自动化显微超声切割方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代生物及相关技术的飞速发展,显微操作技术已成为研究的热点,其中有关显微切割的操作是常用的重要操作之一。目前,在生物医学领域获得特定组织区域或单个细胞,大多是通过手工或者机械辅助的方法来完成的,这样就避免不了操作人员在显微镜下因长时间工作,工作强度大,易疲劳等因素所造成的人为误差且精度低,可控性差。所以研究显微切割技术不仅具有理论必要还具有实践意义。
     本文基于超声振动显微切割的需求,将超声振动引入显微切割领域。在介绍超声主要特性及其应用的基础上,分析了超声振动显微切割机理。为进一步研制超声显微切割系统打下理论基础。
     鉴于不同厚度的样品对能量的需求不同,选择合适的超声发生装器及压电陶瓷,便于调整切割工具的振动频率与幅值。对选用的压电陶瓷进行震动测试及一阶模态分析。针对显微切割环境和工具的特殊性设计切割工具的整体结构及三种切割针的连接方式供选择。同时选择具有高品质图像处理能力的basler公司的A601f摄像头和高精度的电动操作手及相应的控制器并对控制器进行必要的调试工作。
     以VC6.0编程软件为开发平台,利用微软提供的类库MFC和具有丰富视觉处理算法的计算机视觉库OpenCV。研究了在线图像匹配算法及控制方案,并开发具备图像动态采集存储可实现微操作工具的自动搜索,切割针针尖位置检测,具有实时跟踪针尖功能的程序文档,可实现将切割针定位在组织切片上方任意位置。开发工作台、操作手等控制程序以实现切割针的精确定位,准确完成路径规划及切割操作。
     最后,利用研制的自动化显微超声切割系统,对厚4um的大肠肿瘤组织及乳腺癌组织切片进行显微切割实验。通过对理论和实验结果的分析,得出了4um厚的大肠肿瘤组织切片切割的最佳参数。在该参数条件下可以完成任意形状的切割,切割效果理想,还可实现拾取目标组织便于后续处理。实验证明深度可控自动压电超声显微切割系统增加了显微切割的自动化程度,明显提高了显微切割工作的准确性与效率。
Along with the rapid development of modern biology and the related techniques, micromanipulation technique has become a research focus, including micro-dissection which is frequently referred to as one of the important operations. At present, in biomedical field the specific organizations or single cell are mostly obtained by manual or machine assisted method, with unavoidable human errors due to long working at the microscope, heavy working intensity, easily fatiguing and so on and low accuracy, poor controllability. Therefore, micro-dissection technology is provided with not only theoretical necessity but practical significance.
     Based on the requirements of ultrasonic vibration micro-dissection, ultrasonic vibration is introduced into the microscopic cutting field in this paper. Ultrasonic vibration's main characteristics and some actual applications are presented based on the analysis of the ultrasonic vibration micro-dissection theory. And theoretical basis is provided for further development of ultrasonic micro-dissection system.
     In view of different thickness of dissecting samples requirements different energy, select a suitable signal generator and piezoelectric ceramic that is suitable for adjustment of dissect tool's vibration frequency and amplitude. Vibration test and the first-order modal analysis of selected piezoelectric ceramic are performed. Contraposing the particularity of micro-dissection environment and dissection tool, we not only designed the overall structure of the dissection tool but designed three connection ways of dissection needle to choose. Meanwhile we select the A601f camera of German's basler company with high quality and image processing, high accuracy manipulator, the corresponding controller, precise air pump, etc.
     With VC6.0(programming software) for the development platform, using Microsoft's MFC and computer vision library (OpenCV) with rich visual processing algorithm, the high speed image matching algorithm and control scheme are researched, procedure document with dynamic image collection and storage is developed, which can realize automatic searching micro tools, detecting the position of the cutting's needle tip and tracking the needle visually in real time, thus successfully setting the needle in any position over the tissue. The control procedures of work stage and manipulator are developed to achieve precise positioning of dissection needle, accurately completing path planning and dissection operation.
     Finally, we use the depth-controlled and automated piezoelectric ultrasonic vibration micro-dissection system to dissect the4micron colon cancer tissues and Breast cancer tissues. Through analysis the theory and the experimental results, we got the best dissection parameters of the4um colon cancer tissues slice. In this circumstance, dissection for any shape can be accomplished ideally, also the post-dissection tissue can be taken away for further process. Experiments prove that depth-controlled automated piezoelectric ultrasonic vibration microscopic cutting system increases the automation degree of microscopic cutting, and obviously improves the accuracy and efficiency of dissection work.
引文
[1]中国科学院生命科学与生物技术局,中国科学院上海生命科学信息中心.生命科学与生物技术发展报告[R].北京:科学出版社,2006:81-289.
    [2]王振宁,张学,徐惠绵等.激光捕获显微切割技术的原理及应用[J].国外医学遗传学分册,2001,24(2):61-64.
    [3]Nicole L.Simone, Robert F.Bonner, John W.Gillespie.Laser-capture microdissection: opening the microscopic frontier to molecular analysis[J]. Trends in genetics:TIG,1998,14(7):272-276.
    [4]Nath Chandra, Rahman Mustafizur, Ken Soon Neo. Modeling of the Effect of Machining Parameters on Maximum Thickness of Cut in Ultrasonic Elliptical Vibration Cutting[J].Journal of manufacturing science and engineering,2011,133:1087-1357.
    [5]Rosa I. Gallagher, Steven R. Blakely, Lance A. Liotta, etal. Laser Capture Microdissection:ArcturusXT Infrared Capture and UV Cutting Methods[J].Methods in Molecular Biology,2012,823:157-178.
    [6]CHEN L G, LIU Y X, SUN L N. Piezo-powered Micro-dissection system with ultrasonic vibration[C]. Proceedings of the30th Chinese Control Conference, yantai, P.R. China:ICEMS,2011:6067-6071.
    [7]罗泊涛,苏维勇,唐泽立.手工组织显微切割后的快速DNA提取技术[J].华北煤炭医学院学报,2010,12(4):471-472.
    [8]王修杰,袁淑兰,李昌平等.显微切割术分离切片DNA用于分子病理学研究[J].中华病理学杂志,2001,30(3):229-231.
    [9]温遇华.微操作机器人自动作业的几项关键技术研究[D].天津:南开大学,2004.
    [10]毕树生,宗光华,赵玮,张建勋.生物工程中的微操作机器人系统[J].高技术通讯,1998.1:53-57.
    [11]郭福政,邱淑兰,肖雪媛.LCM激光捕获显微切割技术及其应用[J].现代仪器,2003,1:40-42.
    [12]邓小玲,胡盛平.组织显微切割技术及其应用[J].汕头大学医学院学报, 2005,(15)3:167-169.
    [13]Jung Hyun Kim. Visually guided3D micro positioning and alignment system[J]. International Journal of Precision Engineering and Manufacturing,2011,12(5):797-803.
    [14]杨克己,吴佳杰.基于超声振动的显微切割技术[J].工程设计学报,2009,16(1):58-62
    [15]刘亚欣,陈立国,孙立宁等.超声振动显微切割工具的设计与研制[J].光学精密工程,2005,13(增刊):128-133.
    [16]Terpitz U, Zimmermann D. Isolation of guard cells from fresh epidermis using a piezo-power micro-dissection system with vibration-attenuated needles[J]. BioTechniques,2010,48(1):68-70.
    [17]Julia L.McLachlan, Anthony J.Smith, Paul R.Cooper. Piezo-power microdissection of mature human dental tissue[J]. Archives of Oral Biology.2003(48):731-736.
    [18]E.Shamoto and T.Moriwaki. Study on Elliptical Vibration Cutting [J]. Annals of the CIRP,1994,43(1):35-38.
    [19]T. Fukuda, F. Arai, and L. Dong.Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations[J]. Proceedings of the IEEE,2003,91(11):1803-1818.
    [20]K. Aoki, H. T. Miyazaki, H. Hirayama, K. Inoshita, T. Baba, K. Sakoda, N. Shinya, and Y. Aoyagi. Microassembly of semiconductor three dimensional photonic crystals[J]. Nature Materials,2003,2(2):117-121.
    [21]V. Eichhorn, S. Fatikow, T. Wich, C. Dahmen, T. Sievers, K. Andersen, K. Carlson, and P. Bggild. Depth-detection methods for microgripper based cnt manipulation in a scanning electron microscope[J]. Journal of Micro-Nano Mechatronics,2008,4(1):27-36.
    [22]Roberts J P. the cutting edge in laser microdissection[J]. Biophotonics international,2002,9:50-53.
    [23]赵江红.激光捕获显微切割技术的研究进展[J].安徽农业科学,2011,9(1):32-34
    [24]Karin Schutze, Ingrid Becker, et al. Cut out or poke in-the key to the world of single genes:laser micromanipulation as a valuable tool on the look-out for the origin of disease[J]. Genetic Analysis:Biomolccular Engineering.1997,14:1-8.
    [25]Robert F. Bonner, Michael Emmert-Buck, Kristina Cole. Laser Capture Microdissection:Molecular Analysis of Tissue[J].Science,1997,278(5342):1481-1483.
    [26]Michael A. Tangrea, Sumana Mukherjee, Bing Gao, Sanford P. Markey. Effect of Immunohistochemistry on Molecular Analysis of Tissue Samples:Implications for Microdis section Technologies[J]. Journal of Histochemistry and Cytochemistry.2011,59(6)591-600.
    [27]Lee JY, Dong SM, Kim SY, Yoo NJ, Lee SH. A simple, precise and economical microdissection technique for analysis of genomic DNA from archival tissue sections[J].Virchows Arch.1998,433:305-309.
    [28]Michael Harsch, Klaus Bendrat, Gerhard Hofmeier, Detlef Branscheid, Axel Niendorf. A new method for histological microdissection utilizing an ultrasonically oscillating needle:demonstrated by differential mRNA expression in human lung carcinoma tissue[J]. American Journal of Pathology.2001:1985-1990.
    [29]Stephan Brandtl, Christina Walz. A Simple, Chisel-Assisted Mechanical Micro-dissection System for Harvesting Homogenous Plant Tissue Suitable for the Analysis of Nucleic Acids and Proteins[J].Plant Molecular Biology Reporter.2003,12:417-427.
    [30]Fumihito Arai, Takaharu Amano, Toshio Fukuda, Hiroshi Satoh.Mechanical Micro-dissection by Microknife Using Ultrasonic Vibration and Ultra Fine Touch Probe Sensor[C].Proceedings of the IEEE, international conference on robotics and automation,2001,139-144.
    [31]卢桂章,张建勋,赵新.面向生物工程实验的微操作机器人.南开大学学报,1999,32(3):42-44.
    [32]G.Y.Li, N.Xi, M.M.Yu, F.Salem etal. Manipulation of Living Cells by Atomic Force Microscopy[C]. Proceedings of the IEEE, international conference on Advanced Intelligent Mechatronics,2003,862-867.
    [33]H.Yamamoto, T.Sano. Study Micromanipulation Using Stereoscopic Microscope[J]. IEEE Transactions on Instrumentation and Measurement,2002,51(2):182-187.
    [34]K.Hongo, T.Goto, YKakizawa, etal. Micromanipulator system (NeuRobot):clinical application in neurosurgery[J].International Congress Series,2003,1256:509-513.
    [35]K.W.Grace, J.E. Colgate, M.R.Glucksberg, J.G.Chun.A Six Degree of Freedom Micromanipulator for Ophthalmic Surgery [C]. Proceedings of the IEEE, international conference on Robotics and Automation,1993,630-635.
    [36]F.Arai, T.Amano. Micro-knife using ultrasonic vibration[J].IEEE:International Symposium on Micro-mechatronics and Human Science,2000,110:165-200.
    [37]宋峥.超声振动切削系统的建立及变幅杆性能的仿真研究[D].哈尔滨:哈尔滨工业大学,2006.
    [38]王建明.功率超声技术的现状与展望[J].声学技术,1997,01:46-48.
    [39]罗晓宁,周兆英.新型超声骨骼切割仪[J].中国医疗器械信息,2002,8:17-18.
    [40]胡光曦,孔德明,王进华.超声刀在肝叶切除术中的护理[J].现代医药卫生,2004,20(14):1407.
    [41]廖维良,赵美顺,杨红.超声波辅助提取技术研究进展[J].广东要学院学报,201,28(3):348-350.
    [42]王慕冰,袁泽惠.超声波在医学中的应用[J].中国西部科技.2004,126-126.
    [43]方舸,吴强,巫琦,辅皋鸣.超声波在医学中的应用[J].医疗装备,2012,07:13-16.
    [44]谢恩华,李晓谦.超声波熔体处理过程中的声流现象[J].北京科技大学学报2009,11(31):1426-1429.
    [45]袁艺,吕彦明.超声波振动切削应用范围理论探讨[J].太原机械学院学报,1994,15(3):189-194.
    [46]Shu Karube, Wataru Hoshino, Tatsuo Soutome, Keijin Sato. The non-linear phenomena in vibration cutting system The establishment of dynamic model[J]. International Journal of Non-Linear Mechanics.2002,37:541-564.
    [47]Chunxiang Ma, E. Shamoto, T. Moriwaki, Lijiang Wang. Study of machining accuracy in ultrasonic elliptical vibration cutting[J].International Journal of Machine Tools&Manufacture.2004,44:1305-1310.
    [48]Norikam Suzuki, Akihiro Naxamura, Eiji Shanoto, Kanrhiro Harpda, Makoio Mxtsud, Michio Osdad. Ultraprecision Micromachining of Hardened Steel by Applying Ultrasonic Elliptical Vibration Cutting [J]. IEEE International Sysposum On MicroMechatronics And Human Science.2003:221-226.
    [49]董玉涛,张建勋.微操作机器人控制系统下位机的设计[J].机器人2000,4(22):310-314.
    [50]毕树生,宗光华.微操作机器人系统的研究开发[J].中国机械工程,1999,10(9):1024-1027.
    [51]Kenji Uchino, Sadayuki Takahashii. Multilayer ceramic actuators[J]. Solid State and Materials Science.1996,1:698-705.
    [52]安连生.应用光学[M].北京:北京理工大学出版社,2000.
    [53]葛华勇.近场光学显微镜及其应用[J].万方数据,2002,39(6):8-12.
    [54]孙明竹.微操作机器人系统光轴方向有效操作空间的拓展[D].天津:南开大学,2006.
    [55]胡芳芳.数字化细胞微注射机器人显微视觉系统设计及实验研究[D].南京:南京理工大学,2008.
    [56]V. Eichhorn, S. Fatikow, T. Wortmann, C. Stolle, C. Edeler, D. Jasper,O. S. P. Boggild, G. Boetsch, C. Canales, and R. Clavel. Nanolab:A nanorobotic system for automated pick-and-place handling and characterization of CNTs[C]. Proceedings of the IEEE, international conference on robotics and automation,2009,1826-1831.
    [57]K. Kim, X. Liu, Y. Zhang, and Y. Sun. Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback[J]. Journal of micromechanics and Microengineering,2008,18(5),5-13.
    [58]M.Jahnisch,S.Fatikow.3-D vision feedback for nanohandling monitoring in a scanning electronmicroscope[J].International Journal of Optomechatronics,2007,1:4-26.
    [59]M.Subbarao, J.K.Tyan. Selecting the optimal focus measure for autofocusing and depth-from-focus[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998,20(8):864-870.
    [60]Jan-Mark Geusebroek, Frans Cornelissen, Arnold W.M. Smeulders, Hugo Geerts. Robust autofocusing in microscopy [J].Wiley Online Library,2000,39(1):1-9.
    [61]Sun Y, Duthaler S, Nelson BJ. Autofocusing in computer microscopy:selecting the optimal focus algorithm[J].Microscopy Research and Technique,2004,65:139-149.
    [62]Wang W H, Liu X Y, Sun Y. Contact Detection in Microrobotic Manipulation[J].The International Journal of Robotics Research, August2007,26(8):821-828.
    [63]Ru C H, Zhang Y, Sun Y. Automated Four-Point Probe Measurement of Nanowires Inside a Scanning Electron Microscope[J].IEEE transactions on nanotechnology,2011,10(4):674-681.
    [64]R.C.多尔夫,R.H.毕晓普.现代控制系统[M].科学出版社,2007:2-3.
    [65]陶永华.新型PID控制及其应用[M].第2版.北京:机械工业出版社,2005:175.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700