非正态分布参数的机械构件的可靠性灵敏度与可靠性稳健设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械结构的安全可靠是通过设计、生产和管理来实现的,设计决定着产品的固有可靠性,可见设计对产品质量有着重要的贡献率,可赋予产品先天优劣本质特性。在实际工程中,由于结构中存在各种不确定因素,如结构所承受的载荷、结构参数(材料、几何尺寸等)都具有随机性,导致了具有随机参数的随机结构,可见研究随机结构的可靠性问题具有十分重要的意义。另外,可靠性研究可以帮助工程设计人员合理地建立结构的安全容限和控制随机参数对结构安全的影响,使结构的预测工作性能与实际工作性能更加符合,并且可靠性研究能够得到具有足够的可靠性和经济性的优化结构。结构的可靠性作为产品质量的主要指标和最重要的技术指标之一,受到国内外的普遍重视,因此结构可靠性理论和设计方法研究得到了迅速发展。
     机械结构的可靠性灵敏度设计,是在可靠性基础上进行结构的灵敏度设计,可以评价设计参数的改变对结构可靠性的影响,即结构可靠性对设计参数变异的敏感性。可靠性灵敏度分析在可靠性设计和修改、可靠性优化设计、可靠性维护等方面均有重要的应用。目前可靠性灵敏度的计算方法很多,通常在可靠性的分析方法基础上都可以进行可靠性灵敏度设计。
     机械结构的可靠性稳健设计是在可靠性优化设计理论的基础上的一种低成本和高质量的设计方法,是把可靠性优化设计与可靠性灵敏度设计相融合的一种工程设计方法。它的基本思想是当设计参数发生微小的变差时,在制造或使用中都能保证产品质量的稳健性要求。因此,可靠性稳健设计方法的研究在机械结构的可靠性设计领域具有非常重要的意义。
     本文针对非正态分布参数的机械构件的可靠性灵敏度与可靠性稳健设计进行了研究,采用随机摄动方法、四阶矩技术、灵敏度分析方法,建立以四阶矩技术为基础的可靠性灵敏度分析方法,并通过数值算例与Edgeworth级数法、Monte Carlo方法进行比较,证明了所研究方法的设计实用性,给出了可靠性灵敏度的变化规律,研究了设计参数的改变对机械构件的可靠性的影响。
     本文共分为八章,主要研究内容如下:
     第1章,对课题来源、选题依据和背景、主要研究内容、课题的学术理论意义和实际应用价值等进行了论述,阐述了可靠性的发展历程以及可靠性灵敏度、可靠性稳健设计的研究现状。
     第2章,主要概述了机械构件可靠性设计的常用方法,列举了可靠性设计所涉及的基本数学理论,针对随机参数服从任意分布的情况进行研究,采用随机摄动方法和四阶矩技术等,提出了以四阶矩技术为基础的可靠性设计方法,并通过数值算例与Monte Carlo方法、Edgeworth级数法进行比较,证明了所研究方法的有效性与实用性。
     第3章,阐述了目前可靠性灵敏度的设计方法,在本文所提出的四阶矩可靠性设计方法的基础上,提出了基于四阶矩技术的可靠性灵敏度设计方法,通过数值算例结果与Edgeworth级数法结果进行比较,证明了所提方法的有效性,得到了机械构件的随机参数对可靠性的影响规律,研究了设计参数的改变对机械构件的可靠性的影响。
     第4章,基于机械构件的工程优化模型、可靠性优化方法、灵敏度分析方法和稳健设计理论,研究了基于四阶矩技术的非正态分布参数的机械构件的可靠性稳健设计方法,并与一般优化设计方法进行比较,证明了通过本文提出的可靠性稳健设计方法的实用有效性。
     第5章,论述了相关系数可靠性灵敏度设计方法,提出了相关系数量值的选取原则,给出了随机参数之间相关程度的判别依据,并且通过数值算例说明,根据此理论原则是获取随机参数的相关系数量值既简便又有效的途径。
     第6章,对航空发动机涡轮盘进行可靠性灵敏度设计,利用ISIGHT集成PRO/E、PATRAN/NASTRAN进行应力应变的分析。采用三维建模软件PRO/E和有限元软件PATRAN对涡轮盘进行了确定性静应力分析。利用结构可靠性分析软件NESSUS建立与PRO/E和PATRAN的接口技术,进行可靠度和可靠性灵敏度的计算与分析。再者,采用神经网络拟合技术,得到应力极限状态方程的显式表达式,而后应用摄动可靠性方法进行了发动机涡轮盘的可靠度和可靠性灵敏度的计算与分析,并与NESSUS可靠度和可靠性灵敏度分析结果进行了对比,对两种方法的分析结果进行了有效的相互验证。
     第7章,对两类可靠性实用软件库(①车辆零部件可靠性设计实用软件库(登记号:2009SR06661)②机械基础件可靠性设计实用软件库(登记号:2009SR06662))的研制开发做了简述,对软件的使用操作做了简单介绍。
     第8章,对本文的研究内容做了概括总结,并对课题的今后工作做了进一步的展望。
The security and reliability of structural systems is realized through design, manufacturing and management. Among them the design determines the inherent reliability of the product. Therefore, design has an important contribution to the quality of the product, and endows the congenital essential characteristics of the product. Because of the existence of uncertain factors in structures, such as the load, material properties, and geometry parameters, the problem hence becomes a stochastic system with random parameters. The study of the reliability of stochastic structural systems is of important significance. The reliability analysis of mechanical structures can help the designer to establish acceptable tolerances on mechanical structures and govern the fluctuations of the system parameters for safe operations. In the end, the reasonable mechanical structures could be designed with enough reliability and little cost. Structural reliability which is of universal attention at home and abroad is the main index and on the most important technique index of product quality, and the reliability theory and reliability-based design methods have been developed rapidly in the past decades.
     Reliability sensitivity analysis of structural systems is the sensitivity design based on reliability, which can be used to evaluate the influence of the change of parameters on the reliability of structural systems. That is to say, the sensitivity of the reliability of structural systems with respect to the variance of design parameters can be determined by reliability sensitivity analysis. Reliability sensitivity analysis is of important implication in reliability design and modification, reliability based optimization design, reliability maintenance and so on. Nowadays, there are many methods in reliability analysis. In general, reliability analysis can always be performed based on the reliability analysis.
     The reliability-based robust design which is based on reliability based optimization design is a low cost and high quality design method. This method integrates the reliability sensitivity design into the reliability optimization design. Its basic concept is that the robust of the product quality can always be ensured when the design parameters have small variances. There the study of reliability based robust design is of very important significance in the field of reliability design of mechanical structures.
     Based on the stochastic perturbation method, fourth moment technique and reliability sensitivity method, an analytical method of reliability sensitivity with respect to random variables with non-normal distribution was proposed. A numerical comparison was made among other methods, such as Edgeworth method and Monte Carlo Simulation. The results showed out that the method proposed in the thesis is practical. The numerical example gave out the variation of the reliability sensitivity. The impact of mutative design parameters on the reliability of mechanical structures was widely studied.
     There are eight chapters in the thesis, the main contents are as follows:
     Chapter1We explicate the engineering background, the aim and meaning of the research; introduce the rise, the concept, the development of reliability theory, reliability sensitivity method and reliability-based robust design, and set forth the significant meaning of the study.
     Chapter2:The common methods for reliability design of mechanical components are introduced. Mathematics theories and methods used in this dissertation are briefly listed. Techniques from the perturbation method and the fourth moment method are used to propose a practical and effective numerical method of reliability analysis with arbitrary distribution parameters. A numerical comparison was made among other methods, such as Edgeworth method, Monte Carlo Simulation. The results showed out that the method proposed in the thesis is practical.
     Chapter3Based on the stochastic perturbation method, fourth moment technique and reliability sensitivity method, an analytical method of reliability sensitivity with respect to random variables with non-normal distribution was built. A numerical comparison was made among other methods, such as Edgeworth method. The results showed out that the method proposed here is practical. The numerical example gave out the variation of the reliability sensitivity. The impact of mutative design parameters on the reliability of mechanical structures was widely studied.
     Chapter4Based on the engineering optimization model, reliability optimization method, reliability sensitivity technique and robust design theory, a reliability-based robust design. method for mechanical components with non-normal parameters was proposed based on the fourth moment technique. A comparison was made among different methods, which proved that the reliability-based robust design method proposed herein is practical.
     Chapter5A method of reliability-based sensitivity with respect to correlation coefficients was proposed. The principle of choosing the correlation coefficients and criterions for determining correlation degree among the random parameters were put forward. Results of numerical examples indicated that the method proposed is a convenient and practical approach to obtain the values of the correlation coefficients among random parameters.
     Chapter6A deterministic static stress analysis on a turbine disk was conducted by using three-dimensional modeling software PRO/E and the finite element software PATRAN. By using ISIGHT, PRO/E and PATRAN/NASTRAN are integrated to carry out the stress and strain analysis. The randomness of parameters are taken into account, sample points of the dangerous area are generated by the experiment design of ISIGHT. Artificial neural network technology was adopted for the purpose of sample fitting. The approximate nonlinear function acquired by using Back Propagation network (BP network) was employed as the limit state function with an explicit expression. Hence, the reliability and reliability sensitivity analysis can be conducted with the method proposed herein. Using of the structural reliability analysis software NESSUS, a connector with PRO/E and PATRAN is established. The reliability and reliability sensitivity analysis are carried out in NESSUS. The results obtained in NESSUS are compared with that obtained by using the proposed method.
     Chapter7Two sets of software library on the reliability design were developed, which helps to solve the core problems on the analysis of reliability in the mechanical area in our country (A practical software library for reliability based design of mobile components:China,2009SR06661; A practical software library for reliability based design of mechanical components:China,2009SR06661).
     Chapter8The main conclusions of this dissertation are summarized and the prospects of the applications of reliability design in mechanical structures are discussed.
引文
1.闻邦椿,张义民,鄂中凯,等.机械设计手册(第5版)[M].北京:机械工业出版社,2010.
    2.徐灏.机械强度的可靠性设计[M].北京:机械工业出版社,1984.
    3.何国伟.可靠性设计[M].北京:机械工业出版社,1993.
    4.赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996.
    5.刘维信.机械可靠性设计[M].北京:清华大学出版社,1996.
    6.张义民.汽车零部件可靠性设计[M].北京:北京理工大学出版社,2000.
    7.王光远,张鹏.工程结构及系统的模糊可靠性分析[M].南京:东南大学出版社,2001.
    8.黄洪钟.机械模糊可靠性原理与方法[M].大连:大连理工大学出版社,2002.
    9.孙志礼,陈良玉.实用机械可靠性设计理论与方法[M].北京:科学出版社,2003.
    10.谢里阳,何雪法,李佳.机电系统可靠性与安全性设计[M].哈尔滨:哈尔滨工业大学出版社,2006.
    11.陈立周.工程稳健设计的发展现状与趋势[J].中国机械工程,1998,9(6):59-62.
    12. Freuenthal A M. The safety of structures [J], ASCE Trans.,1947,112:125-129.
    13. #12
    14. Cornell C A. Structural safety specification based on second-moment reliability[M]. Sym. Int. Assoc. of Bridge and Struct. Engr., London,1969.
    15. Hasofer A M, Lind N C. Exact and invariant second-moment code format[J]. J. Eng. Mech. Div., ASCE,1974,100(EM1):111-121.
    16. Lind N C. Consistent partial safety factors[J]. Journal of the Structural Division,1971,9 7:1651-1669
    17. Ang A H-S, Tang W H. Probability Concepts in Engineering Planning and Design, Vol.1, Basic Principles[M]. New York:John Wiley & Sons, Inc.,1975.
    18. Rackwitz R, Fiessler B. Structural reliability under combined random load sequences[J]. Comput. Struct.,1978,9(5):489-494.
    19. Shinozuka M. Basic analysis of structural safety[J]. J. Struct. Eng., ASCE,1983,109(3): 721-740.
    20. Der Kiureghian A, Lin H Z, Hwang S J. Second-order reliability approximations[J]. J. Eng. Mech., ASCE,1987,113(8):1208-1225.
    21. Breitung K. Asymptotic Approximations for Probability Integrals[M]. Berlin:Springer-Verlag, 1994.
    22. Hurtado J E, Alvarez D A. Neural-network-based reliability analysis:a comparative study. Comput[J]. Meth. Appl. Mech. Eng.,2001,191(1-2):113-132.
    23. Raizer V. Theory of reliability in structural design[J]. Appl. Mech. Rev.,2004,57(1):1-21.
    24. Breitung K. Asymptotic Approximations for Probability Integrals[M]. Berlin:Springer-Verlag, 1994.
    25. Faravelli L, Response-Surface Approach for Reliability Analysis[J], ASCEJ. Eng. Mech,1989, 115(12):2763-2781.
    26. Rajashekhar M R, Ellingwood B R. A new look at the response surface approach for reliability analysis[J]. Struct. Saf.,1993,12(3):205-220.
    27. Zheng Y, Das P K. Improved response surface method and its application to stiffened plate reliability analysis[J]. Eng. Struct.,2000,22(5):544-551.
    28. Gomes H M, Awruch A M. Comparison of response surface and neural network with other methods for structural reliability analysis[J]. Struct. Saf.,2004,26(1):49-67.
    29. Wu Y T, Wirsching P H. New algorithm for structural reliability estimation[J]. J. Eng. Mech., ASCE,1987,113(9):1319-1336.
    30. Wu Y T, Millwater H R, Cruse T A. An advance probabilistic analysis method for implicit performance function[J]. AIAA J.,1990,28(9):1663-1669.
    31. Gesterfield G H, Belytschko T B. Brittle Fracture Reliabilit by Probabilistic Finite Elements[J], ASCE J.Eng. Mech.,1990,116(3):642-659.
    32. Ghanem R G, Spanos P D. Spectral Stochastic Finite-Element Formulation for Reliability Analysis[J], ASCE J. Eng. Mech.,1991,117(10):2351-2372.
    33. Kaymaz Irfan. Application of kriging method to structural reliability problems[J]. Structural Safety,2005,27(2):133-151.
    34. Sandler, B Z. Probabilistic Approach to Mechanisms. Amsterdam[M]. Elsevier Science,1984.
    35. Bergman L A, Heinrich J C. On the reliability of the linear oscillator and systems of coupled oscillators[J]. Int. J. Numer. Methods Eng.,1982,18(9):1271-1295.
    36. Au S K, Papadimitriou C, Beck J L. Reliability of uncertain dynamical systems with multiple design points[J]. Structural Safety,1999,21(2):113-133.
    37. Vanmarcke E, Shinozuka M, Nakagiri S, et al. Random fields and stochastic finite elements[J]. Struct. Safety,1986,3(3-4):143-166.
    38. Ibrahim R A. Structural dynamics with parameter uncertainties[J]. Appl. Mech. Rev.1987, 40(3):309-328.
    39. Benaroya H, Rehak M. Finite element methods in probabilistic structural analysis:a selective review[J]. Appl. Mech. Rev.,1988,41(5):201-213.
    40.王文泉.抗震结构的模糊可靠性分析[J].力学学报,1986,18(5):448-455.
    41.李云贵,赵国藩.结构可靠度的四阶矩分析法[J].大连理工大学学报,1992,32(4):455-459.
    42.冯元生.机构可靠性理论的研究[J].中国机械工程,1992,3(3):1-3.
    43.高镇同,熊峻江.疲劳/断裂可靠性研究现状与展望[J].机械强度,1995,17(3):61-82.
    44.贡金鑫,赵国藩.原始随机空间内结构可靠度的分析方法[J].水利学报,1999,(5):30-34.
    45.郭书祥,吕震宙,模糊结构和机械系统的能度可靠性分析方法[J].机械强度.2003,25(4):430-432.
    46.张崎,李兴斯.基于Kriging模型的结构可靠性分析[J].计算力学学报,2006,23(2):175-179.
    47.赵永翔,彭佳纯,杨冰,等.考虑疲劳本构随机性的结构应力疲劳可靠性分析方法[J].机械工程学报,2007,42(12):36-41.
    48.史进渊.机械零件振动的可靠性设计[J].振动工程学报,1999,12(4):553-558.
    49.张义民,陈塑寰,刘巧伶.单自由度非线性随机参数系统的可靠性分析[J].振动工程学报,1995,8(4):356-362.
    50. Zhang Y M, Wen B C, Liu Q L. First passage of uncertain single degree-of-freedom nonlinear oscillators[J]. Comput. Meth. Appl. Mech. Eng.,1998,165(4):23-231.
    51. Zhang Y M, Wen B C, Liu Q L. Quasi-failure analysis on resonant demolition of random structural systems[J]. AIAA J.,2002,40(3):85-586.
    52.张义民,闻邦椿.具有独立失效模式的多自由度非线性振动系统的可靠性分析[J].航空学报,2002,23(3):52-254.
    53.张义民,林逸,刘巧伶.当联合概率密度未知时随机结构可靠性分析的随机有限元法[J].吉林工业大学学报(工学版),1993,23(4):9-14.
    54.张义民,林逸,朱兴华.汽车零件可靠性设计的二阶矩法[J].汽车工程,1993,15(6):345-449.
    55. Zhang Y M, Chen S H, Liu Q L, et al. Stochastic perturbation finite elements[J]. Computers& Structures,1996,59(3):425-429.
    56. Zhang Y M, Wen B C, Chen S H. PFEM formalism in Kronecker notation[J]. Mathematics and Mechanics of Solids,1996,1(4):445-461.
    57. Wen B C, Zhang Y M, Liu Q L. Response of uncertain nonlinear vibration systems with 2D matrix functions[J]. Nonlinear Dynamics,1998,15(2):179-190.
    58. Zhang Y M, Wen B C, Liu Q L. First passage of uncertain single degree-of-freedom nonlinear oscillators[J], Computer Methods in Applied Mechanics and Engineering,1998,165 (4): 223-231.
    59.张义民,闻邦椿.随机结构系统振动的频率可靠性分析[J].机械强度,2002,24(2):240-242.
    60.张义民,王云成,林逸.螺旋管簧的可靠性分析[J].中国机械工程,1995,6(6):63-64.
    61.张义民,刘锡国,李红英.气门弹簧的可靠度计算[J].农业机械学报,1996,27(1):96-98.
    62.张义民,林逸,刘巧伶.叠板弹簧的可靠性设计[J].兵工学报,1997,18(1):77-79.
    63.张义民,闻邦椿.连杆的可靠性设计[J].汽车研究与开发,1997,63(2):17-18.
    64.张义民,闻邦椿,刘巧伶.齿轮的可靠性设计[J].传动技术,1997,30(2):34-40.
    65.张义民,闻邦椿,林逸.汽车半轴凸缘的可靠性设计[J].汽车技术,1997,264(9):7-8,56.
    66.张义民,闻邦椿.整体驱动桥的可靠性设计[J].工程机械,1998,29(6):15-17.
    67.张义民.静、动态随机结构的响应和可靠性分析[D].长春:吉林工业大学,1995.
    68.张义民.非线性随机结构系统振动理论的研究[D].沈阳:东北大学,1998.
    69.张义民,王顺,刘巧伶,闻邦椿.具有相关失效模式的多自由度非线性随机结构振动系统的可靠性分析[J].中国科学(E辑),2003,33(9):804-812.
    70.崔海涛,邓智泉,彭兆行.随机有限元法中的常用算法的数值分析与比较[J].机械设计,1997,14(1):4-7.
    71.秦权.随机有限元及其进展:Ⅰ.随机场的离散和反映矩的计算[J].力学进展,1994,11(4):1-10.
    72.刘宁,吕泰仁.随机有限元及其工程应用[J].力学进展,1995,25(1):114-126.
    73.秦权.随机有限元及其进展:Ⅱ.可靠度随机有限元和随机有限元的应用[J].力学进展,1995,12(1):1-9.
    74.孙新利,陆长捷.工程可靠性教程[M].北京:国防工业出版社,2005.
    75.赵永翔.低周疲劳短裂纹行为和可靠性分析[M].成都:西南交通大学出版社,2006.
    76. Haug E J, Komkov V, Choi K K. Design Sensitivity Analysis of Structural Systems[M]. Academic Press, Orlando, FL,1985.
    77. Haftka R T, Kamat M P. Elements of Structural Optimization[M]. Martinus Nijhoff. The Hague, the Netherlands,1985.
    78. Hohenbichler M, Rackwitz R. Sensitivity and importance measures in structural reliability[J]. Civ. Eng. Syst.,1986,3(4),203-209.
    79. Madsen H O, Krenk S, Lind N C. Methods of Structural Safety[M]. N J:Prentice Hall, Inc., 1986.
    80. Bjerager P, Krenk S. Parametric sensitivity in first order reliability analysis[J]. J. Eng. Mech., ASCE.1989,115(7),1577-1582.
    81. Adelman H M, Haftka R T. Sensitivity analysis of discrete structural systems[J]. AIAA Journal,1986; 24:823-832.
    82. Karamchandani A, Cornell C A. Sensitivity estimation within first and second order reliability methods[J]. Struct Safety,1992, (11):95-107.
    83. Wu Y-T. Computational methods for efficient structural reliability and reliability sensitivity analysis[J]. AIAA J.,1994,32(8):1717-1723.
    84.王东,陈建康.重力坝可靠度参数敏感性探讨[J].四川大学学报,2001,33(4):1-5
    85. Lataillade A D, Blanco S, Clergent Y, et al.. Monte Carlo method and sensitivity estimations[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2002,75(5): 529-538.
    86. Melchers R E, Ahammed M. A fast approximate method for parameter sensitivity estimation in Monte Carlo structural reliability[J]. Comput. Struct.,2004,82(1):55-61.
    87.张艳红,杜修力.结构可靠度对系统参数敏感性分析的简便算法[J].同济大学学报,1996,24(4):475-480.
    88. Ambartzumian R, Der Kiureghian A, Ohanian V, et al. Multinormal probability by sequential conditioned importance sampling:theory and application[J]. Probabilistic Engineering Mechanics,1998,13(4):299-308.
    89. Zhang Y M, Wen B C. Reliability sensitivity of uncertain single degree-of-freedom nonlinear vibrations[C]. Proceedings of Asia-Pacific Vibration Conference 2001,1, Hangzhou, P. R. China, October,2001,179-183.
    90.张义民.汽车半轴的可靠性分析的参数灵敏度[J].汽车工程,2003,25(5):514-517.
    91.张义民.机械零件的可靠性分析的参数灵敏度分析[J].机械强度,2003,25(6):657-660.
    92. Zhang Y M, Wen B C, L Q L. Reliability sensitivity for rotor-stator systems with rubbing[J]. Journal of Sound and Vibration,2003,259(5):1095-1107.
    93.张义民.螺旋管簧的可靠性分析的参数灵敏度[J].科技通报,2004,20(2):95-98.
    94.张义民.影响车辆前轴可靠度的参数灵敏度分析[J].农业机械学报,2004,35(3):5-8.
    95.张义民.车辆前轴的可靠性灵敏度设计[J].强度与环境,2004,31(2):40-46.
    96.张义民,王龙山.发动机连杆的可靠性灵敏度设计[J].航空动力学报,2004,19(5):587-592.
    97.张义民,刘巧伶,闻邦椿.钢板弹簧的可靠性分析的参数灵敏度[J].机械科学与技术,2006,25(5):616-618.
    98.张义民,刘巧伶,闻邦椿.汽车零部件可靠性灵敏度计算和分析[J].中国机械工程,2005,16(6):1026-1029.
    99.张义民,刘巧伶,李鹤,闻邦椿.转子-定子系统碰摩失效灵敏度分析[J].航空动力学报,2006,21(10):848-853.
    100.贺向东,张义民,闻邦椿.压杆稳定可靠性灵敏度设计[J].工程设计学报,2006,13(5):295-297,302.
    101.张义民,刘巧伶,闻邦椿.旋转机械系统碰摩故障的失效灵敏度研究[J].振动工程学报,2007,20(2):189-193.
    102. Zhang Y M, L Q L, Wen B C. Reliability sensitivity of multi-degree-of-freedom uncertain nonlinear systems with independence failure modes[J]. Journal of Mechanical Science and Technology,2007,21(6):908-912.
    103.张义民,贺向东,刘巧伶,闻邦椿.非正态分布参数的车辆半轴可靠性灵敏度设计[J].车辆与动力技术,2004,96(4):19-22.
    104.张义民.任意分布参数的机械零件的可靠性灵敏度设计[J].机械工程学报,2004,40(8): 100-105.
    105.张义民,刘巧伶,闻邦椿.不完全概率信息的车辆常用弹簧的可靠性灵敏度设计[J].中国工程科学,2004,6(1):74-80.
    106.张义民,刘仁云,贺向东.非正态分布参数的机械联接件的可靠性灵敏度设计[J].机械设计与研究,2005,21(1):4-7.
    107. Zhang Y M, He X D, Liu Q L, Wen B C, Zheng J X. Reliability sensitivity of automobile components with arbitrary distribution parameters[J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal of Automobile Engineering,2005,219(2):165-182.
    108.张义民,贺向东,刘巧伶,闻邦椿.不完全概率信息的车辆零部件可靠性灵敏度设计[J].兵工学报,2006,27(4):608-612.
    109.袁涛,张义民,薛玉春,贺向东.起重臂弯曲失效和扭转失效模式的可靠性灵敏度[J].中国机械工程,2007,18(22):2679-2682.
    110.张义民,贺向东,刘巧伶,闻邦椿.任意分布参数的梁结构刚度可靠性灵敏度分析[J].计算力学学报,2007,24(6):285-289.
    111.方从严,刘宁,卓家寿.结构可靠度优化的敏感性分析[J].应用力学学报,2005,22(1):63-66.
    112.Taguchi G. Introduction to quality engineering:designing quality into products and processes[M]. Asian Productivity Organization, Tokyo,1986.
    113.韩之俊.二次设计[M].北京:机械工业出版社,1992.
    114.Phadke M S. Quality Engineering Using Robust Design[M]. Prentic-Hall International Inc., 1989.
    115.Goli T N. Taguchi methods:some technical, cultural and pedagogical perspective [J]. Qual. Reliab. Eng. Int.,1993,9(3):185-202.
    116.Emch G, Parkinson A. Robust optimal design for worst-case tolerances[J]. ASME J. Mech. Des.,1994,116(4):1019-1025.
    117. Shoemaker A C, Tsui K L, Wu C F J. Economical experimentation methods for robust design[J], Technometrics,1991,33(4):415-427.
    118.Vining G G, Myers R H. Combining Taguchi and response surface philosophies:a dual response approach[J]. J. of Quality Technology,1990,22(1):38-45.
    119.Pregibon D. Review of generalized linear models[J]. The Annuals of Statistics,1984,12(4): 1589-1596.
    120. Michael W, Siddall J N. The optimization problen with optimal tolerance assignment and full acceptance[J]. Trans. of the ASME, J. of Mech. Design.1981,103:842-848.
    121.Fiacco A V. Introduction to sensitivity and statistic analysis in nonlinear programming[M]. Acadamic Press,1983.
    122.Belagunal A D, Zhang S. Robust mechanical design through minimum sensitivity[J]. Trans. of the ASME. J. of Mech. Design.1992,114:213-217.
    123.Parkinson A, Sorensen C, Pourhassan N. A general approach for robust optional design[J]. J.of Mech. Design,1993,115(1):74-79.
    124.陈立周.稳健设计[M].北京:机械工业出版社,2000.
    125.黄自兴.稳健性设计技术[J].化学工业与工程技术.1996,17(2):11-13.
    126.陈立周.工程稳健设计发展现状与趋势[J].中国机械工程,1998,9(6):59-62.
    127.李泳鲜,孟庆国,姬振豫.机械稳健设计的研究概况与趋势[J].工程设计,1999,4(1):1-4.
    128.周继胜,张圣坤.结构鲁棒设计方法及其应用[J].力学与实践,2000,22(1):11-15.
    129.李泳鲜,李自贵.三次模糊设计在机械工程中的应用方法[J].工程机械,2000,9:20-23.
    130.李泳鲜,孟国庆,等.基于三次设计和模糊理论的圆柱螺旋弹簧稳健设计[J].机械强度,2001,23(2):198-201,215.
    131.于忠海,林万文.基于模糊数学的稳健设计[J].机械设计,2003,20(7):26-28.
    132.朱学军,王安麟,黄洪钟.基于健壮性的机械设计方法[J].机械科学与技术,2000,19(2):230-233.
    133.陈入领,潘双夏等.稳健设计研究现状[J].机械设计,2003,20(8):1-3.
    134. Lee K H, Park G J. Robust optimization considering tolerances of design variables[J]. Comput. Struct.,2001,79(1):77-86.
    135.Du X P, Chen W. Efficient uncertainty analysis methods for multidisciplinary robust design[J]. AIAA J.,2002,40(3):545-552.
    136.吴立群,杨将新,曹珩龙,等.工艺公差表示方法及其在稳健设计中的应用[J].组合机床与自动化加工技术,2002,(8):41-46.
    137.周恺,蔡颖,张振家,等.稳健设计理论在公差分析中的应用[J].北京理工大学学报,2003,23(5):557-560.
    138.刘德顺,岳文辉,杜小平.不确定性分析与稳健设计的研究进展[J].中国机械工程,2006,17(17):1834-1841.
    139.孟宪举.基于稳健设计的含间隙弹性连杆机构分析与综合[D].天津:天津大学,2003.
    140.谭晓兰.机构稳健设计一般原理与方法的研究[D].北京:北京科技大学,2004.
    141.张义民,贺向东,刘巧伶,闻邦椿.任意分布参数的机械零件的可靠性稳健设计(一):理论部分[J].工程设计学报,2004,11(5):233-237.
    142.贺向东,张义民,刘巧伶.非正态分布的汽车半轴凸缘的可靠性稳健设计[J].汽车工程,2005,27(1):100-102,110.
    143. Zhang Yimin, He Xiangdong, Liu Qiaoling, Wen Bangchun. An approach of robust reliability design for mechanical components [J]. Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering,2005,219(E3):275-283.
    144. Zhang Yimin, He Xiangdong, Liu Qiaoling, Wen Bangchun. Robust reliability design of banjo flange with arbitrary distribution parameters [J]. J. of Pressure Vessel Technology-Transactions of the ASME,2005,127(4):408-413.
    145.Zhang Yimin, He Xiangdong, Liu Qiaoling, Wen Bangchun. Robust reliability design of vehicle components with arbitrary distribution parameters[J]. Int. J. of Automotive Technology,2006,7(7):859-866
    146.郭惠昕.稳健设计研究现状与模糊稳健设计研究进展[J].机械设计.2005,22(2):1-5.孙翼军,翁海珊,
    147.亢战,耿程东.基于随机有限元的非线性结构稳健性优化设计[J].计算力学学报,2006,23(2):129-135.
    148.张义民,刘仁云,于繁华.基于多目标粒子群算法的可靠性稳健优化设计[J].机械设计,2006,23(1):3-5,27.
    149.刘仁云,张义民,于繁华.基于灰色粒子群算法的可靠性稳健优化设计[J].吉林大学学报,2006,36(6):893-897.
    150.李海鹏,石博强,张文明.基于盲数理论的机械稳健性优化设计[J].北京科技大学学报,2006,28(12):1178-1181.
    151.李玉强,崔振山,陈军,等.基于双响应面模型的6σ稳健设计[J].机械强度,2006,28(5):690-694.
    152.张义民,黄显振,贺向东.任意分布参数平面连杆机构运动精度可靠性稳健设计[J].农业机械学报,2008,39(7):139-143.
    153.Vetter W J. Matrix calculus operations and Taylor expansions[J]. SI AM Review,1973,15: 352-369
    154.史荣昌,魏丰.矩阵分析(第二版)[M].北京:北京理工大学出版社,2006.
    155.孙山泽,戴中维译.概率与统计[M].北京:科学出版社,2002.
    156.Cramer H. Mathematical Methods of Statistics[M]. N J:Princeton University Press,1964.
    157.Johnson N L, Kotz S. Distributions in Statistics[M]. New York:John Wiley & Sons, Inc., 1972.
    158.Zhao Y G, Ono T. Moment methods for structural reliability[J]. Structural Safety,2001,23(1): .47-75.
    159.杨周,张义民.具有不完全概率信息的圆柱齿轮传动的可靠性灵敏度设计[J].机械传动.2009.33(2):29-35.
    160.Zhang Y M, Yang Z. Reliability-Based Sensitivity Analysis of Vehicle Components with Non-Normal Distribution Parameters [J]. Int. J. of Automotive Technology.2009.10(2): 181-194.
    161.艾科夫,刘宝成.优化设计[M].中国人民大学出版社.2009.
    162.王国彪.机械优化设计方法微机程序与应用.北京:机械工业出版社,1990.
    163.周济.机械设计优化方法及应用[M].北京:高等教育出版社,1989.
    164.曾昭华,傅祥志.优化设计[M].北京:机械工业出版社,1992.
    165.余俊,周济.优化方法程序库OPB-1—原理及使用说明[M].北京:机械工业出版社,1989.
    166.孙靖民.机械优化设计[M].北京:机械工业出版社,1996.
    167.张义民,贺向东.拉杆的可靠性优化设计[J].客车技术,2001,66(4):14-16.
    168.张义民,贺向东.连杆的可靠性优化设计[J].天津汽车,2001,95(4):20-22,39.
    169.郭惠听,蔡安辉,何哲明.模糊约束条件的可行稳健性研究及其应用[J].机械科学与技术.2002,21(2):201-206.
    170.张义民,贺向东,刘巧伶.汽车前轴的可靠性优化设计[J].汽车科技,2002,166(1):8-10,20.
    171.张义民,贺向东,闻邦椿.车辆用钢板弹簧的可靠性优化设计[J].工程设计,2002,9(1):4-6.
    172.朱学军,王安麟,黄洪钟.基于健壮性的机械设计方法[J].机械科学与技术.2000,19(2):230-233.
    173.程远胜,曾广武.鲁棒设计方法及其在造船工程中的应用[J].工程力学.2003,20:1-6.
    174.周继胜,张圣坤.结构鲁棒设计方法及其应用[J].力学与实践.2000,22(1):11-15.
    175.Zhang Yimin, He Xiangdong, Liu Qiaoling, Wen Bangchun. Reliability-based optimization of front-axle with non-normal distribution parameters[J]. Transactions of the Chinese Society of Agricultural Engineering,2003,19(5):60-63.
    176.袁涛,张义民,薛玉春,贺向东.任意分布参数的桥式起重机的可靠性优化设计[J].起重运输机械,2007,4:48-51.
    177.张义民,贺向东,刘巧伶,闻邦椿.不完全概率信息的连杆的可靠性优化设计[J].内燃机学报,2004,22(1):86-90.
    178.张义民,贺向东.任意分布参数的拉杆的可靠性优化设计[J].汽车技术,2004,341(2):20-23.
    179.贺向东,张义民,刘巧伶,闻邦椿.非正态分布参数的扭杆的可靠性优化设计[J].中国机械工程,2004,15(10):849-851,891.
    180.张义民,贺向东,刘巧伶,闻邦椿.不完全概率信息的螺旋管簧的可靠性优化设计[J].应用科学学报,2004,22(3):347-350.
    181.张义民,贺向东,刘巧伶,闻邦椿.非正态分布参数的汽车后桥可靠性优化设计[J].中国制造业信息化,2007,36(3):40-43.
    182.袁涛,张义民,薛玉春,贺向东.利用ANSYS实现零件的可靠性优化设计[J].机械设计与制造,2007,5:1-3.
    183.Muzammi M, Singh P P, Talib F. Optimization of gear blank casting process by using Taguchi's Robust Design technique[J]. Quality Engineering.2003,15(3) 351-359.
    184.贺向东,张义民,刘巧伶,闻邦椿.任意分布参数的后桥的可靠性优化设计[J].农业机械学报,2005,36(2):22-26.
    185.刘善维.机械零件的可靠性优化设计[M].北京:中国科学技术出版社,1993.
    186.GB3480-83, Method for calculating load capacity of involute cylindrical gears[S].
    187.贾超,张楚汉,金峰.可靠度对随机变量及失效模式相关系数的敏感度分析及其工程应用[J].工程力学,2006,23(4):12-16.
    188.袁涛,张义民,薛玉春,贺向东.任意分布参数随机变量间相关系数的可靠性灵敏度[J]. 机械强度,2008,30(3):386-390.
    189.由美雁,何雪,谢里阳.发动机轮盘模拟技术理论与方法[J].机械设计.2007,24(2):62-64.
    190.王爱红,徐格宁,杨萍等.复杂结构可靠性的神经网络分析方法[J].中国机械工程.2008,19(20):3342-3345.
    191.胡殿印,裴月,王荣桥,李其汉.涡轮盘结构概率设计体系的研究[J].航空学报.2008,29(5):1144-1149.
    192.毛政良,张圣坤.人工神经网络在结构可靠性中的应用[J].上海交通大学学报,1997,31(11):86-90.
    193.袁曾任,人工神经元网络及其应用.北京:清华大学出版社,1999
    194.Chau K W. Reliability and performance-based by artificial neural network[J], Advances in Engineering Software,2007,38:145-149.
    195. Jiang N, Zhao Z Y, Ren L Q. Design of structural modular neural network with genetic algorithm[J], Advances in Engineering Software,2003,34:17-24.
    196.张青贵.人工神经网络[M].北京:中国水利水电出版社,2004.
    197.薛志成,左敬岩.基于人工神经网络在框架结构可靠性分析[J],黑龙江科技学院学报,2006,16(4):251-254.
    198.中国航空材料手册编辑委员会.中国航空材料手册[M].北京:中国标准出版社,2002.
    199.材料力学[M].北京:清华大学出版社,2004.
    200.申向东.材料力学[M].北京:中国水利水电出版社,2005.
    201.胡殿印,裴月,王荣桥.李其汉.涡轮盘低循环疲劳的概率设计[J].推进技术.2008,29(4):481-487.
    202.杨剑,张璞,陈火红编著MD Nastran有限元实例教程[M].北京:机械工业出版社,2008.
    203.李帮国,路华鹏,胡仁喜等Patran 2006与Nastran 2007有限元分析实例指导教程[M].北京:机械工业出版社,2008.
    204.廖晓峰,李传东.神经网络研究的发展趋势.发展方向[J].2006,(5):4344.
    205.侯国祥,徐凯,朱梅林,张勇传.应用神经网络—蒙特卡罗的可靠性分析方法[J],华中科技大学学报,2002,30(4):84-86.
    206.郭海丁,路志峰.基于BP神经网络和遗传算法的结构优化设计[J].航空动力学报.2003,18(2):216-220.
    207.冯少辉,周平,钱锋.一种确定神经网络初始权值的新方法[J].上海,工业仪表与自动化装置.2006,(1):65-68.
    208.孟广伟,沙丽荣,李锋等.基于径向基函数神经网络响应面法的装载机动臂疲劳可靠性[J].吉林大学学报.2009,39(6):1516-1520.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700