基于辐射传输理论的高频S波各向异性散射过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,全球强震频发,给人类社会带来了不可估量的财产损失和人员伤亡。与历史上其他地震相比,这几次地震的最显著特点之一是:地震发生地点距离城市市区很近。从而,为了更有效的研究这些地震,构建考虑震源破裂机制与传播效应的近场地震动建模理论与方法至关重要。本文针对地震波在复杂介质中传播时遇到的高频地震波散射效应,开展了高频S波的各向异性散射理论研究。
     首先,在各向异性散射理论框架内,通过引入表征震源初始脉冲持时的震源特征时间,对地震波能量密度积分方程进行了改进。然后,基于各向异性散射模式,通过离散波数方法求解了改进的S波能量密度积分方程。根据能量密度与速度的对应关系,得到了S波的速度包络。据此,讨论了不同散射模式对S波速度包络的影响。计算结果表明:前散射、各向同性散射、后散射模式均能给出S波速度包络尾波段的衰减一致性;在震源距较小时(小于100km),不同散射模式的结果几乎完全一致,但随着震源距的增加,各向异性散射结果与各向同性散射结果的偏差逐渐增大。其中,基于前散射模式合成的速度包络出现了包络展宽、包络峰值到时延迟现象,从而为定量分析高频S波包络的展宽特性提供了一种新的技术手段。
     其次,基于各向异性散射模式,分析了直达波与单次散射组合项,以及多次散射项对S波速度包络的影响。分析结果表明,在震源距较小(小于100km)时,直达波与单次散射组合项几乎与整体速度包络重合。因此,在这种情况下可忽略多次散射项,而用单次散射模型模拟S波的散射过程。随着震源距的增加,多次散射项逐渐占主导地位。其中,前散射模式与后、各向同性散射模式的结果相比,多次散射项的比重上升的较快,当震源距超过200km时即可采用多次散射项的结果近似模拟整个S波速度包络。
     最后,将多次前散射模型应用于汶川余震速度记录的拟合,结果表明:与后散射、各向同性散射模式相比,基于前散射模式,合成的速度包络能够体现出S尾波包络的衰减一致性,同时能够描述S波速度包络随震源距的增加而出现的展宽现象。因此,高频S尾波并不是传统意义上的各向同性散射过程、或者后散射过程引起的散射波的叠加,而是源于S波与散射体多次前散射过程中的能量转移。在观测S波速度包络上的表现为:随着传播距离的增加,直达S波峰值降低,尾波段幅值提升。这意味着:S波在传播介质中与散射体的多次前散射作用,抽取了直达波的能量转移至尾波段,从而促成了高频S尾波的形成。高频S尾波形成机制的揭示为S尾波包络的合成提供了理论参考。
Recently, the strong earthquakes stroke the earth frequently and brought human society inestimable loss of possessions and life. In contrast to the historical earthquakes, one of the most remarkable features of these earthquakes is their epicenters are very close to cities. Therefore, in order to study these earthquakes more efficiently, it is the key to build the theory and methodology which consider the rupture mechanism of source and propagation effect of these near fault earthquakes. Focusing on the scattering phenomena of seismic wave which propagated in the complex medium, the anisotropic scattering theory of high frequency S wave is developed in this study.
     Firstly, in the framework of anisotropic scattering theory, the seismic wave energy density integral equation is improved by introducing a source characteristic time, which is used to describe the time width of initial impulse of source. Then, based on anisotropic scattering patterns, a discrete wave-number is used to solve the improved S wave energy density integral equation. And the S wave velocity envelope is obtained according to the relationship between energy density and velocity. Based the velocity envelope, the effect of scattering patterns on S wave velocity envelope is discussed. According to the numerical results, forward and backward, as well as isotropic scattering patterns, all of them can model the common decay of S coda wave velocity envelope. When hypocentral distance is small (less than100km), all the S wave velocity envelopes are almost same. However, with the increasing of hypocentral distance, the deviation between isotropic and ansotropic results will be grown. And for the result of forward scattering pattern, the velocity envelope broadening and envelope peak delay will be appeared. Thus, a new quantitative measurement for the S wave envelope broadening is provided.
     Secondly, based on anisotropic scattering patterns, the effect of group of direct wave and single scattering term and multiple scattering terms on S wave velocity envelope is investigated. From the analysis result, the result from the group of direct wave and single scattering term match the whole velocity envelope of S wave pretty well at small hypocentral distance (less than100km). Thus, in this case, the multiple scattering terms can be neglected and the single scattering model can be used to simulate the S wave scattering process. With increasing of hypocentral distance, multiple scattering terms will be gradually dominated over the group of direct wave and single scattering term. Compared with results from backward and isotropic scattering pattern, the contribution of multiple scattering terms from forward scattering pattern grew more rapidly. And multiple scattering terms can be used to model the whole S wave velocity envelope when the hypocentral distance is larger than200km.
     Finally, the multiple forward scattering pattern is used to fit the velocity record from Wenchuan aftershocks. From the fitting result, in contrast to results from backward and isotropic scattering patterns, the synthesized velocity envelopes from the forward scattering pattern not only describe the common decay of S coda wave, but also represent the envelope broadening which will be appeared when hypocentral distance is increasing. Hence, high frequency S coda wave is not traditional superposition of scattering wave from backward or isotropic scattering process, but is originated from the transfer energy from the multiple forward scattering process between scatters and S wave. This phenomenon appeared on the observed S wave velocity envelope is the attenuation of direct S wave amplitude as well as the rising of S coda wave amplitude. Therefore, the energy of direct wave is pumped by the multiple forward scattering process between S wave and scatters, and the pumped energy is transferred to the coda wave part, which form the high frequency S coda wave. Therefore, a theoretical reference is offered for the synthesis of S coda envelope by a discovery of the mechanism of high frequency S coda wave excitation.
引文
[1]Abrahamson, N. A., Silva, W. J. Empirical response spectral attenuation relations for shallow crustal earthquakes [J]. Seismological Research Letters,1997,68:94-127.
    [2]Abrahamson, N., Atkinson, G., Boore, D.,et al. Comparisons of the NGA ground-motion relations [J]. Earthquake Spectra,2008,24:45-66.
    [3]Boore, D. M., Joyner, W. B., Fumal, T. E. Equations for estimating horizontal response spectra and peak acceleration from western North American earthquakes:A summary of recent work [J]. Seismological Research Letters,1997,68:128-153.
    [4]Campbell, K. W. Empirical near-source attenuation relationships for horizontal and vertical components of peak ground acceleration, peak ground velocity, and pseudo-absolute acceleration response spectra [J]. Seismological Research Letters,1997,68:154-179.
    [5]Campbell, K. W., Bozorgnia, Y. Updated near-source ground-motion (attenuation) relations for the horizontal and vertical components of peak ground acceleration and acceleration response spectra [J]. Bulletin of the Seismological Society America,2003,93(1):314-331.
    [6]Boore, D. Stochastic simulation of high frequency ground motions based on seismological models of the radiated spectra [J]. Bulletin of the Seismological Society America,1983,73:1865-1894.
    [7]Beresnev,l., G. Atkinson. Modeling finite-fault radiation from the ωn spectrum [J]. Bulletin of the Seismological Society America,1997,87:67-84.
    [8]江近仁,洪峰.功率谱与反应谱的转换和1人造地震波[J].地震工程与工程振动,1984,4(3):1-11.
    [9]胡聿贤,何训.考虑相位谱的人造地震动反应谱拟合[J].地震工程与工程振动,1986,6(2):37-51.
    [10]刘鹏程,林皋,金春山.考虑地震环境的人造地震动合成方法[J].地震工程与工程动,1992,12(4):9-15.
    [11]蔡长青.沈建文.人造地震动的时域叠加法和反应谱整体逼近技术[J].地震学报,1997,19(1):71-78.
    [12]程纬.地震加速度反应谱拟合的直接法研究[J].工程力学,2000,17(1):83-87.
    [13]杨庆山,姜海鹏.基于相位差谱的时频非平稳人造地震动的反应谱拟合[J].地震工程与工程振动,2002,22(1):32-38.
    [14]赵风新,张郁山.拟合峰值速度与目标反应谱的人造地震动[J].地震学报,2006,28(4):429-437.
    [15]安自辉,李杰.地震动随机函数模型研究(I)-模型建立[J].地震工程与工程振动,2009,29(5):36-45.
    [16]Bazzurro, P., B. Sjoberg, N. Luco. Post-elastic response of structures to synthetic ground motions. Report for Pacific Earthquake Engineering Research (PEER) Center Lifelines Program Project [R].2004:65-112.
    [17]Irikura, K., K. Kamae. Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green's function technique [J]. Annali di geofisica,1994,37:1721-1744.
    [18]Kamae, K., K. Irikura, A. Pitarka. A technique for simulating strong ground motion using hybrid Green's function [J]. Bulletin of the Seismological Society America,1998,88:357-367.
    [19]Hartzell, S., S. Harmsen. A. Frankel.et al. Calculation of broadband time histories of ground motion:Comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake [J]. Bulletin of the Seismological Society America,1999,89:1484-1504.
    [20]Pitarka, A., P. Somerville, Y. Fukushima, et al. Simulation of near fault strong ground motion using hybrid Green's Functions [J]. Bulletin of the Seismological Society America,2000, 90:566-586.
    [21]Pulido, N., T. Kubo. Near-fault strong motion complexity of the 2000 Tottori earthquake (Japan) from a broadband source asperity model [J]. Tectonophysics,2004,390:177-192.
    [22]Mena, B., E. Durukal, M. Erdik. Effectiveness of hybrid Green's function method in the simulation of near-field strong motion:An application to the 2004 Parkfield earthquake [J]. Bulletin of the Seismological Society America,2006,96:183-205.
    [23]Liu, P., R. A. Archuleta, S. H. Hartzell. Prediction of broadband ground-motion time histories: Hybrid low/high-frequency method with correlated random source parameters [J]. Bulletin of the Seismological Society America,2006,96(6):2118-2130.
    [24]Rodgers, A., N. A. Petersson, S. Nilsson, et al. Broadband waveform modeling of moderate earthquakes in the San Francisco Bay area and preliminary assessment of the USGS 3D seismic velocity model [J]. Bulletin of the Seismological Society America,2008,98:969-988
    [25]刘启方,李雪强.唐山大地震近场宽频带地震动模拟[J].地震工程与工程振动,2011,31(5):1-7.
    [26]常莹.基于断层破裂过程分解法模拟近断层宽频地震动(硕士学位论文)[D].北京:中国地震局地球物理研究所,2011:2-6.
    [27]孙晓丹,陶夏新.宽频带地震动混合模拟方法综述[J].地震学报,2012,34(4):571-577.
    [28]Boore, D. M., J. Boatwright. Average body-wave radiation coefficients [J]. Bulletin of the Seismological Society America,] 984,74:1615-1621.
    [29]Zeng.Y., Anderson, J.G., Yu, G. A composite source model for computing realistic synthetic strong ground motions [J]. Geophysical Research Letters,1994,21(8),725-728
    [30]Hartzell, S., M. Guatteri, P. M. Mai, et al. Calculation of broadband time histories of ground motion. Part Ⅱ:Kinematic and dynamic modeling using theoretical Green's functions and comparison with the 1994 Northridge earthquake [J]. Bulletin of the Seismological Society America,2005,95:614-645.
    [31]Mai, P. M., W. Imperatori, K. B. Olsen. Hybrid Broadband Ground-Motion Simulations: Combining Long-Period Deterministic Synthetics with High-Frequency Multiple S-to-S Backscattering [J]. Bulletin of the Seismological Society America,2010,100(5A):2124-2142.
    [32]Zeng, Y. H., J. G. Anderson, F. Su. Subevent rake and random scattering effects in realistic strong ground motion simulation [J]. Geophysical Research Letters,1995,22(1):17-20.
    [33]Wu, R. S., K. Aki. Introduction:Seismic wave scattering in three-dimensionally heterogeneous earth [J]. Pure and Applied Geophysics,1988,128:1-6.
    [34]Telford, W., L. Geldart, R. Sheriff, et al. Applied Geophysics [M]. Cambridge University Press, Cambridge, UK.1976:390-402.
    [35]Aki, K. Generation and propagation of G waves from the Niigata earthquake of June 16,1964,2, Estimation of earthquake moment, released energy and stress-strain drop from the G wave spectrum [J]. Bulletin of the Earthquake Research Institute, University of Tokyo,1966,44:73-88.
    [36]Aki K. Analysis of seismic coda of local earthquake as scattered waves [J]. Journal of Geophysical Research.1969,74:615-631.
    [37]Aki K. Chout B. Origin of coda waves:source, attenuation, and scattering effects [J]. Journal of Geophysical Research,1975,80:3322-3342.
    [38]Sato H. Energy propagation including scattering effects, single isotropic scattering approximation [J]. Journal of Physics of the Earth,1977,25:27-41.
    [39]Kopnichev YF. The role of multiple scattering in the formation of seismogram's tail [J]. Izvestiya. Academy of Sciences, USSR, Physics of the Solid Earth,English Translation,1977,13:394-398.
    [40]Rautian. T. G., V.1. Khalturin. The use of the coda for determination of the earthquake source spectrum [J]. Bulletin of the Seismological Society America,1978,68:923-948.
    [41]Wesley. J. P. Diffusion of seismic energy in the near range [J]. Journal of Geophysical Research. 1965.70:5099-5106.
    [42]Nakamura, Y. Seismic energy transmission in an intensively scattering environment [J]. Journal of Geophysical Research.1977,43:389-399.
    [43]Dainty, A. M., M. N. Toksoz. Seismic codas on the earth and the moon:A comparison [J]. Physics of the Earth and Planetary Interiors.1981,26:250-260.
    [44]Frankel A, Clayton R W. Finite difference simulation of seismic scattering: Implications for the propagation of short-period seismic waves in the crust and models of crustal heterogeneity [J]. Journal of Geophysical Research,1986,91:6465-6489.
    [45]Frankel A, Wennerberg L. Energy-flux model of seismic coda: Separation of scattering and intrinsic attenuation [J]. Bulletin of the Seismological Society America,1987.77:1223-1251.
    [46]Gao L S, Lee L C, Biswas N N, et al. Comparison of the effects between single and multiple scattering on coda waves for local earthquakes [J]. Bulletin of the Seismological Society America. 1983.73:377-389.
    [47]曾健.聂永安.单次与多次散射对地方震尾波的作用[J].地震学报,1989,11(1):12-23.
    [48]聂永安.曾健,冯德益.三维尾波散射问题的理论研究[J].地震学报,1995,17(1):68-71
    [49]Chandrasekhar, S. Radiative Transfer[M]. Dover, New York,1960:1-23.
    [50]Ishimaru A. Wave propagation and scattering in random media [M], Academic press, San Diego, Calif., 1978:148-166.
    [51]Wu R. S. Seismic wave scattering and the small scale inhomogeneities in the lithosphere [D]. Boston:Massachusetts institute of technology,1984:166-190.
    [52]Wu R. S. Multiple scattering and energy transfer of seismic waves - separation of scattering effect from intrinsic attenuation-I. Theoretical modeling [J]. Geophysical Journal of the Royal Astronomical Society,1985,82:57-80.
    [53]Wu R. S. Aki K. Multiple scattering and energy transfer of seismic waves - Separation of scattering effect from intrinsic attenuation. Ⅱ. Application of the theory to Hindu-Kush region [J]. Pure and Applied Geophysics.1988.128:49-80.
    [54]尚铁梁,高龙生.多次散射的传输理论及其在脉源的地震尾波问题上的应用[J].中国科学(B辑),1988,(01):85-94.
    [55]Zeng Y, Su F. Aki K. Scattering wave energy propagation in a random isotropic scattering medium 1. Theory [J]. Journal of Geophysical Research.1991.96:607-619.
    [56]Sato H. Energy transportation in one-and two-dimensional scattering media:analytic solutions of the multiple isotropic scattering model [J]. Geophysical Journal International,1993,112:141-146
    [57]Wu, R. S., X-B. Xie. Separation of scattering and absorption in 1-D random media:Ⅱ.Numerical experiments on stationary problems [C].64th AnnualMeeting, Society of Exploration Geophysicists, Expanded Abstracts 94,1302-1305,1994.
    [58]Sato, H., H. Nakahara, M. Ohtake. Synthesis of scattered energy density for non-spherical radiation from a point shear dislocation source based on the radiative transfer theory [J]. Physics of the Earth and Planetary Interiors,1997,104:1-14.
    [59]Wegler U, Korn M, Przybilla J. Modeling Full Seismogram Envelopes Using Radiative Transfer Theory with Born Scattering Coefficients [J]. Pure and Applied Geophysics,2006,163:503-531.
    [60]Sato H. Coda wave excitation due to nonisotropic scattering and nonspherical source radiation [J]. Journal of Geophysical Research,1982,87:8665-8674.
    [61]Sato H. Formulation of the multiple non-isotropic scattering process in 2-D space on the basis of the energy transportation theory [J]. Geophysical Journal International,1994,117:727-732.
    [62]Sato H. Formulation of the multiple non-isotropic scattering process in 3-D space on the basis of the energy transport theory [J]. Geophysical Journal International,1995,121:523-531.
    [63]HOSHIBA M. Estimation of non-isotropic scattering in western Japan using coda wave envelopes:Application of a multiple nonisotropic scattering model [J]. Journal of Geophysical Research,1995,100:645-657.
    [64]GUSEV A A, ABUBAKIROV I R. Simulated envelopes of non-isotropically scattered body waves as compared to observed ones:Another manifestation of fractal heterogeneity [J]. Geophysical Journal International,1996,127:49-60.
    [65]Sato, H., Fehler, M., Saito, T. Hybrid synthesis of scalar wave envelopes in two-dimensional random media having rich short-wavelength spectra [J]. Journal of Geophysical Research,2004, 109(B06303):1-11.
    [66]景月岭,Zeng Y,林皋,等.多次各向异性散射模式对S波能量密度包络曲线的影响[J].地球物理学报,2012,55:1993-2003.
    [67]Sato H. Single isotropic scattering model including wave conversions simple theoretical model of the short period body wave propagation [J]. Journal of Physics of the Earth,1977,25:163-176.
    [68]Aki, K. Scattering conversions P to S versus S to P [J]. Bulletin of the Seismological Society America,1992,82:1969-1972.
    [69]Zeng Y. Theory of scattered P-and S-wave energy in a random isotropic scattering medium [J]. Bulletin of the Seismological Society America,1993,83:1264-1276.
    [70]Harzell, S.H., Heaton, T.H. Inversion of strong-ground motion and teleseismic waveform data for the fault rupture history of the 1979 Imperial Valley, California earthquake [J]. Bulletin of the Seismological Society America,1983,73:1553-1584.
    [71]Fukuyama. E., Irikura, K. Rpture process of the 1983 Japan sea (Akita-Oki) earthquake using a waveform inversion method [J]. Bulletin of the Seismological Society America,1986, 76:1623-1640.
    [72]Gusev, A. A., Pavlov, V.M. Deconvolution of squared velocity waveform as applied to the study of a noncoherent short-period radiator in the earthquake source [J]. Pure and Applied Geophysics, 1991.136:235-244.
    [73]Zeng. Y., Aki, K., Teng. T. Mapping of the high frequency source radiation for the Loma Prieta earthquake, California [J]. Journal of Geophysical Research,1993.98:11981-11993.
    [74]Nakahara, H., Nishimura, T., Sato, H., et al. Seismogram envelope inversion for the spatial distribution of high-frequency energy radiation from the earthquake fault:Application to the 1994 far east off Sanriku earthquake, Japan [J]. Journal of Geophysical Research,1998.103:855-867.
    [75]Nakahara. H., Sato, H., Ohtake, M., et al. Spatial distribution of high-frequency energy radiation on the fault of the 1995 Hyogo-Ken Nanbu. Japan, earthquake (M-W 6.9) on the basis of the seismogram envelope inversion [J]. Bulletin of the Seismological Society America,1999, 89:22-35.
    [76]Nakahara, H., Nishimura, T., Sato, H., et al. Broadband source process of the 1998 lwate Prefecture, Japan, earthquake as revealed from inversion analyses of seismic waveforms and envelopes [J]. Bulletin of the Seismological Society America, 2002,92:1708-1720.
    [77]Nakahara, H. Seismogram envelope inversion for high-frequency seismic energy radiation from moderate-to-large earthquakes [J]. Advance in Geophysics,2008.50:401-426.
    [78]Nakahara. H. Envelope Inversion Analysis for High-Frequency Seismic Energy Radiation from the 2011 Mw 9.0 Off the Pacific Coast of Tohoku Earthquake [J]. Bulletin of the Seismological Society America,2013,103:1348-1359.
    [79]Herrero A., Bernard, P. A kinematic self-similar rupture process for earthquakes [J]. Bulletin of the Seismological Society America,1994,84:1226-1228.
    [80]Zeng. Y., Anderson, J. Evaluation of Numerical Procedures for Simulating Near-Fault Long-Period Ground Motions Using Zeng Method. Report for Pacific Earthquake Engineering Research (PEER) Center Lifelines Program Project [R].2000.
    [81]Yu G., Khattri, K.N., Anderson J.G. Strong ground motion from the Uttarkashi, Himalaya. India, earthquake:Comparison of observations with synthetics using the composite source model [J]. Bulletin of the Seismological Society America,1995,85:31-50.
    [82]Anderson. J. G., Zeng, Y., Sucuoglu H. Analysis accelerations from the Dinar, Turkey earthquake, presented at the Eighth International Conference on Soil Dynamics and Earthquake Engineering at Istanbul, Turkey,1997.
    [83]Zeng. Y. Validation of 1-D Numerical simulation Procedures of the 1999 Turkey and Taiwan earthquakes, Final Technical Report, PEER Project 1C02. Task1:Earthquake ground motion, Seismological Lab. University of Nevada-Reno,2002.
    [84]孟令媛.史保平.应用动态复合震源模型模拟汶川M_w 7.9地震强地面运动[J].地球物理学报.2011,54:1010-1027.
    [85]Sato H, Fehler M. Seismic Wave Propagation and Scattering in the Heterogeneous Earth [M]. New York:AIP Press,1998:174-214.
    [86]Tsujiura, M.Spectral analysis of the coda waves from local earthquakes [J]. Bulletin of the Earthquake Research Institute, University of Tokyo,1978,53:1-48.
    [87]Sato, H. Mean free path of S-waves under the Kanto district of Japan [J]. Journal of Physics of the Earth.1978.26:185-198.
    [88]Aki, K. Scattering and attenuation of shear waves in the lithosphere [J]. Journal of Geophysical Research,1980,85:6496-6504.
    [89]Dainty, A. M., R. M. Duckworth, A. Tie. Attenuation and backscattering from local coda [J]. Bulletin of the Seismological Society America,1987,77:1728-1747.
    [90]Kosuga, M. Dependence of coda Q on frequency and lapse time in the western Nagano region [J]. Japan, Journal of Physics of the Earth,1992,40:421-445.
    [91]Baskoutas, I. Dependence of coda attenuation on frequency and lapse time in central Greece [J]. Pure and Applied Geophysics,1996,147:483-496.
    [92]Fehler M, Hoshiba M, Sato H, et al. Separation of scattering and intrinsic attenuation for the Kanto-Tokai region, Japan, using measurements of S-wave energy versus hypocentral distance [J]. Geophysical Journal International,1992,108:787-800.
    [93]Mayeda, K., S. Koyanagi, M. Hoshiba, K.,et al. A comparative study of scattering, intrinsic, and coda Q-l for Hawaii, Long Valley and Central California between 1.5 and 15 Hz [J]. Journal of Geophysical Research,1992,97:6643-6659.
    [94]Hoshiba M. Separation of scattering attenuation and intrinsic absorption in Japan using the multiple lapse time window analysis of full seismogram envelope [J]. Journal of Geophysical Research,,1993,98:15809-15824.
    [95]Aki K. Attenuation of shear-waves in the lithosphere for frequencies from 0.05 to 25 Hz [J]. Physics of the Earth and Planetary Interiors,1980,21:50-60.
    [96]Biswas, N. N., K. Aki. Characteristics of coda waves:Central and south central Alaska [J]. Bulletin of the Seismological Society America,1984,74:493-507.
    [97]Jin, A., T. Cao, K. Aki. Regional change of coda Q in the oceanic lithosphere [J]. Journal of Geophysical Research,1985,90:8651-8659.
    [98]Del Pezzo, E., G. De Natale, G. Scarcella, et al. QC of three component seismograms of volcanic microearthquakes at Campi Flegrei volcanic area - Southern Italy [J]. Pure and Applied Geophysics,1985,123:683-696.
    [99]Eck, T. V. Attenuation of coda waves in the Dead Sea region [J]. Bulletin of the Seismological Society America,1988,78:770-779.
    [100]Roecker, S. W., B. Tucker, J. King,et al. Estimation of Q in central Asia as a function of frequency and depth using the coda of locally recorded earthquakes [J]. Bulletin of the Seismological Society America,1982,72:129-149.
    [101]Pulli, J. J. Attenuation of coda waves in New England [J]. Bulletin of the Seismological Society America,1984,74:1149-1166.
    [102]Kvamme, L. B., J. Havskov. Q in southern Norway [J]. Bulletin of the Seismological Society America,1989,79:1575-1588.
    [103]Rodriguez, M., J. Havskov, S. K. Singh. Q from coda waves near Petatlan, Gurrero, Mexico [J]. Bulletin of the Seismological Society America.1983,73:321-326.
    [104]Reha, S. Q determined from local earthquakes in the South Carolina coastal plain [J]. Bulletin of the Seismological Society America,1984,74:2257-2268.
    [105]Baskoutas.l., H. Sato. Coda attenuation QC-1 for 4 to 64 Hz signals in the shallow crust measured at Ashio, Japan [J]. Bollettino di geofisica teorica ed applicata,1989,21:277-283.
    [106]Jin, A., K. Aki. Spatial and temporal correlation between coda Q and seismicity in China [J]. Bulletin of the Seismological Society America.1988.78:741-769.
    [107]Matsumoto, S., A. Hasegawa.Two-dimensional coda Q structure beneath Tohoku. NE Japan [J]. Geophysical Journal International,1989,99:101-108.
    [108]Anderson, J.G., Lee, Y., Zeng. et al. Control of strong motion by the upper 30 meters [J]. Bulletin of the Seismological Society of America,1996,86:1749-1759.
    [109]Ambeh, W.B., Fairhead. J.D. Coda-Q estimates in the Mount Cameroon volcanic region.West Africa [J]. Bulletin of the Seismological Society of America,1989,79:1589-1600.
    [110]Catherine, R.D.W. Estimation of Q in Eastern Canada using coda waves [J]. Bulletin of the Seismological Society of America,1990,80:411-429.
    [111]Gupta, S.C., Kumar, Ashwani. Seismic wave attenuation characteristics of three Indian regions. A comparative study [J]. Current Science,2002,82:407-413.
    [112]Mandal, P., Rastogi, B.K. A frequency-dependent relation of coda Qc for Koyna-Warna region India [J]. Pure and Applied Geophysics,1998.153:163-177.
    [113]Pulli, J.J. Attenuation in New England [J]. Bulletin of the Seismological Society America,1984, 74:149-1166.
    [114]Sharma, B., Gupta, A.K., Devi, D.K., et al. Attenuation of high frequency seismic waves in Kachchh region. Gujarat [J]. India. Bulletin of the Seismological Society of America.2008, 98:2325-2340.
    [115]Van Eck, T. Attenuation of coda waves in the Dead Sea region [J]. Bulletin of the Seismological Society of America,1988,2:770-779.
    [116]Parvez, Imtiyaz, A., Sutar, Anup K., et al. Coda Q estimates in the Andaman Islands using local earthquakes [J]. Pure and Applied Geophysics.2008,165:1861-1878.
    [117]华卫,赵翠萍,陈章立,等.龙滩水库地区P波、S波和尾波衰减[J].地震学报,2009,31:620-628.
    [118]Pujades. L.G., Ugalde, A., Canas. J.A.,et al. Intrinsci and scattering attenuation from observed seismic codas in the Almeria Basian (southeastern Iberian peninsula) [J]. Geophysical Journal International,1997,129:281-291.
    [119]Lee, W.S., Yun, S., Do, J-Y. Scattering and intrinsic attenuation of short-period S waves in the Gyeongsang Basin, South Korea, revealed from S-wave seismogram envelopes based on the radiative transfer theory [J]. Bulletin of the Seismological Society America,2010,100:833-840.
    [120]Akinci, A., E. Del Pezzo, J. M. Ibanez.Separation of scattering and intrinsic attenuation in southern Spain and western Anatolia (Turkey) [J]. Geophysical Journal International,1995, 121:337-353.
    [121]Sato H. Broadening of seismogram envelopes in the randomly inhomogeneous lithosphere based on the parabolic approximation:Southeastern Honshu, Japan [J]. Journal of Geophysical Research,1989,94:17735-17747.
    [122]Atkinson, G.M.,Boore, D.M. Ground-motion relations for eastern North America [J]. Bulletin of the Seismological Society America,1995,85:17-30.
    [123]Petukhin, A.G., Gusev, A.A. The duration-distance relationship and average envelope shapes of small Kamchatka earthquakes [J]. Pure and Applied Geophysics.2003.160:1717-1743.
    [124]Obara, K., Sato, H. Regional differences of random inhomogeneities around the volcanic front in the Kanto-Tokai area Japan, revealed from the broadening of S wave seismogram envelopes [J]. Journal of Geophysical Research,1995,100:2103-2121.
    [125]Takahashi, T., Sato, H., Nishimura, T., et al. Strong inhomogeneity beneath Quaternary volcanoes revealed from the peak delay analysis of S-wave seismograms of microearthquakes in northeastern Japan [J]. Geophysical Journal International,2007,168:90-99.
    [126]范小平,李清河,何海兵,等.长白山天池火山区S波包络展宽的特征[J].地震地质,2009,31(4):598-606.
    [127]范小平,李清河,杨从杰,等.长白山天池火山区介质速度非均匀性谱结构[J].地球物理学报,2011,54(5):1215-1221.
    [128]Lee, L. C., J. R. Jokipii. Strong scintillations in astrophysics. I. The Markov approximation, its validity and application to angular broadening [J]. The Astrophysical Journal,1975, 196:695-707.
    [129]Lee. L. C., J. R. Jokipii. Strong scintillations in astrophysics.11. A theory of temporal broadening of pulses [J]. The Astrophysical Journal,1975,201:532-543.
    [130]吴健,刘瑞源.前向多重散射矩方程的解及其在电离层闪烁中的应用[J].中国科学A辑,1989,19(12):1322-1332.
    [131]Saito T, Sato, H, Ohtake M. Envelope broadening of spherically outgoing waves in three-dimensional random media having power law spectra [J]. Journal of Geophysical Research,2002,107:ESE1-15.
    [132]Scherbaum F, Sato H. Inversion of full seismogram envelopes based on the parabolic approximation:estimation of randomness and attenuation in southeastern Honshu Japan [J]. Journal of Geophysical Research,1991,96:2223-2232.
    [133]Saito, T., Sato, H., Ohtake, M. et al. Unified explanation of envelope broadening and maximum-amplitude decay of high-frequency seismograms based on the envelope simulation using the Markov approximation:forearc side of the volcanic front in northeastern Honshu, Japan [J]. Journal of Geophysical Research,2005,110(B01304):1-18.
    [134]Gusev, A. A., Abubakirov, I.R. Vertical profile of effective turbidity reconstructed from broadening of incoherent body-wave pulses-Ⅰ. General approach and the inversion procedure [J]. Geophysical Journal International,1999,136:295-308.
    [135]Gusev, A.A., Abubakirov, I.R. Vertical profile of effective turbidity reconstructed from broadening of incoherent body-wave pulses-Ⅱ. Application to Kamchatka data, Geophys [J]. Geophysical Journal International,1999,136:309-323.
    [136]Wu, R. S., Z. Xu, X. P. Li. Heterogeneity spectrum and scale-anisotropy in the upper crust revealed by the German Continental Deep-Drilling (KTB) holes [J]. Geophysical Research Letters,1994,21:911-914.
    [137]Shiomi, K., H. Sato, M. Ohtake. Broad-band power-law spectra of well-log data in Japan [J]. Geophysical Journal International,1997,130:57-64.
    [138]Saito, T., Sato, H., Takahashi, T. Direct simulation methods for scalar-wave envelopes in two-dimensional layered random media based on the small-angle scattering approximation [J]. Communications in Computational Physics,2008,3:63-84.
    [139]Sato, H.,Korn. M. Envelope syntheses of cylindrical vector-waves in 2-D random elastic media based on the Markov approximation [J]. Earth Planets Space,2007,59:209-219.
    [140]Takahashi. T.. Sato. H., Nishimura, T. Recursive formula for the peak delay time with travel distance in von Karman type non-uniform random media on the basis of the Markov approximation [J]. Geophysical Journal International.2007.173:534-545.
    [141]Takahashi,T..Sato,H., Nishimura,T., et al. Tomographic inversion of the peak delay times to reveal random velocity fluctuations in the lithosphere:method and application to northeastern Japan [J]. Geophysical Journal International,2009,178(3):1437-1455.
    [142]范小平.用散射体波随机反演研究长白山火山区介质非均匀性(博士论文)[D].北京:中国地震局地球物理研究所,2009:104-]06.
    [143]Gusev AA, Abubakirov IR. Monte-Carlo simulation of record envelope of a near earthquake [J]. Physics of the Earth and Planetary Interiors,1987,49:30-36.
    [144]Hoshiba M. Simulation of multiple-scattered coda wave excitation based on the energy conservation law [J]. Physics of the Earth and Planetary Interiors,1991.67:123-136
    [145]Margerin L. Nolet G. Multiple scattering of high-frequency seismic waves in the deep Earth: PK.P precursor analysis and inversion for mantle granularity [J]. Journal of Geophysical Research,2003,108(B11):ESE1-16
    [146]Fehler, M., Sato, H.. Huang. L.J. Envelope Broadening of Outgoing Waves in 2D Random Media:A Comparison between the Markov Approximation and Numerical Simulations [J]. Bulletin of the Seismological Society America,2000,90:914-928.
    [147]Abramowitz. M. and I. A. Stegun. Handbook of Mathematical Functions with Formulas [M].Graphs, and Mathematical Tables, Dover, New York,1970:133-134.
    [148]Bouchon.M., Aki, K. Discrete wave-number representation of seismic-source wave fields [J]. Bulletin of the Seismological Society America,1978,67:259-277.
    [149]Bouchon,M. Discrete wave-number representation of elastic wave fields in three space dimensions [J]. Journal of Geophysical Research,1979,84(B7):3609-3614.
    [150]Bouchon, M. A Review of the Discrete Wavenumber Method [J]. Pure and Applied Geophysics, 2003.160:445-465.
    [151]Shishov VL. Effect of refraction on scintillation characteristics and average pulsars [J].Soviet Astronomy Letters,1974.17:598-602.
    [152]Zhang S. Jin J. Computation of Special Functions [M]. New York:John Wiley & Sons, Inc., 1996:366-385.
    [153]Birch. F. The velocity of compressional waves in rocks to 10 kilobars, Part 2 [J]. Journal of Geophysical Research,1961.66,2199-2224.
    [154]黄媛,吴建平,张天中.汶川8.0级大地震及其余震序列重定位研究[J].中国科学(D辑),2008, 38(10):1242-1249.
    [155]郑勇,马宏生,吕坚,等.汶川地震强余震的震源机制解及其与发震构造的关系[J].中国科学(D辑),2009,39(4):413-426.
    [156]Goldstein P, Dodge D, Firpo M, et al. SAC2000:Signal processing and analysis tools for seismologists and engineers [M]. Invited contribution to "The IASPEI International Handbook of Earthquake and Engineering Seismology", Edited by WHK Lee, H Kanamori. P C Jennings, and C Kisslinger, London:Academic Press,2003.
    [157]Goldstein P, Snoke A. SAC Availability for the IRIS Community, Incorporated Institutions for Seismology Data Management Center Electronic Newsletter [R].2005.
    [158]Jin, A., K. Mayeda, D. Adams, et al. Separation of intrinsic and scattering attenuation in southern California using TERRAscope data [J]. Journal of Geophysical Research,1994, 99:17835-17848.
    [159]Chung, T. W., and S. Yun. Seismic analysis of the Korean Peninsula using multiple lapse time window method [J]. Geophysics and Geophysical Exploration,2009,12:199-207.
    [160]Bianco, F., E. Del Pezzo, L. Malagnini, et al.Separation of depth-dependent intrinsic and scattering seismic attenuation in the northeastern sector of the Italian Peninsula [J]. Geophysical Journal International.2005,161:130-142.
    [161]Canas, J. A., A. Ugalde, L. G. Pujades,et al. Intrinsic and scattering seismic wave attenuationin the Canary Islands [J]. Journal of Geophysical Research,1998,103:15037-15050.
    [162]Chen, G., Anderson, N., Luna, R., et al. Earthquake hazards assessment and mitigation:a pilot study in the New Madrid seismic zone [R]. University of Missouri-Rolla,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700