魔芋葡甘聚糖—黄原胶共混多糖作为释药载体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以魔芋葡甘聚糖(KGM)-黄原胶(XG)共混多糖作为释药载体,以西咪替丁为模型药物,制备了共混多糖凝胶骨架片、包芯片与共混多糖膜,并进行了体外药物释放研究;利用粘度计、傅立叶红外光谱、圆二色谱、X射线衍射、X射线小角散射、原子力显微镜等对于共混多糖的结构与相互作用机制进行了分析;建立了共混膜酶解过程模式图与关联米氏方程的药物释放模型。实验结果如下:
     本文制备了以KGM与XG的共混多糖作为释药载体的亲水性凝胶骨架片,对片剂的制备条件与体外释药的研究表明,在共混多糖中KGM与XG的比例不同,在片剂的制备过程中对于混合及制粒效果的影响不同,并且在体外释药过程中亲水性凝胶骨架片的药物释放能力也不同。KGM与XG比例为3:7的共混多糖作为凝胶骨架片的药物释放载体,缓释效果相对较好,亲水性凝胶骨架片药物释放符合零级释放的要求。
     以KGM与XG的共混多糖作为包衣材料的结肠定位压制包芯片进行的体外释药考察表明,KGM可以被大鼠盲肠内的细菌产生的酶所降解,并且其降解能力与0.220U·ml-1的β-甘露聚糖酶溶液降解KGM的能力相近。对以KGM与XG的共混多糖作为包衣材料的结肠定位压制包芯片进行的体外释药考察表明,由于强烈的协同作用,共混多糖在一定程度上提高了凝胶的强度,抗水性等,并保持了KGM的酶响应性特点;其中使用0.40g包衣的KGM70体系,在体外释放实验的前5h内药物泄漏低于6%,药物溶出实验进行24h时药物释放可以达到50%以上,是一种比较理想的结肠定位剂型设计,可以达到结肠定位给药的要求。使用不同的药物释放方程对实验数据进行拟合,结果表明药物的释放主要是以溶蚀方式进行的。
     本文制备了多糖共混膜,考察了不同比例的多糖共混膜的溶胀行为;并且采用自制装置与药典标准的溶出仪配合,考察了在不同浓度酶降解条件下的药物通过多糖共混膜的扩散行为。实验结果表明,多糖共混膜在一定离子强度下的中性溶液中溶胀度较小,而在去离子水以及pH较低的溶液中溶胀度较高;不同组成的多糖共混膜,其对药物释放的影响不同,释放介质中酶的加入会对体系中药物释放起到加速的作用,并且酶的浓度越高,加速作用越大;在释放体系中,膜中KGM含量不同,膜对酶的响应性也不同,KGM含量较高的体系,其对于酶的响应性越好。
     利用粘度计、傅立叶红外光谱、圆二色谱、X射线衍射、X射线小角散射、原子力显微镜等对于共混多糖的结构与相互作用机制进行了考察与分析。利用粘度计对多糖之间协同作用进行了考察,粘度测试结果表明,在KGM:XG=3:7时,KGM与XG分子间的相互作用较强,两者分子间形成的物理交联点较多,从而此时共混多糖表现出较差的流动性和较高的粘度;此外,各种比例共混多糖溶液都显示出假塑性流体的性质;FT-IR实验结果表明,在共混多糖中,KGM分子与XG分子之间以氢键发生相互作用;圆二色谱图说明由于KGM与XG之间存在强烈的相互作用,共混多糖分子链呈现一种有序的结构状态;使用X射线衍射和小角X射线散射考察了KGM、XG与共混多糖的聚集态结构,结果表明,KGM为无定形结构,XG结构中有少量结晶结构存在,且这部分XG有序结构主要参与了与KGM的相互作用区域的形成;通过原子力显微镜对共混多糖的观察说明,共混多糖以一定的规律形成了三维网络结构;根据实验结果建立了两种多糖在分子间相互作用的模式图,即:相互作用网络主要通过XG进行联结,KGM与XG相互作用在网格点上,同时网格间有部分游离的KGM与XG。
     研究了在酶解条件下药物通过多糖共混膜的释放行为,建立了在酶解条件下多糖共混膜的释药模式图;结合生物酶解过程的米氏方程,建立了基于生物酶解KGM为零级过程的药物释放动力学模型;通过与分子链剪切为一级过程的动力学方程比较,本文建立的模型实验数据拟合相关系数相对较高,且模型中各参数的物理意义明确,与酶解过程特性参数的关联性很好,这对于酶解过程中药物释放行为的研究具有重要的指导意义。
Konjac Glucomannan (KGM), a water-soluble and high-molecular weight polysaccharide that is the main content of Amorphophallus Konjac plant. Xanthan gum (XG) is known to have a greater drug release retarding property and synergistically enhances gel properties. As the strong synergistic interaction between KGM and XG, the mixture of KGM and XG was employed in extend-release matrix tablets and compression coated colon drug delivery tablets. Cimetidine was used as model drug in the studies. The drug release behavior of tablets was investigated in dissolution studies. Films of polysaccharides mixture were made and the swollen abilities of them were investigated. The diffusion behavior of drug release from the films was studied in the dissolution conditions of different enzyme concentration. The structures and performances of KGM, XG and the mixture of them were investigated by viscosity meter, static laser light scattering (SLS), fourier transform infrared spectroscopy (FT-IR), circular dichroism (CD), X-ray diffraction (XRD) and small-angle X-ray scatter (SAXS). The drug release kinetics model that related enzymatic degradation process and drug release profiles was founded. The preparation process and the drug release behavior of the matrix tablets were researched. It could be found that different ration of KGM and XG may lead different effect to tablet preparation and drug release profile. It was shown that the synergistic interaction between KGM and XG would take effect on the drug diffusion that could retard drug release from tablets effectively. The experimental results demonstrated that the polysaccharides mixture of KGM and XG had a good potential application for controlled drug delivery system.
     Colon-specific compression coated tablets were prepared with polysaccharides mixtures as coat. 0.220U·ml-1β-mannanase solution in mimic colon media was determined by comparing the hydrolytic ability of mimic colon solution with that of 4%w/v rat cecal content media. It was shown that the synergistic interaction between KGM and XG and the hydrolysis of coat material byβ-mannanase. The experimental results demonstrated that the polysaccharides mixture of KGM and XG as compression coat had a good potential application for colon drug delivery system.
     It was found that the different diffusion profiles of drug were inducted by different proportion of KGM and XG in the polysaccharides mixture films. The results shown that the enzyme in the dissolution media led accelerate action to drug release.
     The viscosity of the polysaccharides mixture solutions were measured under different shear rates. The molecular weights of the polysaccharides were measured by static laser light scattering. The synergistic interactions between polysaccharides were observed by fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD). X-ray diffraction (XRD) and small-angle X-ray scatter (SAXS) were utilized to characterize the structures of the polysaccharides and the mixtures. Morphologies of them were scanned by atomic force microscopy (AFM) and the image of the polysaccharides shown that three-dimension networks were formed in the mixtures with some certain rules.
     According the drug release behavior from films of polysaccharides mixtures in different enzymatic activity solutions, the drug release kinetics model was founded based on the Michaelis-Menten equation. The model shows a good correlation with the experimental results, which could justify considering it for other biodegradable release system.
引文
[1] 毕殿洲. 药剂学. 北京: 人民卫生出版社, 1999. 401-418
    [2] 国家药典委员会. 中华人民共和国药典 2005 年版 2 部. 北京: 化学工业出版社, 2005. 附录 179-180
    [3] 崔福德. 药剂学. 北京: 人民卫生出版社, 2004
    [4] 陆彬. 药剂学. 北京: 中国医药科技出版社, 2003. 376
    [5] Leon Shargel. Applied biopharmaceutics and pharmacokinetics. 3nd Ed. U.S.A.: Prentics-hall Intl Ed, 1993. 231-242
    [6] 朱盛山. 药物新剂型. 北京: 化学工业出版社, 2003. 130
    [7] 平其能. 口服缓释及控释制剂发展动态. 药学进展, 1995, 19(3): 140-142
    [8] 罗明生. 药物辅料大全. 成都: 四川科技出版社, 1993. 124-131
    [9] 陆彬. 药物新剂型与新技术. 北京: 人民卫生出版社, 1998. 281-282
    [10] 平其能. 现代药剂学. 北京: 中国医药科技出版社, 1998. 476
    [11] Kinget R. Colonic drug targeting, J Drug Targeting. 1998, 6(2): 129-149
    [12] Watts PJ, Lisbeth I. Colonic drug delivery. Drug Dev Ind Pharm, 1997, 23(9): 893-913
    [13] Moore W.E.C. Discussion of current bacteriologic investigation of the relationships between intestinal flora, diet and colon cancer. Cancer Res, 1975, 35(2): 3418-3420
    [14] Savage DC. Interactions between the host and microbes. In: Microbial Ecology of the Gut. New York: Academic Press, 1977. 277
    [15] Simon GL, Gorbach SL. Intestinal flora in health and disease. Gastroenterology, 1983, 86(1): 174-193
    [16] Sinha VR, Rachna K. Microbially triggered drug delivery to the colon. Eur J Pharm Sci, 2003, 18(1): 3-18
    [17] 郑芝田. 胃肠病学. 北京: 人民卫生出版社, 1986. 440
    [18] 莫韫, 张均寿. 结肠靶向给药系统研究进展. 中国新药杂志, 1999, 18(6): 368-371
    [19] Baluom M, Friedman DI, Rubinstein A. Absorption enhancement of calcitonin in the rat intestine by carbopol-containing submicron emulsions. Int. J. Pharm, 1997, 154(2): 235-243
    [20] 杨继章, 杨树民. 时辰药理学与临床用药决策. 上海医药, 2004, 25(4): 157-160
    [21] Friend DR. New oral delivery systems for treatment of inflammatory bowel disease. Adv Drug Deliv Rev, 2005, 57(2): 247-265
    [22] Gazzaniga A, Busetti C, Moro L, et al. Time-dependent oral delivery systems for colon targeting. STP Pharma Sci, 1995, 5(1): 83-88
    [23] Wilding IR, David SS, Pozzi F, et al. Rapid Communication: Enteric coating timed release systems for colonic targeting. Int J Pharm. 1994, 111(1): 99-102
    [24] 齐美玲,王鹏,吴德政,替硝唑结肠给药系统的研制,中国医药工业,2003,34(4):172-175
    [25] 张正全, 陆彬. 口服结肠定位给药系统新进展. 中国药学杂志, 2000, 35(4): 221-223
    [26] 孙锡维,周芝芳,孙洁胤. 结肠靶向给药制剂研究的新进展. 中国现代应用药学杂志,2002, 19(3): 196-198
    [27] 邹梅娟,程刚,口服结肠定位给药系统. 沈阳药科大学学报,2001, 18(5):378-379
    [28] Ishibashi T, Pitcaim GR, Yoshino H, et al. Scintigraphic evaluation of a new capsule-type colon specific drug delivery system in healthy volunteers. J Pharm Sci, 1998, 87(5): 531-535
    [29] Peter HL, Harald G, Jutta K, et al. Delivery and fate of oral mesalamine microgranules within the human small intestine. Gastroenterology, 1995, 108(5): 1427-1433
    [30] Takaya T, Ikeda C, Imagawa N, et al. Development of a colon delivery capsule and the pharmacological activity of recombinant human granulocyte colony-stimulating factor (rhG-CSF) in beagle dogs. J Pharm Pharmacol, 1995, 47(6): 474-478
    [31] Muraoka M, Hu ZP, Shimodawa T, et al. Evaluation of intestinal pressure-controlled colon delivery capsule containing caffeine as a model drug in human volunteers. J Control Release, 1998, 52(2): 119-129
    [32] Valentino JS, Kenneth JH. Prodrug and site-specific drug delivery. J Med Chem, 1980, 23(12): 1275-1282
    [33] 孙晓飞, 王淑萍. 前药—一种可靠的口服结肠靶向释药系统. 药学进展,2004, 28(1): 19-22
    [34] Wiwattanapatapee R, Lomlim L, Saramunee K. Dendrimers conjugates for colonic delivery of 5-aminosalicylic acid. J Control Release, 2003, 88(1): 1-9
    [35] Cai Q, Zhu K, Chen D, et al. Synthesis, characterization and in vitro release of 5-aminosalicylic acid of polyanhydride-P(CBFAS). Eur J Pharm Biopharm, 2003, 55(2): 203-208
    [36] Lloyd AW, Martin GP, Soozandehgar SH, et al. Azopolymers: A mean of colon specific drug delivery. Int J Pharm, 1994, 106(3): 255-260
    [37] Tozaki H, Nishioka J, Komoike J, et al. Enhanced absorption of insulin and (Asu(1,7)) eel-calctionin using novel azopolymer-coated for colon-specific drug delivery. J Pharm Sci, 2001, 90(1): 89-97
    [38] Milojevic S, Newton JM, Cummings JH, et al. Amylose as a coating for drug delivery to the colon: preparation and in vitro evaluation using 5-aminosalicylic acid pellets. J Control Release, 1996, 38(1): 75-84
    [39] Wakerky Z, Fell JT, Attwood D, et al. Pectin/ethycellulose film coating formulations for chronic drug delivery. Pharm Res, 1996, 13(8): 1210-1212
    [40] Fernadez H, Fell JT. Pectin/chitosan mixture as coatings for colon specific drug delivery: an in vitro evaluation. Int J Pharm, 1998, 169(1): 115-119
    [41] Katsuma M, Watanabe S, Kawai H, et al. Studies on lactulose formulations for colon-specific drug delivery. Int J Pharm, 2002, 249(1): 33-43
    [42] Yang L, Watanabe S, Li J, et al. Effect of colonic lactulose availability on the timing of drug release onset in vivo from a unique colon-specific delivery system (CODES TM). Pharm Res, 2003, 20(3): 429-434
    [43] Hovgaard L, Brondsted H. Dextran hydrogels for colon-specific drug delivery. J Control Release, 1995, 36(1-2): 159-166
    [44] 陈清元, 沈家瑞, 陈建海. 偶氮聚合物作为结肠靶向药物载体的研究进展. 功能高分子学报, 2001, 14(2): 252-256
    [45] Vandamme Th F, Lenourry A, Charrueau C, et al. The use of polysaccharides to target drugs to the colon. Carbohydr Polym, 2002, 48(3): 219-231
    [46] Gupta VK, Becket TE, Prince JC. A novel pH-and time-based multi-unit potential colonic drug delivery system. I. Development. Int J Pharm, 2001, 213(1-2): 83-91
    [47] Ashford M, Fell JT, Attwood D, et al. An in vitro investigation into the suitability of pH-dependent polymers for colonic targeting. Int J Pharm, 1993, 91(2-3): 241-245
    [48] 傅崇东, 徐惠南, 张瑜. pH 依赖-缓释型美色拉秦结肠靶向小丸的制备与体外评价. 中国医药工业杂志, 2000, 31(12): 541-544
    [49] 傅崇东, 徐惠南, 张瑜. 5-氨基水杨酸结肠定位给药时控微丸的制备与体外释放. 药学学报, 2000, 35(5): 389-393
    [50] Shantha KL, Ravichandran P, Rao PK. Azo polymeric hydrogels for colon targeted drug delivery. Biomaterials, 1995, 16(17): 1313-1318
    [51] Wong D, Larrabee S, Clifford K, et al. USP dissolution apparatus III (reciprocating cylinder) for screening of guar-based colonic delivery formulations. J Control Release, 1997, 47(2): 173-179
    [52] Rama PYV, Krishnaiah YSR, Satyanarana S. In vitro evaluation of guar gum as a carrier for colon-specific drug delivery. J Control Release, 1998, 51(2-3): 281-287
    [53] Yang L, Chu JS, Fix JA. Colon-specific drug delivery: new approaches and in vitro/in vivo evaluation. Int J Pharm, 2002, 235(1-2): 1-15
    [54] Tozaki H, Odoriba T, Okada N, et al. Chitosan capsules for colon-specific drug delivery: enhanced localization of 5-aminosalicylic acid in the large intestine accelerates healing of TNBS-induced colitis in rats. J Control Release, 2002, 82(1): 51-61
    [55] Brondsted H, Andersen C, Hovaard L. Crosslinked dextran- a new capsule material for colon targeting of drug. J Control Release, 1998, 53(1-3): 7-13
    [56] Van der Mooter G, Samyn C, Kinget R. In vivo evaluation of a colon-specific drug delivery system: an absorption study of theophylline from capsules coated with azo polymers in rats. Pharm Res, 1995, 12(2): 244-247
    [57] Ishibashi T, Hatano H, Kobayashi M, et al. in vivo drug release behavior in dogs from a new colon-targeted delivery system. J Control Release, 1999, 57(1): 45-53
    [58] Adkin DA, Davis SS, Sparrow RA, et al. Colonic transit of different sized tablets in healthy subjects. J Control Release, 23(2): 147-156
    [59] 邢莹, 原续波, 常津等. 可生物降解聚合物药物释放数学模拟研究进展. 高分子通报, 2004, 12: 22-30
    [60] Roseman TJ, Higuchi WI. Release of medroxyprogesterone acetone from a silicone polymer. J Pharm Sci, 1970, 59: 353-357
    [61] Soppimath KS, Kulkami AR, Aminabhavi TM. Chemially modified polyacrylamide-guar gum based crosslinked and characterization. J Control Release, 2001, 75(3): 331-345
    [62] Gliko-Kabir I, Yangen B, Perhast A, et al. Low swelling, crosslinked guar and its potential use as colon-specific drug carrier. Pharm Res, 1998, 15(7):1019-1025
    [63] Gliko-Kabir I, Yangen B, Baluom M, et al. Phosphated crosslinked guar for colon-specific drug delivery I. Preparation and physicochemical characterization. J Control Release, 2000, 63(1-2): 121-127
    [64] Chiu HC, Hsiue GH, Lee YP, et al. Synthesis and characterization of pH-sensitive dextran hydrogel as a potential colon-specific drug delivery system. J Biomater Sci. Polym Ed, 1999, 10(5): 591-608
    [65] Hennink WE, Franssen O, Van Dijk Wolthuis WNE, et al. Dextran hydrogels for the controlled release of peoteins. J Control Release, 1997, 48(2-3): 107-114
    [66] Stenekes RH, Loebis AE, Fernandes CM, et al. Controlled release of liposomes from biodegradable dextran microspheres: a novel delivery cocept. Pharm Res, 2000, 17(6): 690-695
    [67] Kim IS, Jeong YI, Kim SH. Self-assembled hydrogel nanoparticles composed of dextran and poly(ethylene glycol) macromer. Int J Pharm, 2000, 205(1-2): 109-116
    [68] El-Gibaly I. Oral delayed-release system based on Zn-pectinate gel(ZPG) microparticles as an alternative carrier to calcium pectinate beads for colonic drug delivery. Int J Pharm, 2002, 232(1-2): 199-211
    [69] Musabayane CT, Munjeri O, Bwititi P, et al. Orally administered, insulin-loaded amidated pectin hydrogel beads sustain plasma concentration of insulin in streptozotocin-diabetic rats. J Endocrinol, 2000, 164(1): 1-8
    [70] Munjeri O, Hodza P, Osim EE, et a1. An investigation into the suitability of amidated pectin hydrogel beads as a delivery matrix for chloroquine. J Pharm Sci, 1998, 87(8): 905-908
    [71] Rubinstein A, Radai R, Ezra M, et al. In vitro evaluation of calcium pectinate: a potential colon-specific delivery carrier. Pharm Res, 1993, 10(2): 258-263
    [72] Lorenzo-Lamosa ML, Remunan-Lopez C, Vila-Jato JL, et al. Design of microencapsulated chitosan microspheres for colonic drug delivery. J Control Release, 1998, 52(1-2): 109-118
    [73] Munjeri O, Collett JH, Fell JT. Hydrogel beads based on amidated pectins for colon-specific drug delivery the role of chitosan in modifying drug release. J Control Release, 1997, 46(3): 273-278
    [74] Aiedeh K, Taha MO. Synthesis of chitosan succinate and chitosan phthalate and their evaluation as suggested matrices in orally administered colon-specific drug delivery systems. Arch Pharm, 1999, 332(3): 103-107
    [75] Lin SY, Ayres JW. Calcium alginate beads as core carriers of 5-Aminosalicyclic acid. Pharm Res, 1992, 9(9): 1128-1131
    [76] Murata Y, Sasaki N, Miyamoto E, et al. Use of floating alginate gel beads for stomach-specific drug delivery. Eur J Pharm Biopharm, 2000, 50(2): 221-226
    [77] Rubinstein A, Nakar D, Sintov A. Chondroitin sulphate: a potential biodegradable carrier for colon-specific drug delivery. Int J Pharm, 1992, 84(2): 141-150
    [78] Vervoot L, Van den Mooter G, Augustijns P, et al. Inulin hydrogels as carriers for colonic drug targeting: I. Synthesis and characterization of methacrylated inulin and hydrogel formation. Pharm Res, 1997, 14(12): 1730-1737
    [79] Maris B, Verheyden L, Van Reeth K, et al. Synthesis and characterization of inulin-azo hydrogels designed for colon targeting. Int J Pharm, 2001, 213(1-2): 143-152
    [80] 邹新禧, 谢美然. 魔芋葡甘聚糖的研究进展. 现代化工, 1995, 15(12): 15-17
    [81] 齐继成.我国魔芋及葡苷聚糖研究开发概况.中国制药信息, 2000, 16(10): 20-24
    [82] Committee on food chemicals codex. Food Chemicals Codex Fifth edition. Washington D.C: The National Academies Press, 2004. 238-239
    [83] 冲增哲. 魔芋科学. 成都: 四川大学出版社, 1990. 142
    [84] 孙远明, 吴青, 谌国莲等. 魔芋葡甘聚糖的结构、食品学性质及保健功能. 食品与发酵工业, 1999, 25(5): 47-51
    [85] Maede M, Shimahara H, Sugiyama N. Detailed examination of the braced structure of konjac glucomannan. Agric Biol Chem, 1980, 44(2): 245-252
    [86] 许时婴, 钱和. 魔芋葡甘露聚糖的化学结构与流变性质. 无锡轻工业学院学报, 1991, 10(4): 1-12
    [87] Rihei T, Isao K, Satoru K, et al. Structures of glucomammo-oligosaccharides from the hydrolytic products of konjac glucomann produced by a β-mannanase from streptomyces. Agric Biol Chem, 1984, 48(2): 2943-2950
    [88] 沈悦玉, 张明春, 王吰. 魔芋胶的结构及其流变性. 天津商学院学报, 1995, 15(3): 17-22
    [89] 许时婴, 甘继军. 魔芋精粉改良面包品质的研究. 食品与发酵工业, 1989, (5): 41-46
    [90] Gidley MJ, McArthur AJ, Clmolerivood DR. Functional properties of food proteins and role of protein–polysaccharide interaction. Food Hydrocolloid, 1991, 5: 129-133
    [91] Yui T, Ogawa K, Sarko A. Molecular and crystal structure of konjac glucomannan in the mannan II polymorphic form. Carbohydr Res, 1992, 229(1): 41-55
    [92] 李斌, 谢笔钧. 魔芋葡甘聚糖分子链形态研究. 中国农业科学, 2004, 37(2): 280-284
    [93] 李斌, 谢笔钧. 魔芋胶生产工艺研究进展. 粮食与饲料工业, 2002, (3): 43-45
    [94] Teramoto A, Fuchigami M. Changes in temperature, texture and structure of konjac glucomannan during high-pressure freezing.J Food Sci, 2000, 65(3): 2491-497
    [95] 赖建. 条状魔芋食品成条稳定性的研究. 农业工程学报, 2000, 16(2), 116-118
    [96] 李斌, 谢笔钧. 魔芋葡甘聚糖凝胶机理研究. 中国农业科学, 2002, 35(11): 1411-1415
    [97] 庞杰, 林琼, 张甫生等. 魔芋葡甘聚糖功能材料研究与应用进展. 结构化学, 2003, 22(6): 633-642
    [98] 罗学刚. 高强度可食性魔芋葡甘聚糖薄膜应用研究初报. 天然产物研究与开发, 2000, 12(4): 12-16
    [99] Kishida N, Okimasu S. Preparation of water-soluble methyl konjac glucomannan. Agric Biol Chem, 1978, 42(3): 669-670
    [100] 尉芹, 马希汉. 魔芋开发利用与研究综述. 西北林学院学报, 1998, 13(3): 62-67
    [101] Dave V, Sheth M, McCarthy SP, et al. Liquid crystalline, rheological and thermal properties o konjac glucomannan. Polymer, 1998, 39(5): 1139-1148
    [102] Kohyama K. In: Gums and Stabilizers of the Food Industry 5. Oxford: IRL Press, 1990
    [103] Thomas WR. In: Thickening and Gelling Agents for Food. Glasgow: Blaskie, 1992, 25
    [104] Buchert, Johanna, Viikari, et al. Significance of xylan and glucomannan in the rightness reversion of kraft of pulps. Tappi J, 1997, 79(728): 283-287
    [105] 陈运中. 魔芋精粉与黄原胶的协同增效作用及应用研究.食品科学, 1999, 20(9): 12-14
    [106] 王铭和, 唐湛祥. 卡拉胶-魔芋粉的协合作用研究. 湛江海洋大学学报, 2000, 20(2): 34-35
    [107] Richard JT. Conjac flour properties and applications. Food Technol, 1991, (3): 87-92
    [108] 龚家顺, 彭春秀, 幸治梅等. 魔芋葡甘聚糖及其与大豆分离蛋白凝胶化作用的 DSC 研究. 食品工业科技, 2005, 26(3): 49-52
    [109] Dave V, McCarthy SP. Review of konjac glucomannan. J Environ Polymer Degrad, 1997, 5 (4): 237-241
    [110] 胡敏, 胡慰望, 谢笔钧. 魔芋葡甘聚糖磷酸盐酯化反应的研究(Ⅰ). 天然产物研究与开发, 1990, (2): 8-14
    [111] 胡敏, 胡慰望. 魔芋葡甘聚糖磷酸盐酯化反应的研究(Ⅱ). 武汉大学学报, 1994, (3): 101-109
    [112] 沈悦玉, 杨湘庆. 魔芋胶的特征和魔芋凝胶食品. 食品科学, 1995, 16 (6): 14-19
    [113] 莫卫平, 蒙义文, 贾成禹等. 葡甘聚糖凝胶及其衍生物研究(Ⅰ). 离子交换与吸附, 1992, 8(1): 5-9
    [114] Case SE, Hamann DD. Fracture properties of konjac mannan gel: effect of gel temperature. Food Hydrocolloid, 1994, 8(2): 147-154
    [115] 杨新亭, 王林风, 王香东. 黄原胶与魔芋胶的协效凝胶性研究. 食品科学, 2001, 22(3): 38-40
    [116] 伍胜. 对卡拉胶及其与魔芋复配凝胶强度的测量. 食品科学, 1999, 20(8): 38-41
    [117] 杨君, 孙远明, 吴青等. 可食性魔芋葡甘聚糖成膜特性研究. 食品与发酵工程, 2001, 27(9): 21-25
    [118] Kohyama K, Sano Y, Nishinari K. A mixed system composed of different molecular weights konjac glucomannan and κ-carrageenan. II. Molecular weight dependence of viscoelasticity and thermal properties. Food Hydrocolloid, 1996, 10(2): 229
    [119] 张东华, 汪东平, 杨学义. 天然高分子魔芋葡甘聚糖的复配产物成膜研究. 日用化学工业, 2000, 30(1): 19-21
    [120] 许时婴, 杨莉. 魔芋葡甘聚糖的性质与魔芋精粉品质研究. 无锡轻工业学院学报, 1990, 9(3): 26-32
    [121] 罗莉, 林仕梅. 水产饲料常用粘合剂粘合性能测定. 饲料工业, 1998, 19(9): 18-19
    [122] Tye RJ. Properties and rheology of konjac and carrageenan systems. Polymeric Materials Science and Engineering. Proceedings of the ACS Division of Polymeric Materials Science and Engineering, 1990, 63: 229-232
    [123] Hirata T, Bhatnagar S, Hanna MA. Effect of addition of konjac and curdlan to corn starch on solubility of extrudates. Starch, 1997, 79(728): 283-287
    [124] Gao S, Zhang L. Semi-interpenetrating polymer networks from castor oil-based polyurethane and nitrokonjac glucomannan. J Appl Polym Sci, 2001, 81(9): 2076-2773
    [125] Xiao CB, Liu HJ, Gao SJ. Charaterization of poly(vinylalcohol)-konjac glucomannan blend film. J Macromol Sci-Pure Appl Chem, 2000, 37(9): 1009-1021
    [126] Xiao CB, Gao SJ, Zhang LN. Water-resistant cellulose films coated with polyurethane-acrylamide grafted konjac glucomannan. J Macromol Sci-Pure Appl Chem, 2001, 38(1): 33-37
    [127] 林晓艳, 陈彦. 魔芋葡甘聚糖去乙酰基改性制膜特性研究. 食品科学, 2002, 23(2): 21-24
    [128] 张力田. 变性淀粉. 广州: 华南理工大学出版社, 1992. 53-64
    [129] 张升晖, 宋新建. 魔芋精粉的交联化学改性方法. 食品工业科技, 1999, 20(6): 19-21
    [130] 马辉文, 复合魔芋胶及其制备方法和用途, 中国专利, 99124935.6, 1999-12-24
    [131] 胡耀星, 谢笔钧. 魔芋葡甘聚糖马来酸酐酯化反应的研究. 食品科学, 1992, 13(4): 5-10
    [132] 李斌, 谢笔钧. 魔芋葡甘聚糖的 H2O2 氧化改性及其流变性能研究. 湖北化工, 2002, 19(1): 9-11
    [133] 胡慰望. 魔芋精粉与丙烯酸丁酯接枝共聚反应及其产物对柑涂膜保鲜的研究. 食品科学, 1998, 19(11): 50-52
    [134] 何志敏, 苏荣欣, 齐崴. 魔芋葡甘聚糖的 pH 触发酶解. 生物加工工程, 2004, 2(4): 36-40
    [135] 祁黎, 李光吉, 宗敏华. 酶催化魔芋葡甘聚糖的可控降解. 高分子学报, 2003, 15(5): 650-654
    [136] 刘勤晋, 黄泽澄. 魔芋及其保健成分 KGM 的功能与应用前景. 中国食品工业, 1998, 5(7): 52-53
    [137] 唐汝培, 杜予民. 壳聚糖/羧甲基魔芋葡甘聚糖共混膜. 武汉大学学报(理学版), 2001, 47(6): 721-724
    [138] 杨君. 膳食纤维——魔芋葡甘聚糖膜的制备及应用. 广州食品工业科技, 2002, 18(4): 69-70
    [139] 杨君, 孙远明, 雷红涛等. 可食性魔芋葡甘聚糖耐水耐高温复合膜的制备及性能研究. 农业工程学报, 2002, 18(3): 106-112
    [140] 杨君, 孙远明, 吴青等. 可食性魔芋葡甘聚糖热水溶性复合膜的制备及性能研究. 中国食品学报, 2001, 1(2): 24-29
    [141] 邹少强, 庞杰. 可食性魔芋葡甘聚糖膜对龙眼保鲜及其生理研究. 江西农业大学学报, 2001, 23(1): 99-104
    [142] 李波, 谢笔钧. 魔芋葡甘聚糖可食性膜材料研究(Ⅰ). 食品科学, 2000, 21(1): 19-20
    [143] 周立, 蒋磊, 郑远旗. 魔芋葡苷聚糖凝胶为亲和导析载体与 Sepharose 4B的比较研究, I. KGM 金属螯和层析分离纯化猪血 SOD. 天然产物研究与开发, 1998,10 (4): 55-58
    [144] 周立, 蒋磊, 郑远旗. 魔芋葡苷聚糖凝胶为亲和导析载体与 Sepharose 4B的比较研究, II.KGM 染料亲和层析分离人血清白蛋白. 天然产物研究与开发, 1998, 12 (2): 23-26
    [145] Kohyama K. In: Gums and Stabilizers of the Food Industry. 5ed, Oxford: IRL Press, 1990.
    [146] Wakita M. 公开特许公报(日), 昭 61-19238(1991,434,354)
    [147] Tomoda T. 公开特许公报(日), 昭 61-21066(1990,02,212,763)
    [148] Perols C, Piffaut B, Scher J, et al. The potential of enzyme entrapment in konjac cold-melting gel beads. Enzyme Microb Technol, 1997, 20(1): 57-60
    [149] 崔汉钧, 和智明. 魔芋葡甘聚糖固定化环糊精葡基转移酶的研究. 天然产物研究与开发, 1993, 5(3): 48-54
    [150] 贾成禹, 陈家任. 魔芋葡甘聚糖新载体制备和对葡萄糖淀粉酶的固定化. 生物化学杂志, 1997, 7(3): 359-364
    [151] Nakano M, Takikawa K, Arita T. Release characteristics of dispersed in konjac gels. J Biomed Mater Res, 1979, 13(5): 811-819
    [152] Xie SS, Liu KJ, Zhang YX, et al. Preparation and release test of rotundine-PIC polysaccharide granules. J Macromol Sci-Pure Appl Chem, 1992, 29(10): 931-938
    [153] Nishinari K, Zhang H, Ikeda S. Hydrocolloid gels of polysaccharides and proteins. Curr Opin Colloid Interface Sci, 2000, 5(3-4) 195-201
    [154] Liu ZL, Hu H, Zhuo RX. Konjac glucomannan-graft-acrylic acid hydrogels containing azo crosslinker for colon-specific delivery. J Polym Sci Part A: Polym Chem, 2004, 42: 4370-4378
    [155] 丁言行. 我国塑料工业现状及发展. 当代石油石化, 2002, 10(1): 15-18
    [156] 张小菊, 姜发堂. 魔芋葡甘聚糖的改性修饰及其应用. 化学与生物工程, 2004, 21(2): 4-6
    [157] 陈彦, 林晓艳, 罗学刚. 添加剂对去乙酰基魔芋葡甘聚糖膜力学性能的影响. 高分子材料科学与工程. 2003, 19(3): 216-219
    [158] Gao SJ, Zhang LN. Molecular weight effects on properties of polyurethane /nitrokonjac glucomannan semiinterpenetrating polymer networks. Macromolecules, 2001, 34(7): 2202-2207
    [159] Carcia-Ochos F, Santos VE, Casas JA, et al. Xanthan gum: Production, recovery and properties. Biotechnol Adv. 2000, 18(7): 549-579
    [160] Sandford PA. In: Asponall GO. The Ploysaccharides. Prague: Academic Press, 1983
    [161] Southwick JG, Lee H, Alexander M, et al. Self-association of xanthan in aqueous solwent-systems. Carbohydr Res, 1980, 84(2): 287-295
    [162] Takashiro S. Double-stranded helix of xanthan in dilute solution evidence from lights scattering. Polymer, 1984, 16(4): 431
    [163] 石宝忠. 黄原胶调研报告. 化工科技市场, 2003, 26(11): 23-24
    [164] 胡国华. 功能性食品胶. 北京: 化学工业出版社, 2004. 217-237
    [165] 麻建国, Dickson E, Povery MJW. 黄原胶体系的流变性及糖和盐对体系的影响. 无锡轻工业大学学报, 1998, 17 (1): 1-7
    [166] 吉武科, 李振平. 黄原胶的应用与发展前景. 中国食品添加剂, 1994, (4): 27-30
    [167] 罗志刚, 杨连生. 黄原胶及其增效作用. 食品科技, 2002, (3): 39-41
    [168] 丁恩勇, 易水分散纳米微晶纤维素及其制法和它形成的胶体, 中国专利, 03114288, 2003-04-23
    [169] 李兴存, 张忠智, 王洪君等. 黄原胶的性能与应用. 日用化学工业, 2002, 32(5): 47-50
    [170] FAO/WHO, “Food Additives” Codes Alimentarus, Vol XIV, 1983
    [171] 中华人民共和国卫生部. GB2760-1988, 食品添加剂使用卫生标准, 北京: 中国标准出版社, 1988.
    [172] 王学艳, 赵振宇, 寇欣等. 黄原胶的性质及在制剂中的应用. 中国药学杂志, 1996, 31(10): 581-584
    [173] Talukdar MM, Michoel A, Rombaut P, et al. Comparative study on xanthan gum and hydroxypropylmethyl cellulose as matrices for controlled-release drug delivery I. Compaction and in vitro drug release behaviour. Int J Pharm, 1996, 129(1-2): 233-241
    [174] Talukdar MM, Van den Mooter G, Augustijns P, et al. In vivo evaluation of xanthan gum as a potential excipient for oral controlled-release matrix tablet formulation. Int J Pharm, 1998, 169(1): 105-113
    [175] 池志强, 毛世瑞, 毕悦. 黄原胶亲水性骨架片体外释药的影响因素. 沈阳药科大学学报, 2000, 17(1): 8-11
    [176] 刘卫卫, 吴琼珠, 戴永健. 黄原胶与 HPMC 的凝胶特性及释药机制. 中国医药工业杂志, 2003, 34(9): 439-441
    [177] 童海宝. 生物化工. 北京: 化学工业出版社, 2001
    [178] 聂凌鸿, 周如金, 宁正祥. 黄原胶的特性、发展现状、生产及其应用. 中国食品添加剂, 2003, (3): 82-85
    [179] Barbara K. Properties and applications of xanthan gum, Polym Degrad Stabil, 1998, 59 (1-3): 81-84.
    [180] 李兴存. 黄原胶的性能与应用. 牙膏工业, 2002, (4): 48-51
    [181] 郭瑞, 丁恩勇. 黄原胶的结构性能与应用. 日用化学工业, 2006, 36(1): 42-45
    [182] 周学良. 药物. 北京: 化学工业出版社, 2003. 570
    [183] 尹华, 杨腊虎, 愈如英等. 西咪替丁的晶型研究. 药物分析杂志, 2001, 21(1): 39-42
    [184] 高生辉. 西咪替丁 A 型结晶的制备. 中国医药工业杂志, 1991, 22(10): 473-474
    [185] 梅其炳. 药理学. 北京: 科学技术文献出版社, 2003.
    [186] Freston JW. Cimetidine I. Development, pharamacology, and efficacy. Ann Intern Med, 1982, 97, 573-580
    [187] Burtin C, Noirot C, Scheinmann P, et al. Clinical improvement in advanced cancer disease after treatment combining histamine and H2-anti-histanminics (ranitidine or cimetidine). Eur J Cancer Clin Oncol, 1988, 24: 161-167
    [188] Tonnesen H, Knigge U, Bulow S, et al. Effect of cimetidine on survival after gastric cancer. Lancet, 1988, 8618(2): 990-992
    [189] Takeshi N, Masataka S, Ryozo N, et al. Cimetidine inhibits angiogenesis and suppresses tumor growth. Biomed Pharmacother, 2005, 59 (1-2): 56-60.
    [190] Wang K, He ZM. Alginate-konjac glucomannan-chitosan beads as controlled release matrix. Int J Pharm, 2002, 244(9): 117-126
    [191] Cheng K, Zhu JB, Song XX, et al. Studies of hydroxypropyl methlcellose donut-shaped tablets. Drug Dev Ind Pharm, 1999, 25(9): 1067
    [192] Costa P, Lobo JMS. Model and comparison of dissolution profiles. Eur J Pharm Sci, 2001, 13(2): 123-133
    [193] 何东保, 詹东风, 张文举. 魔芋精粉与黄原胶协同相互作用及其凝胶化的研究. 高分子学报, 1999, 44(4): 460-464
    [194] 崔小明. 羧甲基淀粉钠的生产应用及市场前景. 四川化工与腐蚀控制, 1999, 2(6): 47-49
    [195] 唐汝培, 杜予民, 樊李红. 魔芋葡甘聚糖/羧甲基淀粉共混膜及其阻水性能. 高分子材料科学与工程, 2003, 19(4): 181-184
    [196] 郑峰, 史丽颖, 王辉. 羟丙基甲基纤维素凝胶骨架片体外释放的影响因素. 宝鸡文理学院学报(自然科学版), 2002, 22(3): 197-199
    [197] Ritger PL, Peppas NA. A simple equation for description of solute release. I. Fickian and non-Fickian release from non-swellable devices in the form of slabs, spheres, cylinders of discs. J control Release, 1987, 5(1): 23-36
    [198] Khan MZ, Stedul HP, Kurjakovic N. A pH dependent colon-targeted oral drug delivery system using methacrylic acid copolymers. II. Manipulation of drug release using Eudragit L100 and Eudragit S100 combinations. Drug Dev Ind Pharm, 2000, 26(5): 549-554
    [199] Sangali ME, Maroni A, Zema L, et al. In vitro and in vivo evaluation of an oral system for time and/or site-specific drug delivery. J control Release, 2001, 73(1): 103-110
    [200] 杜文华, 焦艳, 高春生. 细菌触发型结肠靶向释药系统的研究进展. 国外医学药学分册, 2003, 30(4): 245-248
    [201] Krishnaiah YS, Satanarayana S, Rama Prasad YV. Evaluation of guar gum as a compression coat for drug targeting to colon. Int J Pharm, 1998, 171(2): 137-146
    [202] Sinha VR, Mittal BR, Bhutani KK. Colonic drug delivery of 5-fluorouracil: an in vitro evaluation. Int J Pharm, 2004, 269(1): 101-108
    [203] Zhang J, He ZM, Hu K. Purification and characterization of β-mannanase from Bacillus licheniformis for industrial use. Biotechnol Lett. 2000, 22, 1375-1378.
    [204] Akino T, Nakamura N, Horikoshi K. Production of β-mannosidase and β-mannanase by an alkalophilic Bacillus sp. Appl Microbiol Biotechnol. 1987, 26, 323-327.
    [205] Gliko-Kabir I, Yangen B, Baluom M, et al. Phosphated crosslinked guar for colon-spicific drug delivery II. In vitro and in vivo evaluation in the rat. J Control Release. 2000, 63(1-2): 129-134
    [206] Burke MD, Park JO, Srinivasarao M, et al. A novel enzymatic technique for limiting drug mobility in a hydrogel matrix. J Control Release. 2005,104(1): 141-153
    [207] Kennedy JF, Bradshaw IJ, Production, properties and applications of xanthan. Prog Ind Microbiol, 1984, 19: 319-371
    [208] Dredan J, Antal I, Racz I. Evaluation of mathematical models describing drug from lipopilic matrices. Int J Pharm, 1996, 145(1-2): 61-64
    [209] 罗学刚. 国内外可食性包装膜的研究进展. 科技导报, 2000, (3): 61-62
    [210] 李斌. 魔芋葡甘聚糖物理共混新进展. 冷饮与速冻食品工业, 2004, 10(1): 35-38
    [211] 何东保, 杨朝云, 詹东风. 黄原胶与魔芋胶协同相互作用及其凝胶化的研究. 武汉大学学报(自然科学版), 1998, 44(2): 198-200
    [212] 何东保, 彭学东. 卡拉胶与魔芋葡甘聚糖协同相互作用及其凝胶化的研究. 高分子材料科学与工程, 2001, 17(2): 28-30
    [213] 陈荣峰. 旋光谱和圆二色光谱. 开封: 河南大学出版社, 1990. 1-7
    [214] Tania MBB, Michel M, Marguerite R, et al. Xanthan-galactomannan interactions as related to xanthan conformations. Int J Biol Macromol, 1998, 23(4): 263-275
    [215] Annable P, Williams PA, Nishinari K. Interaction in Xanthan-Glucomannan Mixtures and the Influence of Electrolyte. Macromolecules, 1994, 27(15): 4204-4211
    [216] 庞杰, 李斌, 谢笔钧等. 氧化魔芋葡甘聚糖的结构研究. 结构化学, 2004, 23(8): 912-917
    [217] Villetti M, Borsali R, Diat O, et al. SAXS from polyelectrolyte solutions under shear: xanthan and Na-hyaluronate examples. Macromolecules, 2000, 33(25): 9418-9422
    [218] Rief M, Oesterhelt F, Heymann B, et al. AFM, a tool for single-molecule experiments. Science, 1997, 275(21): 1295-1297
    [219] Li B, Xie BJ, John FK. Studies on the molecular chain morphology of kongjac glucomannan. Carbohydr Polym, 2006, 64(4): 510-515
    [220] Patrick GA, Kirby AR, Morris VJ. Imageing xanthan gum in air by ac “tapping” mode atomic force microscopy. Ultramicroscopy, 1996, 63(1): 1-3
    [221] Nishinari K, Williams PA, Phillips GO. Review of physico-chemical characteristics and properties of konjac mannan. Food Hydrocolloid, 1992, 6(2): 199-222
    [222] 翁丽惠, 徐坚, 梁松苗, 张俐娜, 张小莉. 水凝胶中物质扩散过程研究进展, 高分子通报, 2005, (5): 100-107
    [223] Charlier A, Leclerc B, Couarraze G. Release of mifepristone from biodegradable matrices: experimental and theoretical evaluations. Int J Pharm, 2000, 200(2): 115-120
    [224] 苏荣欣, 齐崴, 何志敏. 水溶性多糖酶解过程分子量变化与动力学建模. 高校化学工程学报, 2006, 20(4): 565-570
    [225] Suga K, Vandedem G, Mooyoung M. Degradation of polysaccharides by endo and exo enzymes: A theoretical analysis. Biotechnol Bioeng, 1975, 17(3): 433-439

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700