面向复杂作业的微操作机器人系统视觉反馈与定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微操作机器人是机器人技术向微细操作领域的延伸,它使微操作从繁复的手工操作中解放出来。随着微操作技术的发展和微观研究的深入,多目标操作和批量目标操作已逐渐成为微操作的研究重点。针对批量目标微操作存在的问题,本文将复杂作业的概念引入微操作领域,在原有面向生物工程的微操作机器人基础上,针对微操作复杂作业所需要的视觉反馈与定位问题进行了深入的研究。本文工作主要包括以下几个方面:
     显微镜狭小的视野范围给微操作复杂作业造成了诸多不便,是制约大范围微操作的主要因素,为此,本文提出了一种基于图像拼接的显微视野拓展方法。该方法结合基于区域和基于特征两类图像拼接方法,在保证拼接精度的前提下,可在线完成视野拓展。同时,本文借助不同放大倍数的显微镜物镜,建立分层递阶的体系结构,最终在线构建了具有厘米级范围、亚微米分辨率的全局视野,为微操作复杂作业提供了广阔的视觉反馈。
     在分析显微成像特征和显微成像模型的基础上,提出了一种适用于模糊显微图像的半盲图像复原方法。该方法将成像系统的点扩散函数建模为二维高斯函数,并将Canny边缘检测引入图像复原领域,最终实现了模糊显微图像的复原,为微操作复杂作业提供了清晰的视觉反馈。
     在现有目标定位方法基础上,提出了批量目标分层全局定位方法。该方法基于分层策略,将全局视野分块处理,有效缩短了目标定位的总体时间;同时,分层信息也可用于简化属于NP完全问题的目标排序问题,由此完成了微操作复杂作业的准备工作。针对批量生物目标微操作中特有的目标重定位问题,还提出了一种目标组重定位方法。该方法基于邻近目标构型,可在批量目标多次显微观察中找到同一目标,为进一步批量生物目标微操作的成功率与致死率的定量统计打下了基础。
     显微镜视野狭小表现在光轴方向就是景深小:只能在很小范围内成清晰的像,而离焦面只能得到模糊的显微图像。若以离焦显微图像作为视觉反馈,手工方式将无法完成微操作。但这种离焦显微图像本质上是一种“有规律”的模糊,只要理解人眼无法读懂之“规律”,便可解决微操作工具在离焦状态下的定位问题,微操作机器人系统在这种状态下的操作也成为了可能。本文在分析显微镜物镜成像原理的基础上,提出了一种基于离焦光学传递函数的深度方向定位方法。该方法在显微成像模型中加入了透镜参数与衍射效应的影响,具有较高的定位精度和较好的线性度。该方法实现了微操作工具的在线定位,可应用于高精度微操作复杂作业。
     最后,结合当前基因工程领域的前沿问题,设计并实现了针对批量生物目标的显微图像平面视野拓展与定位实验和基于离焦显微图像反馈的深度方向定位实验,由此验证了文中方法的有效性。
Micro-manipulation system, which relieves operators from heavy and complicated manual operation, is the extension of robot technology to micro-manipulation field. With the development of micro-manipulation technology and research, multi-target operation and batch-target operation become the focus in micro-manipulation. In order to solve the problems in batch-target operation, this paper introduces the concept of complex task into micro-manipulation field, and does in-depth studies in visual feedback and location in complex task. The research contents are as follows.
     The narrow field of view (FOV) of microscope causes various difficulties in complex task in micro-manipulation. In other word, it is the major factor which limits huge-range micro-manipulation. A method to extend microscopic FOV based on image stitching is put forward in this paper. This method combining stitching methods based on image region and image features, can accomplish extending microscopic FOV online with high stitching precision. At the same time, hierarchical structure is utilized to establish the global FOV image with centimeter range and sub-micron resolution. The method provides wide visual feedback for complex task in micro-manipulation.
     Based on the analysis of microscopic imaging features and microscopic imaging model, a semi-blind image restoration approach is presented to restore blurred microscopic images in this paper. The point spread function of the imaging system is described as Gaussian function, and Canny edge detection is introduced into image restoration field. Results prove that this approach is effective and provides clear visual feedback for complex task in micro-manipulation.
     Based on the target location methods offered, a method on batch-target hierarchical global location is addressed in this paper. This method divides microscopic global FOV image into a series of sub-images based on hierarchical strategy, and shortens the whole time for target location. Moreover, hierarchical information can also be utilized to simplify the sort problem of the targets, which is one of NP-complete problems. This method completes the preparation for complex task in micro-manipulation. On the other hand, In order to solve re-location problem for batch biologic targets, a relocation method is put forward. Using configuration of a group of adjacent targets, this method can find the same target in each observation, and lays the foundation of quantitative statistics in micro-manipulation of batch biologic targets.
     In the direction of optical axis, microscope suffers from limited depth-of-field: clear image can only be obtained in small range around focusing plane, while in defocused plane, just blurred microscopic images will be obtained. Micro-manipulation can not be done manually with defocused visual feedback. However, the defocused microscopic image is a kind of regular blurring. If this rule is understood, the location problem of micro-manipulation tools can be solved, which makes defocused micro-manipulation possible. Depending on the analysis of microscopic imaging principle, a location approach in depth direction based on defocused optical transfer function is put forward in this paper. This approach has high location precision and good linearity, since lens parameters and diffraction effect have been taken account. This approach achieves on-line location of micro-manipulation tools, and can be applied in complex task in micro-manipulation with high precision.
     Finally, as for the modern problems in gene engineering, experiments, including plane FOV extension and location of batch biologic targets, and location in depth direction based on defocused microscopic images, are designed and accomplished in this paper. The experiment results demonstrate that all the methods in this paper are effective.
引文
[1]Niku S B,孙富春,朱纪洪等译.机器人学导论—分析、系统及应用.北京:电子工业出版社,2004:1-20.
    [2]Menciassi A,Eisinberg A,Izzo I,et al.From "Macro" to"Micro" manipulation:models and experiments.IEEE/ASME Transaction on Mechatronics,2004,9(2):311-320.
    [3]江泽民,徐德,王麟昆,等.微操作机器人的研究现状与发展趋势.机器人,2003,25(6):554-559.
    [4]Arai F,Morishima K,Kasugai T,et al.Bio-micromanipulation(new direction for operation improvement).Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,volume 3,Grenoble,France,1997.1300-1305.
    [5]孙立宁,孙绍云,荣伟彬,等.微操作机器人的发展现状.机器人,2002,24(2):184-187.
    [6]卢桂章,张建勋,赵新.面向生物工程实验的微操作机器人.南开大学学报自然科学版,1999,32(3):42-46.
    [7]Yamamoto Y,Konishi R,Negishi Y,et al.Tool development for force-feedback micro manipulation system.Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,volume 3,Las Vegas,Nevada,2003.2254-2259.
    [8]Watanabe T,Serita Y.Adhesion state detection by vision and its application to automatic micro manipulation.Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,Nice,France,2008.458-463.
    [9]刘连臣,卢桂章,翁春华,等.微操作机器人及其显微视觉伺服控制系统的研究.高技术通讯,2001,(6):56-58.
    [10]Sitti M.Microscale and nanoscale robotics systems—characteristics,state of the art,and grand challenges.IEEE Robotics & Automation Magazine,2007,(3):53-60.
    [11]赵玮.面向生物工程的微操作机器人系统的控制[博士学位论文].中国北京:北京航天航空大学,2001.
    [12]Tanikawa T,Arai T,Ojala P,et al.Two-finger micro hand.Proceedings of IEEE International Conference on Robotics and Automation,volume 2,Nagoya,Japan,1995.1674-1679.
    [13]Tanikawa T,Arai T.Development of a micro-manipulation system having a two-fingered micro-hand.IEEE Transactions on Robotics and Automation,1999,15(1):152-162.
    [14]Sato T,Koyano K,Nakao M,et al.Novel manipulator for micro object handling as interface between micro and human worlds.Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,volume 3,Yokohama,Japan,1993.1674-1681.
    [15]Sato T,Ichikawa J,Mitsuishi M,et al.A new micro-teleoperation system employing a handheld force-feedback pencil.Proceedings of IEEE International Conference on Robotics and Automation,volume 2,San Diego,America,1994.1728-1733.
    [16] Fatikow S, Rembold U. An automated microrobot-based desktop station for micro assembly and handling of micro-objects. Proceedings of IEEE Conference on Emerging Technologies and Factory Automation, volume 2, Kauai, America, 1996. 586-592 .
    
    [17] Fatikow S, Seyfeied J, Fahlbusch S, et al. A flexible microrobot-based microassembly station. Journal of Intelligent and Robotic Systems, 2000, 27(1-2): 135-169 .
    
    [18] Kallio P, Lind M, Kojola H, et al. An actuation system for parallel link micromanipula-tors. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 2, Osaka, Japan, 1996. 856-862 .
    
    [19] Kallio P, Lind M, Zhou Q, et al. A 3-DOF piezohydraulic parallel micromanipulator. Proceedings of IEEE International Conference on Robotics and Automation, volume 2, Leuven, Belgium, 1998. 1823-1828 .
    
    [20] Feddema J T, Simon R W. CAD-driven microassembly and visual servoing. Proceedings of IEEE International Conference on Robotics and Automation, volume 2, Leuven, Belgium, 1998. 1212-1219.
    
    [21] Feddema J T, Simon R W. Visual servoing and CAD-driven microassembly. IEEE Robotics & Automation Magazine, 1998, 5(4): 18-24 .
    
    [22] Kasaya T, Miyazaki H T, Saito S, et al. Image-based autonomous micromanipulation system for arrangement of spheres in a scanning electron microscope. Review of scientific instruments, 2004, 75(6):2033-2042 .
    
    [23] Onal C D, Sitti M. Visual servoing-based autonomous 2-D manipulation of microparticles using a nano probe. IEEE Transactions on Control Systems Technology, 2007, 15(5):842-852.
    
    [24] Zhou J W L, Chan H Y, To T K H, et al. Polymer MEMS actuators for underwater micromanipulation. IEEE/ASME Transactions on Mechatronics, 2004, 9(2):334-342 .
    
    [25] Kim D H, Kim B, Kang H. Development of a piezoelectric polymer-based sensorized mi-crogripper for microassembly and micromanipulation. Microsystem Technologies, 2004, 10(4):275-280.
    
    [26] Sun Y, Wan K T, Roberts K P, et al. Mechanical property characterization of mouse zona pellucida. IEEE Transactions on Nanobioscience, 2003, 2(4):279-286 .
    
    [27] Beyeler F, Neild A, Oberti S, et al. Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field. Journal of Microelectromechanical Systems, 2007, 16(1):7-15 .
    
    [28] http://www.eppendorf.cn/.
    
    [29] http://www.shimadzu.com/.
    
    [30] http://www.narishige.co.jp/.
    
    [31] http://www.harvardapparatus.com/.
    
    [32] http://www.sutter.com/.
    
    [33] http://www.wpiinc.com/v6/index.php/.
    [34]Sato T.Micro/Nano manipulation world.Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,volume 2,Osaka,Japan,1996.834-841.
    [35]李庆祥,李玉和.微装配与微装配技术.北京:清华大学出版社,2003:1-8.
    [36]门正明.生物工程的应用前景(综述).甘肃农业大学学报,1984,(4):53-58.
    [37]楼士林,杨盛昌,龙敏南,等.基因工程.北京:科学出版社,2002:5-22.
    [38]Zappe S,Fish M,Scott M P,et al.Automated MEMS-based drosophila embryo injection system for high-throughput RNAi screens.Lab on a Chip,2006,6:1012-1019.
    [39]Wang W,Liu X,Sun Y.Autonomous zebrafish embryo injection using a microrobotic system.Proceedings of IEEE International Conference on Automation Science and Engineering,Scottsdale,America,2007.363-368.
    [40]Wang W H,Liu X Y,Sun Y.Robust contact detection in micromanipulation using computer vision microscopy.Proceedings of Annual International Conference of the IEEE on Engineering in Medicine and Biology Society,New York,America,2006.2219-2222.
    [41]毕树生,宗光华.用于生物工程的微操作机器人系统的若干问题.仪器仪表学报,2000,21(6):560-564.
    [42]王浩威,刘晓辉,李银妹,等.应用光学微操作技术分选单条水稻染色体.生物物理学报,2004,20(1):50-56.
    [43]赵玮,于靖军,毕树生,等.串并联微操作机器人系统的研究.北京航空航天大学学报,2001,27(6):623-627.
    [44]赵玮,宗光华,毕树生.机器人.微操作机器人的视觉伺服控制,2001,23(2):146-151.
    [45]Lu Z,Chen P C Y,Nam J H,et al.A micromanipulation system for automatic batch microinjection.Proceedings of IEEE International Conference on Robotics and Automation,Rome,Italy,2007.3134-3135.
    [46]Huang H,Sun D,Mills J K,et al.Integrated vision and force control in suspended cell injection system:towards automatic batch biomanipulation.Proceedings of IEEE International Conference on Robotics and Automation,Pasadena,America,2008.3413-3418.
    [47]Wang W,Sun Y,Zhang M,et al.A microrobotic adherent cell injection system for investigating intracellular behavior of quantum dots,Proceedings of IEEE International Conference on Robotics and Automation,Pasadena,America,2008.407-412.
    [48]季鲁,阎少林,赵新杰,等.T1系超导薄膜金属涂层的生长与特性研究.低温物理学报,2007,29(1):18-20.
    [49]江明,A艾森伯格,刘国军,等.大分子自组装.北京:科学出版社,2006.
    [50]Dechev N,Cleghorn W,Mills J.Microassembly of 3-D microstructures using a compliant,passive microgripper.Journal of Microelectromechanical Systems,2004,13(2):176-189.
    [51]Zhou Q,Chang B,Koivo H.Ambient environmental effects in micro/nano handling.Proceedings of International Workshop on Microfactories,Shanghai,China,2004.146-151.
    [52]Yang G,Gaines J A,Nelson B J.Optomechatronic design of microassembly systems for manufacturing hybrid microsystems.IEEE Transactions on Industrial Electronics,2005,52(4):1013-1023.
    [53]Shacklock A,Sun W.Integrating microscope and perspective views.Proceedings of IEEE International Conference on Robotics and Automation,Barcelona,Spain,2005.454-459.
    [54]Potsaid B,Bellouard Y,Wen J T.Design of an adaptive scanning optical microscope for simultaneous large field of view and high resolution.Proceedings of IEEE International Conference on Robotics and Automation,Barcelona,Spain,2005.462-467.
    [55]Potsaid B,Wen J T,Bellouard Y.Adaptive scanning optical microscope(ASOM) for large workspace micro-robotic applications.Proceedings of IEEE International Conference on Robotics and Automation,Orlando,America,2006.1024-1029.
    [56]安刚,李彬,赵凤海,等.显微镜自动操作系统.中国,发明专利,200310106631,2006.2.
    [57]萧泽新,唐焱,伍世荣,等.自动倒置显微镜.中国,发明专利,200520035493,2007.2.
    [58]尹昕,卢桂章,赵新.大范围多目标微操作的目标视觉跟踪实现策略.高技术通讯,2006,16(2):143-148.
    [59]Zitova B,Flusser J.Image registration methods:a survey.Image and Vision Computing,2003,21(11):977-1000.
    [60]方贤勇.图像拼接技术研究[博士学位论文].中国杭州:浙江大学,2005.
    [61]Ferraro P,Grilli S,Alfieri D,et al.Extended focused image in microscopy by digital holography.Optics Express,2005,13(18):6738-6749.
    [62]Mouroulis P.Depth of field extension with spherical optics.Optics Express,2008,16(17):12995-13004.
    [63]陈燕平.景深延拓波前编码系统理论及其应用研究[博士学位论文].中国杭州:浙江大学,2007.
    [64]Ortyn W,Perry D,Venkatachalam V,et al.Extended depth of field imaging for high speed cell analysis.Cytometry A.,2007,71(4):215-231.
    [65]Zhao T,Ye Z,Zhang W,et al.Design of objective lenses to extend the depth of field based on wavefront coding.Proceedings of SPIE Conference on Wavefront Sensing and Coding,volume 6834,Beijing,China,2007.62-67.
    [66]Caron N,Sheng Y.Polynomial phase masks for extending the depth of field of a microscope.Applied Optics,2008,47(22):39-43.
    [67]Forster B,Ville D V D,Berent J,et al.Complex wavelets for extended depth-of-field:a new method for the fusion of multichannel microscopy images.Microscopy Research and Techique,2004,65(1-2):33-42.
    [68]Choi H,Cheng S,Wu Q,et al.Extended depth-of-field using adjacent plane deblurring and MPP wavelet fusion for microscope images.Proceedings of IEEE International Symposium on Biomedical Imaging:Nano to Macro,Arlington,America,2006.774-777.
    [69]Cheng S,Choi H,Wu Q,et al.Extended depth-of-field microscope imaging:MPP image fusion vs wavefront coding.Proceedings of IEEE International Conference on Image Processing,Atlanta,America,2006.2533-2536.
    [70]Tessens L,Ledda A,Pizurica A,et al.Extending the depth of field in microscopy through curvelet-based frequency-adaptive image fusion.Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing,America,2007.I861-I864.
    [71]Meneses J,Suarez M A,Braga J,et al.Extended depth of field using shapelet-based image analysis.Applied Optics,2008,47(2):169-178.
    [72]Cheng S,Wu Q,Choi H,et al.An improved method of wavelet image fusion for extended depth-of-field microscope imaging.Proceedings of SPIE Conference on Multiresolution and Wavelets,volume 6144,San Diego,America,2006.Q1-Q8.
    [73]赵玮,宗光华,李旭东.高技术通讯.视觉导引的生物细胞自动操作运动规划的研究,2001,(8):93-96.
    [74]Wang Z,Yang M,Almansa A,et al.Object localization with subpixel accuracy for automated microinjection.Proceedings of International Conference on Mechatronics and Automation,2007.428-433.
    [75]Lu Z,Chen P C Y,Nam J,et al.A micromanipulation system with dynamic force-feedback for automatic batch microinjection.Journal of Micromechanics and Microengineering,2007,(17):314-321.
    [76]Arai F,Motoo K,Fukuda T,et al.High sensitive micro touch sensor with piezoelectric thin film for micro pipetting works under microscope.Proceedings of IEEE International Conference on Robotics and Automation,volume 2,2004.1352-1357.
    [77]Huang H,Sun D,Mills J,et al.Automatic suspended cell injection under vision and force control biomanipulation.Proceedings of IEEE International Conference on Robotics and Biomimetics,2007.71-76.
    [78]Buerkle A,Fatikow S.Laser measuring system for a flexible microrobot-based micromanipulation station.Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems,volume 1,2000.799-804.
    [79]Ergenc A,Olgac N.New optical sensor for monitoring the micropipette motion.IEEE Transactions on Information Technology in Biomedicine,2006,10(4):775-781.
    [80]Yamamoto H,Sano T.Study of micromanipulation using stereoscopic microscope.IEEE Transactions on Instrumentation and Measurement,2002,51(2):182-187.
    [81]赵新,孙明竹,卢桂章,等.基于显微图像处理的微操作工具深度信息提取方法.自动化学报,2007,33(9):917-923.
    [82]Brown L G.A survey of image registration techniques.ACM Computing Surveys(CSUR),1992,24(4):325-376.
    [83]Capek M,Krekule I.Alignment of adjacent picture frames captured by a CLSM.IEEE Transactions on Information Technology in Biomedicine,1999,3(2):119-124.
    [84]Rankov V,Locke R J,Edens R J,et al.An algorithm for image stitching and blending.Proceedings of SPIE Conference on Three-Dimensional and Multidimensional Microscopy:Image Acquisition and Processing Ⅻ,volume 5701,San Jose,USA,2005.190-199.
    [85]苗立刚,岳永娟,彭思龙.基于2D格状图的显微图像拼接.计算机工程,2007,33(12):49-51.
    [86]方青,王博亮.一种改进的基于比值模板匹配的显微图像拼接.计算机工程,2005,31(24):159-160.
    [87]Adelson E H,Anderson C H,Bergen J R,et al.Pyramid method in image processing.RCA Engineer,1984,29(6):33-41.
    [88]聂生东,司京玉.医学显微图像自动拼接的方法研究.中国生物医学工程学报,2005,24(2):173-178.
    [89]聂斌,刘照军,韩忠东,等.医学显微图像的自动拼接方法.第四军医大学学报,2005,26(6):F003-F003.
    [90]Sun C,Beare R,Hilsenstein V,et al.Mosaicing of microscope images.Proceedings of Proceedings of the Digital Imaging Computing:Techniques and Applications,Cairns,Egypt,2005.50-55.
    [91]陆方杰,夏顺仁.基于归一化转动惯量的显微图像拼接算法.中国医疗器械杂志,2007,31(6):404-406.
    [92]Lowe D G.Distinctive image features from scale-invariant keypoints.International Journal of Computer Vision,2004,60(2):91-110.
    [93]Brown M,Lowe D G.Automatic panoramic image stitching using invariant features.International Journal of Computer Vision,2007,74(1):59-73.
    [94]Fan X,Xia S R.Feature based automatic stitching of microscopic images.Proceedings of International Conference on Intelligent Computing,volume 2,Qingdao,China,2007.791-800.
    [95]汤井田,王凯,肖嘉莹.基于SWT特征检测的医学显微图像自动拼接.计算机工程与应用,2007,43(35):243-244.
    [96]孙明竹,赵新,程小燕,等.基于尺度不变特征变换特征的显微图像在线拼接方法.高技术通讯.已录用.
    [97]舍英,伊力奇,呼和巴特尔.现代光学显微镜.北京:科学出版社,1997.
    [98]Banham M R,Katsaggelos A K.Digital image restoration.IEEE Signal Processing Magazine,1997,14(2):24-41.
    [99]邹谋炎.反卷积和信号复原.北京:国防工业出版社,2004.
    [100]Kundur D,Hatzinakos D.Blind image deconvolution.IEEE Signal Processing Magazine,1996,13(3):43-64.
    [101]Kundur D,Hatzinakos D.Blind image deconvolution revisited.IEEE Signal Processing Magazine,1996,13(6):61-63.
    [102]You Y,Kaveh M.A regularization approach to joint blur identification and image restoration.IEEE Transactions on Image Processing,1996,5(3):416-428.
    [103]Sroubek F,Flusser J.Multichannel blind deconvolution of spatially misaligned images.IEEE Transactions on Image Processing,2005,14(7):874-883.
    [104]Souidene W,Abed-Meraim K,Beghdadi A.Deterministic techniques for multichannel blind image deconvolution.Proceedings of International Symposium on Signal Processing and Its Applications,2005.439-442.
    [105]Nakagaki R,Katsaggelos A K.A VQ-based blind image restoration algorithm.IEEE Transactions on Image Processing,2003,12(9):1044-1053.
    [106]洪汉玉,喻九阳,陈以超,等.红外目标湍流退化图像的优化复原算法.应用光学,2006,27(6):510-515.
    [107]Xue F,Liu Q,Fan W.Iterative image restoration using a non-local regularization function and a local regularization operator.Proceedings of International Conference on Pattern Recognition,volume 3,2006.766-769.
    [108]Wan Y,Nowak R.A Bayesian multiscale approach to joint image restoration and edge detection.Proceedings of SPIE Conference on Wavelet Applications in Signal and Image Processing,volume 3,1999.73-84.
    [109]Bar L,Sochen N,Kiryati N.Semi-blind image restoration via Mumford-Shah regularization.IEEE Transactions on Image Processing,2006,15(2):483-493.
    [110]孙明竹,赵新,卢桂章.基于Canny边缘检测的半盲图像复原算法.高技术通讯,2008,18(6):602-608.
    [111]Sun M,Zhao X,Lu G.Light-microscopic image restoration via edge detection.Proceedings of Proceedings of SPIE,MIPPR,volume 6786,Wuhan,China,2007.V1-V9.
    [112]赵新,余斌,李敏,等.基于系统辨识的显微镜点扩散参数提取方法及应用.计算机学报,2004,27(1):140-144.
    [113]刘鹏,张岩,毛志刚.一种基于模糊函数的自适应平滑约束图像复原算法.中国图象图形学报,2005,10(9):1178-1183.
    [114]Sonka V H M,Boyle R,艾海舟等译.图像处理、分析与机器视觉(第二版).北京:人民邮电出版社,2003.
    [115]You Y,Kaveh M.Blind image restoration by anisotropic regularization.IEEE Transactions on Image Processing,1999,8(3):396-407.
    [116]Vogel C R,Oman M E.Fast,robust total variation-based reconstruction of noisy,blurred images.IEEE Transactions on Image Processing,1998,7(6):813-824.
    [117]Chan T F,Wong C K.Total variation blind deconvolution.IEEE Transactions on Image Processing,1998,7(3):370-375.
    [118]Guimaes L V,Suzim A A,Maeda J.A circle similarity algorithm for an automatic circular decomposition of blood cell images.Optical Review,2001,8(6):436-443.
    [119]王超.视频图像自动拼接的研究与实现[硕士学位论文].北京:北京理工大学,2008.
    [120]刘璟.计算机算法引论—设计与分析技术.北京:科学出版社,2003.
    [121]刘俊玲,赵新,卢桂章.离焦状态显微图像平面位置信息提取方法研究.中南大学学报自然科学版,2005,36(1):422-427.
    [122]赵新,孙明竹,刘俊玲,等.基于离焦状态模糊显微图像反馈的微操作方法.高技术通讯,2006,16(4):381-386.
    [123]Rajagopalan A,Chaudhuri S,Mudenagudi U.Depth estimation and image restoration using defocused stereo pairs.IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26(11):1521-1525.
    [124]Favaro P,Soatto S.A geometric approach to shape from refocus.IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(3):406-417.
    [125]谢少荣,罗均,赵新.微操作显微图像中对象深度信息判据.机械科学与技术,2002,21(6):898-900.
    [126]张建勋,薛大庆,卢桂章,等.通过显微图像特征抽取获得微操作目标纵向信息.机器人,2001,23(1):73-77.
    [127]吕遐东,黄心汉,王敏,等.基于显微图像散焦特征的微操作机器人深度信息提取.机器人,2003,25(4):322-326.
    [128]曾明,孟庆浩,张建勋,等.基于规范化谱主元分析的微操作深度信息提取.机器人,2007,29(5):428-432.
    [129]Hopkins H H.The frequency response of a defocused optical system.Proceedings of the Royal Society of London.Series A,Mathematical and Physical Sciences,1955,231(1184):91-103.
    [130]孙明竹,赵新,卢桂章.基于离焦的微操作机器人系统光轴方向深度测量.物理学报.已录用.
    [131]Stokseth P A.Properties of a defocused optical system.Journal of the Optical Society of America,1969,59(10):1314-1321.
    [132]Castleman K R,朱志刚,林学阖等译.数字图像处理.北京:电子工业出版社,1998.
    [133]Goodman J W,詹达三,董经武等译.傅里叶光学导论.北京:科学出版社,1979.
    [134]王敏康,刘冀珑,陈永福,等.哺乳动物克隆的原理与途径.生命科学,2000,12(3):137-141

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700