能。继而,针对初始对准中的故障诊断问题,本文提出了一种抗差UPF算法。当没有故障时,滤波得到的残差应满足零均值高斯白噪声的分布,基于此,该抗差UPF算法先由UPF得到残差方差阵,进而由χ2分布准则判断是否存在如野值等故障。当检测出故障后,引入了权重函数以自适应调整卡尔曼增益因子,从而在滤波过程中对野值进行抑制。该方法是一种无需辨识具体故障原因的系统级故障检测、抑制方法。
Most systems are naturally nonlinear in the real physical world and the linear approximation is a powerful method to solve nonlinear problems. The Kalman filter is a classic representative of linear filtering methods and has achieved fruitful results in the past few decades. While as computing power increases, mathematical means enrich and accuracy requires further improvement, the demanding on handling the nonlinear systems directly is urgent and necessary.
     With the rapid development of computer and control technology, non-linear filtering technique has been widely applied to various fields as signal processing, wireless communication, aerospace, navigation and positioning, computer vision and even financial analysis, etc. This dissertation directs mainly at the researches on the two representative non-linear filtering algorithms:Unscented Kalman filter and particle filter, and their application in carrier frequency offset estimation of OFDM system as well as initial alignment and fault diagnose of Strapdown inertial navigation system. The main contents of the paper are:
     Firstly, under the unified framework of recursive Bayesian estimation theory, this paper gives in-depth investigation of three classes of non-linear filtering methods as extended Kalman filter, unscented Kalman filter and particle filter. In particular, this dissertation presents in detail the principle of algorithm frame of unscented Kalman filter, the unscented transformation and the sampling strategies, meanwhile the basic structure of particle filter including the sequential importance sampling and resampling together with other key points are also described. The overall comparison of advantages, disadvantages and application conditions of each method is also addressed.
     Secondly, an adaptive UKF algorithm is proposed to solve the CFO estimation in OFDM system. The study analyzed the carrier frequency offset estimation of OFDM systems, when the frequency offset is large, it will produce inter-carrier interference resulting the performance degradation. To solve this problem, the CFO is modeled as dynamic state space model and UKF is used for the offset estimation. Comparing to other convention methods as SC, MLEE, EKF, UKF enhances the filtering accuracy with better stability and convergence. Further, it derives an adaptive UKF with exponential decay of memory Sage-husa noise estimator based on the maximum posterior probability criteria, which helps to improve the robustness of UKF in unknown or time varying noise conditions.
     Thirdly, the Stirling formula is described and the central difference Kalman filter (CDKF) is formulated. Based on the weighted statistical linear regression theory, the UKF and CDKF filters are classified into Sigma-point Kalman filter. To reduce the computational complexity, the square root form of Sigma-point Kalman filter is derived and verified, and a brief discuss with a parallel computing framework of UKF is given.
     Fourthly, this paper addresses an unscented particle filter (UPF) to solve initial alignment problem and presents a adaptive-robust UPF algorithm for fault diagnosis. UPF is obtained by combing UKF into PF algorithm framework, in which UKF is used to acquire more accurate statistical characteristics and help to overcome the drawback in standard PF. UPF is adopted in SINS initial alignment problem and shows better valuation results. When there is no abnormal exists, the residual should meet the white Gaussian noise distribution and the trace conforms Chi-square distribution criteria. Based on this, the algorithm first obtains the residual variance matrix by UPF and then makes a judgment by examining the trace. When a fault is detected, the algorithm further introduces a weighting function to adaptively adjust the Kalman gain factor and suppress the outliers. This method can't identify the specific cause of malfunction, but still it is a good choice of system-level fault detection and suppression.
引文
[1]Kau S, Kumar K S, Granley G B. Attidtude Determination Via Nonlinear Filtering. IEEE Transactions on Aerospace and Electronic Systems,1969, AES-5(6):906-911.
    [2]Orton M, Marrs A. A Bayesian approach to multi-target tracking and data fusion with out-of-squence measuremtns. IEEE Target Tracking:Algorithm and Application.2001,1(1):1-5.
    [3]Niu R, Varshney P K. Tracking in Wireless Sensor Networks Using Particle Filtering:Physical Layer Considerations. IEEE Trans on Signal Processing,2009, 57(5):1987-1999.
    [4]Cattivelli F.S, Sayed A.H. Distributed nonlinear Kalman filtering with applications to wireless localization. IEEE International Conference on Acoustics Speech and Signal Processing,2010:3522-3525.
    [5]Rui Dinis, Antonio Gusmao. A class of Nonlinear Signal Processing Schemes for Bindwith-Efficient OFDM Transmission with low envelop fluctuation. IEEE Transaction on Communications,2004,52(10):1831-1831.
    [6]Marku Lanne. Nonlinear dynamics of interest rate and inflation. Journal of Applied Econometrics,2004,21(8):1157-1168.
    [7]AI-Naffouri Tareq Y, Zahidul Islam. A model reduction approach for OFDM channel estimation under high mobility conditions. IEEE Transactions on Signal Processing,2010,58(04):2181-2193.
    [8]万德钧,房建成.惯性导航初始对准.东南大学出版社.1998.
    [9]Hu Haidong, Huang Xianlin, Song Zhouyue. A novel algorithm for SINS/CNS/ GPS intergrated navigation system. Proceedings of the IEEE conference on Decision and Control,2009:1471-1475.
    [10]权太范.目标跟踪新理论与技术.国防工业出版社.2009.
    [11]K. F. Gauss. Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium. Hamburg,1809:5-20.
    [12]R. A. Fisher. On an Absolute Criterion for Fitting Frequency Curves. Messenger of Math.1917,41:44-155.
    [13]向礼.非线性滤波及其在导航中的应用研究.博士论文.哈尔滨工业大学.2009.
    [14]Kalman, R. E. A New Approach to Linear Filtering and Prediction Problems. Transactions on ASME, Journal of Basic Engineering,1960,82:34-45.
    [15]R. E. Kalman, R.S. Bucy. New Results in Linear Filtering and Prediction Theory. J. of Basic Eng (ASME).1960,83:95-108.
    [16]R. H. Battin. A Statistical Optimizing Navigation Proceedure for Space Flight. ARS J.1962,32:1681-1696.
    [17]付梦印,邓志红,张继伟Kalman滤波理论及其在导航系统中的应用.科学出版社.2003.
    [18]G. J. Bierman. Sequential Square Root Filtering and Smoothing of Discrete Linear Systems. Automatica.1974,10:147-158.
    [19]N. A.Carison. Fast Triangular Factorization of the Square Root Filter. AIAA Journal.1973,11(3):1259-1265.
    [20]G. J. Bierman. Measurement Updating Using the U-D Factorization.Automatica. 1976,12(3):375-382.
    [21]J. L. Speyer. Computation and Transmission Requirements for a Decentralized Linear-Quadratic-Gaussian Control Problem. IEEE Trans. On Automatic Control. 1979,24(2):266-269.
    [22]T. H. Kerr. Decentralized Filtering and Redundancy Management for Multi-Sensor Navigation. IEEE Trans. on Aerospace and Electric.1987(5),23(1): 83-119.
    [23]N. A. Carlson. Federated Square Root Filters for Decentralized Parallel Processes. IEEE Trans. on Aerospace and Electric.1990(5),26(3):517-524.
    [24]A P Sage, G W Husa. Adaptive Filtering with Unknown Prior Statistics. Joint American Control Conference,1969 (1):769-774.
    [25]Y Oshman, Y Bar Itzhack. Square Root Filtering via Covariance and Information Eigenfactors. Automatica.1986,22(5):599-604.
    [26]B Friedland. Separate-Bias Estimation and some Application in Control and Dynamic Systems. Academic Press.1983,20:1-46.
    [27]F C Schweppe. Recursive State Estimation:Unknown but Bounded Errors and System Inputs. IEEE Trans. On Automatic Control.1968,13(1):22-28.
    [28]E Fogel. System Identification via Membership Set Constraints with Energy Constrained Noise. IEEE Trans. On Automatic Control.1979,24(5):752-758.
    [29]E Fogel, Y F Huang. On the value of Information in System Identification Bounded Noise Case. Automatica,1982,18(2):229-238.
    [30]H.J.Kushner. Dynamical Equations for Optimum Nonlinear Filtering. Journal of Differential Equations.1967,26(3):179-190.
    [31]J.L.Doob. Stochastic Processes.John Wiley&Sons.1953.
    [32]A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press. 1970.
    [33]Y. C. Ho, R. C. K. Lee. A Basyesian Approach to Problems in Stochastic Estimation and Control. IEEE Trans, on Automatic Control,1964,9(1):333-339.
    [34]朱志宇.粒子滤波算法及其应用.科学出版社.2010.
    [35]R Van Der Merve. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models. PhD thesis. OGI School of Science& Engineering. Oregon Health& Science University. Portland, OR, USA.2004.
    [36]Y.Sunahara.An Approximate Method of State Estimation for Nonlinear Dynamical Systems.Joint Automatic Control Conference,Univ.of Colorado,1969.
    [37]R S Bucy,K D Renne. Digital Synthesis of Nonlinear Filter. Auto matica.1971, 7(3):287-289.
    [38]James L Fisher, David P Cassasent, Charles P Neuman. Factorized extended Kalman filter for optical processing.Applied Opticals,1986,25(10):1615-1621.
    [39]Deergha Rao,Dhawas J. Parallel implementation of radar tracking extended Kalman filters on transputer networks. IEEE Transactions on Aerospace and Electronic Systems,1995,31(2):857-862.
    [40]Smidl V, Peroutka Z. Advantages of Square-Root Extended Kalman Filter for Sensorless Control of AC Drives. IEEE Transactions on Industrial Electronics, 2011,99:1-3.
    [41]王宏健,王晶,边信黔.基于组合EKF的自主水下航行器SLAM机器人.2012,34(01):56-64.
    [42]E.Scholte,M.E.Campell.A Nonlinear Set-membership Filter for On-line Applications.Int J.of Robust and Nonlinear Control.2003,13(15):1337-1358.
    [43]刘山林,蔡宗平.固定指数加权模糊自适应EKF研究及应用.弹箭与制导学报.2009,29(2):238-241.
    [44]Deergha Rao, Swamy S. Complex EKF neural network for adaptive equalization. The 2000 IEEE International Symposium on Ciruits and Systemss,2000,2: 349-352.
    [45]Ken.T, Edgar A, Pierre.J.B. A Robust Fuzzy Autonomous Underwater Vehicle (AUV) Docking Approach for Unknown Current Disturbances. IEEE Journal of Oceanic Engineering,2012,37(2):143-155.
    [46]Charkhgard M, Farrokhi M. State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF. IEEE Trans. On Industrial Electronics,2010, 57(12):4178-4187.
    [47]A.Ruth. Satellite Angular Rate Estimation from Vector Measurements. Journal of Guidance,Control and Dynamics.1998,21(3):450-457.
    [48]X.R.Li,P.J.A.Vesselin.Survey of Maneuvering Target Tracking:Approximation Techniques for Nonlinear Filtering.Proceedings of SPIE.2004,54(28):537-550.
    [49]T.S.Schei.A Finite-difference Method for Linearization in Nonlinear Estimation Algorithms.Automatica.1997,33(11):2053-2058.
    [50]M.Norgaard, N.K.Poulsen, O.Ravn.Advances in Derivative Free State Estimation for Nonlinear Systems.Technical Report IMM/REP15,2000.
    [51]S.Julier, J.K.Uhlmann, W.H.F.Durrant. A New Approach for Filtering Nonlinear System.Proceeding of the American Control Conference,Seattle, WA, USA, 1995:1628-1632.
    [52]Julier S J, U h lmann J K, Durrant W.H.F. A new approach for the nonlinear transformation of means and covariances in filters and estimators. IEEE Trans on Automatic Control,2000,45(3):477-482.
    [53]Julier S J, U h lmann J K. A consistent debiased method for converting between polar and Cartesian coordinate systems. The proc of Aerosence:11th Int Symposium on Aerospace/Defense Sensing, Simulation and Controls. Orlando, 1997:110-121.
    [54]Julier S J, Uhlmann J K. A new extension of the Kalman filter to nonlinear systems. The proc of Aerosence:11th Int Symposium on Aerospace/Defense Sensing, Simulation and Controls. Orlando,1997:54-65.
    [55]Julier S J. The scaled unscented transformation. Proc of American Control Conf. Jefferson City,2002:4555-4559.
    [56]Julier S J. A skewed approach to filtering. The proc of AeroSense:12th Int Symposium Aerospace/Defense Sensing Simulation Control. Orlando,1998: 271-282.
    [57]潘泉,杨峰.一类非线性滤波器——UKF综述.控制与决策,2005,20(5):481-494.
    [58]Julier, Simon J. and H.F.Durant-Whyte. Navigation and Parameter Estimation of High Speed Road Vehicles. Robotics and Automation Conference.1995: 1011-105P.
    [59]Brunke S, Campbell M. Estimation architecture for future autonomous vehicles. Proc of American Control Conf. Jefferson City,2002:1108-1114.
    [60]Chen Y Q, Huang T, Yong R. Parametric contour tracking using unscented Kalman filter.2002 Int Conf on Image Proc. New York,2002:613-616.
    [61]Schoop Patrick, Rottmann Axel. Gaussian process based state estimation for a gyroscope-free IMU.9th IEEE Sensors Coference 2010:873-878.
    [62]Soken H E, Sakai S I. UKF based on-orbit gyro and magnetometer bias estimation as a part of the attitude determination procedure for a small satellite. 11th International Conference on Control, Automation and Systems,2011: 1891-1896..
    [63]Meng W X, Chen X, Yu Q Y. Joint UKF and MMSE Channel Estimation for Uplink 2-dimensional Block Spread MC-CDMA with Cyclic Delay Transmit Diversity. IEEE Global Telecommunications Conference,2010:1-5.
    [64]Regulski P, Terzija V. Estimation of Frequency and Fundamental Power Components using an Unscented Kalman Filter. IEEE Transactions on Instrumentation and Measurement,2012,61(4):952-962.
    [65]Mao Yuliang. Scaled UKF with reduced sigma points for initial alignment of SINS. Proceedings of the 30th Chinese Control Conference,2011:106-110.
    [66]Straka.O, Flidr.M, Dunik.J. Nonlinear estimation framework in target tracking. 13th Conference on Infromation Fusion,2010:1-8.
    [67]Sun C J. A sensor based indoor mobile localization and navigation using unscented Kalman filter. IEEE/ION Posistion, Location and Navigation Symposium,2010:327-331.
    [68]Kallapur A, Samal M, Puttiqe V. A UKF-NN framework for system identification of small unmanned aerial vehicles. IEEE Conference on Intelligent Transportation Systems,2008:1021-1026.
    [69]N.Gordon,D.Salmond.Novel Approach to Non-linear and Non-Gaussian Bayesian State Estimation.Proceedings of Institute Electric Engineering,1993,140 (2): 107-113.
    [70]Del M, Salut G. Non-linear filtering:Monte Carlo particle resolution. Comptes Rendus De L'Academie Des Science I, Mathematique,1995,320(9):1147-1150.
    [71]M.N.Rosenbluth,A.W.Rosenbluth. Monte Carlo Calculation of the Average Extension of Molecular Chains.J.of Chemical Physics.1955,23:356-359.
    [72]J.E.Handschin.Monte Carlo Techniques for Prediction and Filtering of Non-linear Stochastic Process.Automatica.1970,6:555-563.
    [73]M. Pitt, N. Shephard. Filtering via Simulation:Auxiliary Particle Filters. J. of the American Statistical Association.1999,94(446):590-599.
    [74]Eaton M T, Ricker N L. Extended Kalman filtering for particle size control in a fed-batch emulsion polymerization reactor.Proceedings of the 1995 American Control Conference,1995:2697-2701.
    [75]H. K. Jayesh, M. J. Petar. Gaussian Particle Filtering. IEEE Trans, on Signal Processing.2003,51(10):2592-2601.
    [76]H. K. Jayesh, M. J. Petar. Gaussian Sum Particle Filtering. IEEE Trans. On Signal Processing.2003,51(10):2602-2612.
    [77]胡士强,敬忠良.粒子滤波算法综述.控制与决策.2005,20(04):361-165.
    [78]A. Doucet. Monte Carlo Methods for Bayesian Estimation of Hidden Markov Models:Application to Radiation Signals. University Paris-Sud, Orsay, France.1997.
    [79]J. S. Liu, R. Chen. Sequential Monte Carlo Methods for Dynamics Systems. J. of the American Statistical Association.1998,93:1032-1044.
    [80]蒋蔚.粒子滤波改进算法研究及应用.博士学位论文.哈尔滨工业大学.2010.
    [81]A. Doucet, C. Andrieu. Particle filtering for partially observed Gaussian state space models. Technical Report CUED/FINFENG/TR393, Department of Engineering, University of Cambridge CB2 1PZ Cambridge, September 2000.
    [82]孙伟平,向杰,陈加忠.基于GPU的粒子滤波并行算法.华中科技大学学报.2011,39(05):63-66.
    [83]Crisan D, Doucet A. A survery of convergence results on particle filtering methods for practitioners. IEEE Transactions on Signal Processing,2002,50(3): 736-746.
    [84]Gustafsson F. Particle filter theory and practice with positioning applications. IEEE Aerospace and Electronic Systems Magazine,2010,25(7):53-82.
    [85]Nordlund P J, Gustafsson F. Marginalized Particle Filter for Accurate and Reliable Terrain-Aided Navigation. IEEE Transactions on Aerospace and Electronic Systems,2009,45(4):1385-1399.
    [86]Huang Y, Zhang J, Luna I T, et al. Adaptive blind multiuser detection over flat fast fading channels using particle filtering. IEEE Global Telecommunications Conference,2004:2419-2423.
    [87]Ahmed N, Rutten M, Bessell T. Detection and Tracking Using Particle Filter Based Wireless Sensor Networks. IEEE Transactions on Mobile Computing,2010, 9(9):1332-1345.
    [88]Martinez E J, Martinez M T, Lopez S J. A Particle Filter Approach for InSAR Phase Filtering and Unwrapping. IEEE Transactions on Geoscience and Remote Sensing,2009,47(4):1197-1211.
    [89]Z. Yang, X. Wang, A sequential Monte Carlo blind receiver for OFDM systems in frequency-selective fading channels [J]. IEEE Trans. Signal Processing, Feb. 2002,50:271-280.
    [90]E. Punskaya, C. Andrieu, A. Doucet, et al. Particle filtering for multiuser detection in fading CDMA channels [J]. Proc.11th IEEE Workshop SSP, Singapore,2001:38-41.
    [91]Yin Wei, Benshun Yi. Speech Enhancement Based on Laplacian Speech Modeling and Unscented Kalman Filtering.4th International Conference on Wireless Communications, Networking and Mobile Computing,2008:1-4.
    [92]金乃高,殷福亮,王冬霞.基于子带粒子滤波的一种语音增强方法.通信学报,2006,27(4):23-28.
    [93]王世元,冯久超.一种参数分多址的混沌通信方案.电子学报,2007,35(07):1251-1256.
    [94]Mao Yuliang, Chen Jiabin, Song Chunlei. Sacled UKF with reduced sigma points for initial alignment of SINS.30th Chinese Control Conference,2011:106-110.
    [95]Wang Ya-feng, Sun Fu-chun, Zhang You-an. A Method for rapid transfer Alignment Based on UKF. IMACS Multiconference on Computational Engineering in Systems Applications.2006:809-813.
    [96]Dmitriyev S P. Nonlinear filtering methods application in INS alignment. IEEE Trans on AES,1997,33(1):260-271.
    [97]崔平远,孙新蕊.一种基于自适应粒子滤波的捷联初始对准方法研究.系统仿真学报,2008,20(20):5714-5721.
    [98]王小刚.非线性滤波方法在无人机相对导航中的应用研究.博士学位论文.哈尔滨工业大学.2010.
    [99]Julier S J, Uhlmann J K. A consistent, debiased method for converting between polar and Cartesian coordinate systems. The Proc of Aero Sense:The 11th Int Symposium on Aerospace/Defense Sensing, Simulation and Controls, Orlando, 1997:110-121.
    [100]X.Y.Wang, Y.Huang. Convergence study in Extended Kalman Filter-based Training of Recurrent Neural Networks. IEEE Transactions on Neural Networks, 2011,22(4):588-600.
    [101]Pasha.S.A, Hoang.D.T, Ba-Ngu.V. Nonlinear Baysian Filtering Using the Unscented Linear Fractional Transformation Model. IEEE Transactions on Signal Processing,2010,58(2):477-489.
    [102]Juiler S J. The scaled unscented transformation. Proceedings of the American Control Conference,2002,6:4555-4559.
    [103]Gustafsson.F, Hendeby.G. Some Relations Between Extended and Unscented Kalman Filters.IEEE Transactions on Signal Processing,60(2):545-555.
    [104]S J Julier, J K Uhlmann. Reduced sigma point filters for the propagation of mean and covariances through nonlinear transformations. Proc of American Control Conf. Jefferson City.2002:887-892.
    [105]T E Pare, J P How. Robust stability and performance analysis of systems with hysteresis nonlinearities. Proc of American Control Conf. Los Angeles.1998: 1904-1908.
    [106]N J Ahmad, F Khorrami. Adaptive control of systems with backlash hysteresis at the input. Proc of American Control Conf. Chicago.1999:3018-3022.
    [107]G.X.Sheng, D.M.Jing, C.Wei. Wavelet Neural Network Based on SSUKF and its Applications in Aerodynamic Force Modeling for Flight Vehicle. International Conference on Measuring Technology and Mechatronics Automation,2010,3: 1087-1090.
    [108]Song Q, Han Jian-Da. An adaptive UKF algorithm for the state and parameter estimations of a mobile robot. Acta Automatica Sinaca.2008,34(1):72-79.
    [109]Robert C P, Caselia G. Monte Carlo Statistical Method. New York: Springer-Verlag 1999.
    [110]Douceta, Gordon N J, Krishnam U V. Particle filters for state estimation of jump Markov Linear systems. IEEE Trans. On Signal Processing,2001,49(3): 613-624.
    [111]胡士强,敬忠良.粒子滤波原理及其应用.科学出版社.2010.
    [112]M.S. Arulampalam, S. Maskell and N. Gordon. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing,2002,50:174-188.
    [113]Liu J S, Chen R. Sequential Monte Carlo methods for dynamic systems. Journal of the American Statistical Association,1998,93(443):1032-1044.
    [114]Doucet A, Godsills S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing,2000,10(1):197-208.
    [115]Chen Zhe. Bayesian Filtering:From Kalman Filters to Particle Fitlers, and Beyond. Hamilton:McMaster University,2003.
    [116]程水英,张剑云.粒子滤波评述.宇航学报,2008,29(4):1099-1111.
    [117]Carpenter J, Clifford P, Fearnhead P. Improved Particle Filter for Non-linear Problems. IEEE Proceedings on Rador, Sonar and Navigation,1999,146(1):2-7.
    [118]X.Y.Fu, Y.M.Jia. An improvement on Resampling Algorithm of Particle Filters. IEEE Transactions on Signal Processing,2010,58(10):5414-5420.
    [119]Miodrag B, Peter M D, Hong S J. A new resampling algorithm for particle filters. Proceedings of Acoustics Speech and Signal Processing,2003:589-592.
    [120]Mo Y W, Xiao D Y. Hybrid system monitoring and diagnosing based on particle filter algorithm. Acta Automation Sinica,2003,29(3):641-648.
    [121]Kong A, Liu J S, Wong W H. Sequential Imputations and Bayesian Missing Data Problems. Journal of the American Statistical Association,1994,89: 278-288.
    [122]Pitt M, Shephard N. Filtering via simulation:Auxiliary particle filters. Journal of American Statistical Association,1999,94(446):590-599.
    [123]Kotecha J H, Djuric P M. Gaussian particle filtering. IEEE Trans. On Signal Processing,2003,51(10):2592-2601.
    [124]Li P, Goodall R, Kadirkamanathan V. Estimation of parameters in a linear state space model using a RaO-Blackwellised particle filter. IEE Proc.-Control Theory and Applications,2004,151(6):727-738.
    [125]Deok J L. Nonliear Bayesian Filtering with Applications to Estimation and Navigation. PhD Dissertation. Texas A&M University,2005.
    [126]Xiao Y F, Ying M J. An Improvement on Resampling Algorithm of Particle Filters. IEEE Transactions on Signal Processing,2010,58(10):5414-5420.
    [127]Ulker Y, Gunsel B. Multiple model target tracking with variable rate particle filters. Digital Signal Processing:A Review Journal,2012,22(3):417-429.
    [128]Tanno Motohiro, Kishiyama Yoshihisa. Layered OFDMA and its radio access technique for LTE-Advanced. IEICE Transactions on Communications,2009, E92-b(05):1743-1750.
    [129]Yang.Hongwei. A road to future broadband wireless access:MIMO-OFDM based air interface. IEEE Communications Magazine,2005,43(1):53-60.
    [130]Zheng Kan. TD-CDM-OFDM:Evolution of TD-SCDMA toward 4G. IEEE Communication Magazine,2005,43(1):45-52.
    [131]Gone.Ke, Pan.Changyong, Wang.Jun,Wu.Youshou. Technical Review on Chinese Digital Terrestrial Television Broadcasting Standard and Measurements on Some Working Modes. IEEE Transactions on Broadcasting,2007,53(01):1-7.
    [132]G.A.Doelz, E.T.Heald, D.L.Martin. Binary data transmission techniques for linear systems. Proc. I. R. E., May 1957,45:656-661.
    [133]H.F.Harmuth. On the transmission of information by ortholonal time functions. AIEE Trans., pt.I (communication and electroics), July.1960:248-255.
    [134]G.A.Franco and GLachs. An orthogonal coding technique for communication. IRE International Conv. Rec,1961,9(8):126-133.
    [135]R.W.Chang. Synthesis of band-limited orthogonal signals for multichannel data transmission. Bell Sys. Tech. J, Dec.1966,45:1775-1796.
    [136]S.Weinestein and P.Ebert. Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Transactions on Communication,1971, 9:628-634.
    [137]A.Peled, A. Ruiz. Frequency domain data transmission using reduced computational complexity algorithms. Proc. IEEE Int. Conf. Acoust Speech Signal Processing, Denver, Co,1980:964-967.
    [138]T.Y.Ren, W.T.Wei. Low-Complexity Iterative Carrier Frequency Offset Estimation with ICI Elimination for OFDM Systems. IEEE 71th Vehicular Technology Conference,2010:1-5.
    [139]Ros. L, Hijazi. H, Ghogho M. Joint Carrier Frequency Offset and Channel Estimation for OFDM Systems via the EM Alogrithm in the Presence of Very High Mobility. IEEE Transactions on Signal Processing,2012,60(2):754-765.
    [140]M.Jamal, I.Alexandru, M.Tarik. Precoding techniques in OFDM Systems for PARR reduction.16th IEEE Mediterranean Electrotechnical Conference,2012: 728-731.
    [141]Liu Zhiqiang. Space-time coding and Klman filtering for time-selective fading chanles. IEEE Transactions on Communications,2002,50(02):183-186.
    [142]Donghao Wang, Kai niu, Zhiqiang He. A novel OFDM channel estimation method based on Kalman filtering and distributed compressed sensing. IEEE 21st International Symposium on Personal Indoor and Mobile Radio Communications, 2010:1086-1090.
    [143]Zou. Q, Tanghat. A, Kim. K. OFDM Channel Estimation in the Presence of Phase Noise and Frequency Offset by Particle Filtering. IEEE International Conference on Acoustics, Speech and Signal Processing,2007,3:289-292.
    [144]Liang. L, Yong L. G, Guoan Bi. Effect of Carrier Frequency Offset on Single-Carrier CDMA With Frequency-Domain Equalization. IEEE Transactions on Vehicular Technology,2011,60(1):174-184.
    [145]Khairr.A.H. Exact SINR Analysis of Wireless OFDM in the Presence of Carrier Frequency Offset. IEEE Transactions on Wireless Communications,2010,9(3): 975-979.
    [146]Lee.J, D.Toumpakaris, J.M.Cioffi. SNR analysis of OFDM systems in the presence of carrier frequency offset for fading channels. IEEE Transactions on Wireless Communications,2006,5:3360-3364.
    [147]Younis.S, Al-Dweik.A, Hazmi, A. Blind carrier frequency offset estimator for multi-input multi-output orthogonal frequency division multiplexing systems over frequency-selective fading channels.IET Communications,2010,4(8):990-999.
    [148]Sun.F.W, Jiang.Y.M, Lee.Linnan. Frame Synchronization and Pilot Structure for Second Generation DVB via Satellites. International Journal of Satellite Communications and Networking,2004,22(3):319-339.
    [149]Albertazzi.G. On the Adaptive DVB-S2 Physical Layer:Design and Performance. IEEE Wireless Coomunications,2005,12(6):62-68.
    [150]Y.Zhao and S.Haggman. Intercarrier interference self-cancellation scheme for OFDM mobile communication systems. IEEE Transactions on Communications, July 2001,49(07):1185-1191.
    [151]Yu Fu, Chi Chung Ko. A new ICI self-cancellation scheme for OFDM systems based on a generalized signal mapper. The 5th International Symposium on Wireless Personal Multimedia Communications,2002,3:995-999.
    [152]Heung-Gyoon, RyuYingshan Li, Jin-Soo Park. An Improved ICI Reduction Method in OFDM Communication System. IEEE Transactions on Broadcasting, 2005,51(3):395-400.
    [153]P H Moose. A Technique for Orthogonal Frequency Division Multiplexing Frequency Offset Correction. IEEE Transactions on Communications,1994, 42(10):2908-2914.
    [154]D K Kim, S H Do, H Cho.A new joint algorithm of symbol timing recovery and sampling clock adjustment for OFDM syestms, IEEE Trans on Consumer Elecrtonics, Aug 1998,44(3):1142-1149.
    [155]Pengkai Zhao, Linling Kuang and Jianhua Lu. Carrier Frequency Offset Estimation Using Extended Kalman Filter in Uplink OFDMA Systems. IEEE International Conference on Communications,2006:2870-2874.
    [156]Zheng Jiang,Yang Zhang and Xin Zhang. Carrier Frequency Offset Estimation Using Likelihood Particle Filter for Uplink MIMO-OFDMA Systems. IEEE Vehicular Technology Conference,2008:1281-1285.
    [157]Nyblom T, Roman T and Enescu M. Time-varying carrier offset tracking in OFDM systems using particle filtering. Proceedings of the 4th IEEE International Symposium on Signal Processing and Information Technology,2004:217-220..
    [158]Daehyoung Hong. Inter-Carrier Interference Estimation in OFDM Systems with Unknown Noise Distributions. IEEE Signal Processing Letters,2009, 16(6):.493-496.
    [159]Chang C B, Athans M, Whiting R. On the state and parameter estimation or maneuvering reentry vehicles. IEEE Trans. Autom. Control, AC-22(1):1977: 99-105.
    [160]邓自立,郭一新.动态系统分析及其应用.辽宁科学技术出版社.1985.
    [161]Wang H Q, Wang J, Bian X Q. SLAM of AUV based on the combined EKF. Robot,2012,34(1):56-64.
    [1 62]张常云.自适应滤波方法研究.航空学报,1998,19(7S):96-99.
    [163]Schei. A finite difference method for linearization in nonlinear estimation algorithms. Automatica,1997,33(11):2051-2058.
    [164]Nogaard M, Poulsennk K, Ravn O. New developments in state estimation for nonlinear systems. Automatica,2000,36(11):1627-1638.
    [165]Ito K, Xiong K. Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic Control,2000,45(5):910-927.
    [166]王小旭.非线性SPKF滤波算法研究及其在组合导航中的应用.博士学位论文.哈尔滨工程大学.2010.
    [167]R Van Der Merve. Sigma-point Kalman filters for probabilistic inference in dynamic state-space models. PhD thesis. OGI School of Science& Engineering. Oregon Health& Science University. Portland. OR. USA.2004.
    [168]郭文艳,韩崇昭.基于统计线性回归的粒子滤波方法.电子与信息学报,2008,30(8):1905-1908.
    [169]I. Arassranam, S.Haykin, R.J.Elliott. Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature Proceedings of the IEEE,2007,95(5):953-976.
    [170]Fan W, Li Y. Accuracy analysis of sigma-point Kalman filters. Chinese Control and Decision Conference,2009:2883-2888.
    [171]Eric. P. S, Hussein H, Laurent R. Joint Estimation of Carrier Frequency Offset and Channel Complex Gains for OFDM Systems in Fast Time-varying Veicular Environments. International Conference on Communications Workshops,2011: 1-5.
    [172]M. Abdelrahman, S.Y Park. Sigma-point Kalman filtering for Spacecraft Attitude and Rate Estimation using Magnetometer Measurements. IEEE Transactions on Aerospace and Electronic Systems,2011,47(2):1401-1414.
    [173]Stanway M J. Delayed-state sigma point Kalman filters for underwater navigation. IEEE/OES Autonomous Underwater Vehicles(AUV),2010:1-9.
    [174]Paul A S, Wan E A. Wi-Fi based indoor localization and tracking using sigma-point Kalman filtering methods. IEEE/ION Symposium on Position, Location and Navigation,2008:646-659.
    [175]H.Poveda, G.Ferre, E.Grivel. Robust Frequency Synchronization for an OFDMA Uplink System Disturbed by a Cognitive Radio System Interference. IEEE International Conference on Acoustics, Speech and Signal Processing,2011: 3552-3555.
    [176]Rigatos G.G. Technical Analysis and Implementation Cost Assessment of Sigma-point Kalman Filtering and Particle Filtering in Autonomous Navigation Systems.71st IEEE Vehicular Technology Conference,2010:1-5.
    [177]J.Kramer, A.Kandel. Robust Small Robot Localization from Highly Uncertain Sensors. IEEE Trans. On Systems, Man and Cybernetics.2011,41(4):509-519.
    [178]Deok-Jin Lee. Nonlinear Bayesian Filtering with applications to estimation and navigation. PhD Dissertation.Texas A&M University,2005.
    [179]Sadhu S. Mddndal S. Srinivasan M. Sigma-point Klman filter for bearing only tracking. Signal Processing 2006,86(12):3769-3777.
    [180]Simon H. Kalman Filtering and Neural Networks. John Wiely&Sons,2001.
    [181]Naeem K, Sajjad F, Dawei G. Improvement on state estimation for discrete-time LTI systems with measurement loss. Measurement,2010,43(10):1609-1622.
    [182]孙伟平,向杰,陈加忠.基于GPU的粒子滤波并行算法.华中科技大学学报.2011,39(05):63-66.
    [183]Bi W Y, Chen Z Q, Zhang L. Real-time visualizes the 3D reconstruction procedure using CUDA. IEEE Nuclear Science Symposium Conference Record, 2009:883-886.
    [184]V.Teuliere, Olivier Brun. Parallelisation of the particle filtering technique and application to Doppler-bearing tracking of maneuvering sources. Parallel Computing,2003,29(8):1069-1090.
    [185]Saeed E A, Aldo G, Stefano M. Parallelized sigma-point Kalman filtering for structural dynamics. Journal of Computers and Structures,2012,92:193-205.
    [186]https://ehb8.gsfc.nasa.gov/sbir/docs/public/recent_selections/SBIR_11_P1/SBIR_11_P1_115465/briefchart.pdf
    [187]李东明.捷联式惯导系统初始对准方法研究.博士学位论文.哈尔滨工程大学.2006.
    [188]吴铁军.应用捷联惯导系统分析.国防工业出版社.2011.
    [189]http://www.es.northropgrumman.com/solutions/In92/index.html
    [190]王战军,朱涛,许江宁.基于北斗卫星导航技术的惯性导航系统误差估计方法.中国惯性技术学报,2005,13(1):38-45.
    [191]Jared J M. Toward Auto-Calibration of Navigation sensors for Miniature Autonomous Underwater Vehicles. PhD Dissertation. Blacksburg, Virginia, USA: Virginia Polytechnic Institute and State University,2003.
    [192]Loveren.N, Piper.J.K. Strapdown inertial navigation system for the flat-earth model. IEEE Transactions on Aerospace and Electronic Systems,1997,33(1): 214-223.
    [193]Yeon Fuh Jiang. Error Estimation of INS Ground Alignment Through Observability Analysis. IEEE Transactions on Aerospace and Electronic Systems. 1992,28(1):92-97.
    [194]Baziw John, Leondes C T. Transsfer alignment error compensator design based on roubust state estimation. Transactions of the Japan Society for Aeronautical and Space Sciences,2005,48(161):143-151.
    [195]Aboelmaged Noureldin, Eun-Hwan Shin. Improving the performance of Alignment Process of Inertial Measurement Units Utilizing Adaptive Pre-Filtering Methodology. ION 58th Annual Meeting/GIGTF 21st Guidance Test Symposium,2002:24-26.
    [196]Nourel D A, Tabler H, Irvine H D. A new technique for reducing the angle random walk at the output of fiber optic gyroscopes during alignment processes of inertial navigation systems. Journal of Optical Engineering,2001,40(10): 2097-2106.
    [197]Dai H.D, Wu X.N, Wu G.B. Attitude plus angular rate transfer alignment.2th International Conference on Information Science and Engineering,2010: 4398-4401.
    [198]Moslehi B, Yahalom R, Oblea L. Low-cost and compact fiber-optic gyroscope with long-term stability. IEEE Aerospace Conference,2011:1-9.
    [199]柏猛.赵晓光.侯增广.Unscented卡尔曼滤波在捷联惯导系统初始对准中的应用.高技术通讯,2008,18(11):1168-1172.
    [200]Doucet A, Tadic V B. On-line optimization of sequential Monte Carlo methods using stochastic approximation. Proceedings of the American Control Conference, 2002:2565-1570.
    [201]Crisan D, Doucet A. A survey of convergence results on particle filtering methods for practitioners. IEEE Transactions on signal processing,2002,50(3): 736-746.
    [202]Lynch J.J, Nagele R.R. Flicker Noise Effects in Noise Adding Radiometers. IEEE Transactions on Mircowave Theory and Techniques,2011,59(1):196-205.
    [203]Reppa V, Tzes A. Fault detection and diagnosis based on parameter set estimation. IET Control Theory and Application,2011,5(1):69-83.
    [204]Frank P M. Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy:a servey and some new results. Automatica,1990, 26(3):459-474.
    [205]Siontorou C.G, Batzias F.A, Tsakiri V. A Knowledge-Based Approach to Online Fault Diagnosis of FET Biosensors. IEEE Transactions on Instrumentation and Measurement,2010,59(9):2345-2364.
    [206]Postalcioglu S. Signal processing and fuzzy cluster based online fault diagnosis. IEEE EUROCON,2009:1454-1459.
    [207]Tornqvist D, Saha S, Gustafsson F. Fault detection using nonlinear parameter estimation. IEEE Aerospace Conference,2011:1-6.
    [208]Martin C, Mintz M. Robust filtering and prediction for linear systems with uncertain dynamics:A game-theoretic approach. IEEE Transactions on Automatic Control,1983,28(9):888-896.
    [209]胡峰,范金城.动态测量系统的有界影响滤波.控制理论与应用,1993,10(1):36-45.
    [210]Maybeck P S. Stochastic Models, Estimation and Control. New York:Academic Press,1979.
    [211]池庆玺,司锡才.基于格拉布斯准则的雷达信号分选方法的探讨.传感技术学报,2006,19(6):2625-2629.
    [212]胡迪,董云峰.基于自适应UKF的敏感器故障诊断算法.北京航空航天大学学报,2011,37(6):939-643.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700