miR-200c靶向UBQLN1调节自噬及乳腺癌的辐射抵抗
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的:
     乳腺癌是全球女性中最常见的恶性肿瘤,严重威胁着女性的健康问题。对于大多数接受保乳术的乳腺癌患者来说,放射治疗是主要的治疗手段之一,且具有显著的临床获益,如减少肿瘤局部复发的风险,降低乳腺癌的死亡率。然而,对于一些特定的肿瘤亚型,如基底样癌,肿瘤的局控率仍然很低。对于这一类型的乳腺癌患者来说,治疗失败的主要原因可能是辐射抵抗。因此,阐明乳腺癌辐射抵抗的分子机制可对今后提高乳腺癌的临床治疗效果提供很大帮助。
     自噬是细胞内的一种“自食”现象,是一种细胞自身代谢降解的过程,在这一过程中,细胞质成分螯合入一种称为自噬小体(autophagosome)的双膜囊泡中,随后运送至溶酶体进行降解,其中的大分子和细胞器得以进行再循环利用,从而维持细胞的完整性。自噬在正常生理状态下对于维持细胞稳态和细胞器的更新有重要的作用,自噬缺陷与许多人类疾病相关,包括神经退行性疾病和肿瘤。近年来越来越多的研究关注自噬在人类疾病中的作用及其确切的分子机制。最近的研究发现,自噬是肿瘤细胞在如缺氧、营养剥夺、化疗、放疗等各种应激性条件下得以存活的一个重要适应性反应,这也因此引起了肿瘤细胞对治疗的抵抗。然而,在乳腺癌中,自噬介导乳腺癌辐射抵抗的具体分子机制目前仍然不太清楚。
     目前的研究已经证实,MicroRNAs (miRNAs)参与调节多种生物学进程,包括细胞增殖、分化及迁移和侵袭。miRNA的表达失调可导致多种人类疾病的发生,其中包括肿瘤。最近的研究表明,miRNAs在自噬过程中可发挥重要的调节作用。有些研究也报道了几种miRNAs可通过调节自噬进程参与一些肿瘤的化疗或辐射抵抗。然而在乳腺癌中,有关自噬在miRNA介导的辐射抵抗中的作用及机制仍不甚明了。此前的研究表明,miR-200家族可参与调节肿瘤干细胞的自我更新、上皮-间质转化(EMT)和化疗抵抗。最近的研究发现,miR-200家族的重要成员miR-200c可通过靶向抑制TBKl和VEGFR2基因的表达来调节肿瘤细胞的辐射敏感性。然而,miR-200c和自噬的调节在乳腺癌辐射抵抗中的关系仍不清楚。
     本研究中发现miR-200c可通过抑制辐射诱导的自噬反应来提高乳腺癌细胞对辐射的敏感性。本研究还确定了ubiquilin1蛋白(UBQLN1)是miR-200c的直接靶基因,其表达水平与辐射抵抗及辐射诱导的自噬活性呈正相关。本研究研究为miR-200c在乳腺癌辐射增敏作用中的分子机制提供了新的见解,为miR-200c用于乳腺癌的治疗提供了新的理论依据。
     方法:
     1.乳腺癌细胞中miR-200c的检测
     正常乳腺上皮细胞株MCF-10A,基底型乳腺癌细胞株MDA-MB-231、BT549和管腔型乳腺癌细胞株MCF-7、BT474细胞,依据Trizol Reagent试剂的说明书进行操作,提取细胞总RNA;按照PrimeScript RT reagent kit说明书进行逆转录反应,获得cDNA;以cDNA为模板,采用茎环法依据SYBR Premix Ex Taq Ⅱ试剂盒说明书进行荧光定量PCR反应以检测这5株细胞中miR-200c的表达水平。
     2. miR-200c mimic,inhibitor及siRNA和plasmid的转染
     采用阳离子脂质体法进行转染,按照lipofectamine2000操作说明进行操作,采用无血清培养基培养细胞,当细胞融合度达到70%左右时,将mimic,inhibitor,siRNA或plasmid稀释于转染专用培养基Opti-MEMI Reduced Serum Medium中,lipofectamine2000同样用Opti-MEMI Reduced Serum Medium稀释后,与mimic, inhibitor, siRNA或plasmid溶液混合,室温下静置20min后,加入培养板中。继续在培养箱中孵育4-6h后,将培养基换成含有血清的完全培养基,转染完成,48h后提取细胞的RNA或蛋白或进行后续的处理。为有效抑制niR-200c的功能簇,miR-200c inhibitor需与miR-429inhibitor同时转染。
     3.细胞辐射及克隆形成实验
     细胞经消化制成单细胞悬液后,按照预定数量接种于6孔板中,设0,2,4,6,8五个剂量组,每个剂量组三个复孔。照射后将细胞置于37℃、5%C02、饱和湿度培养箱内继续培养12-14天,期间根据培养液pH值变化适时更换新鲜培养液。当培养板孔中出现肉眼可见克隆时,终止培养,弃去培养液,PBS清洗细胞2遍,甲醇固定,1%结晶紫乙醇溶液染色,显微镜下计数含50个细胞以上的克隆数,计算克隆形成率和存活分数,并运用GraphPad Prism5.0软件进行多靶单击模型曲线拟合,并计算辐射增敏因子SER10。
     4. Western blot实验
     处理后的细胞提取总蛋白,按照BCA法测定蛋白浓度,加入5×SDS-PAGE loading Buffer进行蛋白变性,然后经电泳、转膜、封闭后,孵育一抗和二抗,最后采用ECL法在显影仪上进行显影。
     5.构建稳定表达GFP-LC3的MDA-MB-231细胞
     将5×105/孔的细胞接种于6孔板中,培养12h待细胞密度达40%左右,加入MAP1LC3B和对照LV5-NC慢病毒悬液100μl/孔(MOI=20),并设2孔加入终浓度为6ug/ml的polybrene以增加感染效率,24h后更换培养基,72h后在荧光显微镜下拍照并计算感染效率。随后采用流式细胞仪分选GFP+细胞,以获得比例较高的GFP+细胞扩大培养,得到稳定表达GFP-LC3的细胞。
     6.生物信息学分析预测miR-200c调节自噬的靶基因
     利用三大常用miRNA数据库TargetScan,Pictar和miRBase对miR-200c可能的靶基因进行预测分析,将这三个数据库预测到的结果取交集以提高可信度,然后在基因功能分析网站上查询这些基因的功能,并且在Pubmed里进行检索查询这些靶基因的功能是否与自噬相关。
     7.检测乳腺癌细胞中miR-200c过表达后UBQLN1的表达
     在乳腺癌细胞中通过转染miR-200c mimic或scramble negative control后,通过荧光定量PCR和Western blot检测细胞中miR-200c过表达后UBQLN1的mRNA和蛋白的表达变化。
     8.双荧光素酶报告基因检测法验证miR-200c的靶基因
     依据阳离子脂质体法将包含miR-200c假定结合位点的UBQLN13'UTR以及突变型UBQLN1的3'UTR的萤光素酶报告质粒和]miR-200c或scramble negative control共同转染乳腺癌细胞。转染完成48h后,依据Promega公司的Dual-Luciferase报告基因检测系统进行样本的萤光素酶活性检测,按照试剂盒说明书进行操作,以萤火虫萤光素酶的活性作为内参,依据海肾萤光/萤火虫萤光的比值(Renilla/Firefly)分析miR-200c抑制UBQLN1的效果。
     9.恢复实验证实UBQLN1是miR-200c的功能性靶基因
     依据阳离子脂质体法将miR-200c mimic和CMV-UBQLN1plasmid共转染乳腺癌MDA-MB-231细胞。转染完成48h后,Western blot检测转染效率,并进行克隆形成实验检测细胞辐射敏感性的变化,Western blot检测辐射后细胞自噬活性的改变。
     10.乳腺癌组织中UBQLN1和LC3的检测
     收集乳腺癌组织及瘤周正常组织标本35例,经病理确诊全为浸润性乳腺癌,经4%多聚甲醛固定、包埋、切片后进行免疫组化染色检测组织中UBQLN1和LC3的表达水平。
     11.乳腺癌组织中miR-200c的检测
     上述乳腺癌组织及瘤周正常组织标本,采用原位杂交的方法检测组织中miR-200c的表达水平。
     12.统计分析
     采用SPSS13.0软件进行统计分析,两样本均数的比较采用两独立样本的t检验(Independent-Sample T Test)和单样本t检验,两组以上样本均数比较采用完全随机设计资料的方差分析(One-Way ANOVA),方差齐性检验采用Levene's Test。临床标本分析采用Pearson卡方检验和Fisher确切概率法。P值<0.05认为有统计学意义。
     结果:
     1.乳腺癌细胞株中miR-200c的表达水平
     荧光定量PCR结果显示,5株细胞间miR-200c的表达水平有统计学差异(F=130.182, P<0.001), miR-200c在2株管腔型乳腺癌细胞(MCF-7、BT474)中的表达水平高于乳腺正常上皮细胞MCF-10A,但差异无统计学意义(P值分别为0.169和0.696),而在基底型乳腺癌细胞中(MDA-MB-231、BT549), miR-200c的表达水平与MCF-10A相比有统计学差异(P值均为0.026),MDA-MB-231和BT549细胞中miR-200c的表达水平低于MCF-10A。
     2. miR-200c增强乳腺癌细胞的辐射敏感性
     通过在MDA-MB-231及BT549细胞中过表达miR-200c、在MCF-7细胞中沉默miR-200c的表达,来研究miR-200c对乳腺癌细胞辐射敏感性的影响。结果发现,在MDA-MB-231及BT549细胞中过表达miR-200c后,细胞经辐射后存活分数有所降低,而在MCF-7细胞中敲出miR-200c的表达后,细胞经辐射后的存活分数有所增高,表明miR-200c的过表达可提高乳腺癌的辐射敏感性。
     3.辐射可诱导乳腺癌细胞自噬反应
     Western blot结果显示,乳腺癌MDA-MB-231和BT549细胞经X线照射后,随着时间的延长,自噬相关蛋白LC3-Ⅱ的表达有所增高,p62蛋白的降解有所下降。这些结果说明辐射诱导了乳腺癌细胞自噬的发生。但在MCF-7细胞中,这种自噬活性的改变没有MDA-MB-231和BT549细胞中明显。
     4.自噬在乳腺癌辐射中起保护作用
     乳腺癌细胞在辐射前加入自噬抑制剂3-MA或转染自噬相关基因ATG7的siRNA以抑制辐射诱导的自噬反应,来验证自噬对辐射抵抗的影响。Western blot结果显示,3-MA或ATG7siRNA可有效抑制辐射后乳腺癌细胞自噬活性的增加。克隆形成实验结果可见,3-MA或ATG7siRNA处理后,乳腺癌细胞辐射后的细胞存活分数有所下降。这一结果表明,抑制自噬活性可有效增强乳腺癌细胞的辐射敏感性。
     5. miR-200c抑制辐射诱导的自噬
     通过在稳定表达GFP-LC3的MDA-MB-231细胞中过表达miR-200c后接受X线照射,可见细胞中LC3阳性细胞数要少于对照组(t=13.432,P<0.001),差异具有统计学意义。Western blot的结果可见,空白对照组细胞在接受辐射后24h,p62蛋白较未照射时显著减少,而过表达miR-200c组的细胞中p62蛋白的表达量较未照射时仅有轻度改变,说明miR-200c过表达可使辐射后细胞自噬的活性下降。
     6. miR-200c抑制自噬小体的形成
     通过加入溶酶体和自噬小体融合的抑制剂Bafilomycin A1后,Western blot结果可以看到MDA-MB-231细胞空转组加了Bafilomycin A1在接受辐射24h后,LC3-Ⅱ蛋白的表达水平比单纯照射组显著增高,而转染了miR-200c mimic组的细胞加入Bafilomycin A1并接受辐射后,其细胞内的LC3-Ⅱ蛋白水平与miR-200c+RT组相比仅有轻度增高表明,miR-200c对自噬的抑制作用是在自噬的起始阶段发挥作用的,也就是抑制了自噬小体的形成,而不是抑制自噬小体的
     降解。
     7. miR-200c调节辐射诱导的自噬且与乳腺癌辐射抵抗相关
     采用自噬抑制剂与辐射联合应用的方式,验证miR-200c辐射增敏的效应与抑制自噬的相关性。克隆形成实验结果可见,在MCF-7细胞中,敲除miR-200c的表达,与空转组比较辐射后细胞存活分数有所增加,而敲除miR-200c联合3-MA后,细胞存活分数较单纯敲除miR-200c组有所降低。MDA-MB-231细胞过表达miR-200c联合3-MA同样可以降低细胞的存活分数,但3-MA的这种增敏效果没有在MCF-7细胞中miR-200c敲除时那样显著。Western blot结果发现,在MDA-MB-231细胞中,过表达miR-200c增强了辐射诱导的凋亡相关蛋白c-PARP和c-caspase3的表达。而在MCF-7细胞中,抑制miR-200c的表达降低了辐射诱导c-PARP的表达。而且,辐射联合自噬抑制剂3-MA后都可增强凋亡相关蛋白的表达。这些结果表明,miR-200c增强乳腺癌细胞的辐射敏感性可能与抑制了辐射诱导的自噬活性有关。
     8.生物信息学预测miR-200c调节自噬相关的靶基因
     利用三大常用miRNA数据库TargetScan,Pictar和miRBase对miR-200c可能的靶基因进行预测分析,将这三个数据库预测到的结果交集后获得预测评分较高的11个靶基因。然后在Pubmed里进行检索查询这些靶基因的功能是否与自噬相关,筛选出4个基因,分别为RAC1, NPC1, PPP2CA和UBQLN1,依据microRNA.ORG数据库里预测到的miR-200c与这四个靶基因结合的mirSVR score评分和PhastCons score评分(图2-1C),最终选择UBQLN1这一基因作为本研究中miR-200c的靶基因。
     9. miR-200c靶向抑制UBQLN1的表达
     荧光定量PCR反应和Western blot检测结果可见,在乳腺癌细胞中过表达miR-200c后,UBQLN1基因的mRNA表达水平无明显改变(MDA-MB-231: t=0.641, P=0.587; BT549:t=0.180, P=0.873),而UBQLN1的蛋白表达水平有所下调。双萤光素酶报告基因系统检测结果发现,在乳腺癌细胞中过表达miR-200c后可抑制野生型质粒的萤光素酶活性(MDA-MB-231:t=18.571, P=0.003; BT549:t=24.293, P=0.002),而对突变型质粒的萤光素酶活性无显著影响(MDA-MB-231:t=0.063, P=0.956; BT549:t=1.192, P=0.356)。这些结果提示,miR-200c在转录后水平可直接靶向抑制UBQLN1的表达。
     10.干扰UBQLN1的表达增强乳腺癌细胞的辐射敏感性并抑制辐射诱导的自噬活性
     克隆形成实验结果发现,沉默UBQLN1的表达后,乳腺癌MDA-MB-231和BT549细胞辐射后的存活分数有所降低,辐射增敏比有所提高。进一步的研究发现,沉默乳腺癌细胞中UBQLN1的表达后,辐射诱导的LC3-Ⅱ蛋白表达减少,p62蛋白降解减少(。这些结果说明,敲除乳腺癌细胞中UBQLN1的表达后,可提高细胞对辐射的敏感性,而且抑制了辐射诱导的细胞自噬活性,与miR-200c在乳腺癌细胞辐射中的作用类似,表示UBQLN1是miR-200c功能性的一个靶基因。
     11.UBQLN1是miR-200c的功能性靶基因
     通过在乳腺癌MDA-MB-231细胞中共转染miR-200c mimic和UBQLN1的过表达质粒CMV-UBQLN1plasmid后,克隆形成实验发现UBQLN1的过表达可逆转miR-200c对乳腺癌细胞的辐射增敏效果,Western blot实验发现UBQLN1的过表达逆转了miR-200c对辐射诱导自噬的抑制效果。
     12.乳腺癌组织中miR-200c的表达与UBQLN1和LC3的表达呈负相关
     原位杂交和免疫组化结果发现,在miR-200c低表达的乳腺癌组织中伴有UBQLN1和LC3的高表达,而miR-200c高表达的乳腺癌组织中伴有UBQLN1和LC3的低表达;在瘤周正常组织中,miR-200c呈中度表达,UBQLN1和LC3的表达均为阴性。采用Spearman相关分析结果发现,miR-200c的表达水平与UBQLN1(r=-0.359,P=0.034)和LC3(r=-0.363, P=0.032)均呈负相关。进一步的分析发现,miR-200c和UBQLN1、LC3的表达水平与乳腺癌的临床病例特征无统计学差异(P值均大于0.05),但miR-200c的低表达伴随淋巴结的转移(P=0.020),而UBQLN1和LC3的表达水平与淋巴结转移无统计学差异。这些结果提示,miR-200c的表达水平与UBQLN1的表达呈负相关。
     结论:
     1. miR-200c在管腔型乳腺癌细胞中的表达水平高于乳腺正常上皮细胞MCF-10A,在基底型乳腺癌细胞中的表达水平低于MCF-10A。
     2. miR-200c的过表达可增强乳腺癌细胞的辐射敏感性。
     3. miR-200c的表达可抑制辐射诱导的自噬活性且与辐射增敏相关。
     4. UBQLN1是miR-200c的一个功能性靶基因。
     5. miR-200c在乳腺癌组织中的表达与UBQLN1和LC3的表达呈负相关性。
BACKGROUND AND OBJECTIVE
     Breast cancer is the most common malignancy in women in the world and seriously threatens the health of women. Radiotherapy is among the primary strategies for most patients receiving breast-conserving surgery and displays significant clinical benefits, such as decreasing the risk of local recurrence and reducing the risk of mortality due to breast cancer. However, for some subtypes, such as basal-like breast cancer, the local and regional control remains unsatisfactory. A major reason for this failure in treatment may due to its radioresistance. Therefore, understanding the molecular mechanisms involved in the radioresistance of breast tumors may lead to improved clinical outcomes.
     Macroautophagy, typically referred to as autophagy, is a homeostatic process involving self-degradation and recycling of macromolecules and cellular organelles and functions as a prosurvival mechanism under stressful conditions by degrading subcellular debris and regenerating metabolic precursors, therefore maintaining cellular integrity. During the last decade, the number of studies on the roles of autophagy in human diseases and its cellular mechanism has become extensive. Recent investigations have demonstrated that autophagy is a critical adaptive response for tumor cells to survive stressful conditions, such as hypoxia, nutrient deprivation, chemotherapy or radiotherapy, thereby providing therapeutic resistance. However, the molecular mechanisms by which autophagy mediates the radioresistance of breast tumors is less clear.
     MicroRNAs (miRNAs) have been shown to be key regulators of a variety of biological processes, including cell proliferation, differentiation and invasion. Dysregulation of miRNAs has been reported to contribute to many human diseases, including cancer. Recent studies indicated that miRNAs may function as key regulators of autophagy. Several miRNAs have also been reported to be involved in chemoresistance or radioresistance via modulation of autophagy. However, relatively little is known about the role of autophagy in miRNA-mediated radioresistance in breast cancer. The miR-200family is involved in cancer stem cells self-renewal, the epithelial to mesenchymal transition (EMT) and chemosensitivity. Recent studies indicated that miR-200c, the prevailing member of the miR-200family, can also sensitize cancer cells to radiation by targeting TBK1and VEGFR2. However, the relationship between miR-200c and the modulation of autophagy that induces radioresistance remains unclear.
     Here, we show that miR-200c can sensitize breast cancer cells to radiation via a mechanism associated with inhibition of irradiation-induced autophagy. We also identified the protein ubiquilin1(UBQLN1) as a direct target of miR-200c whose expression is positively correlated with radioresistance and irradiation-induced autophagy. Our results provide new insights into the molecular functions of miR-200c in radiosensitivity in breast cancer cells and imply a rationale for enhancing radiosensitivity via miR-200c for the treatment of breast cancer.
     METHODS
     1. Detection of miR-200c in breast cancer cells
     The normal breast epithelial cell line MCF-10A, the luminal phenotype breast cancer cell lines MCF-7and BT474and basal phenotype breast cancer cell lines MDA-MB-231and BT549were used in this study. Total RNA was extracted from the cells using TRIzol reagent according to the manufacturer's protocol. The cDNA library was synthesized using the PrimeScript RT reagent kit following the manufacturer's instruction. For mature miRNA quantification, cDNA was generated using specific stem-loop universal primers. RT-PCR for miR-200c in these five cell lines was performed using SYBR Premix Ex Taq II according to the manufacturer's protocol and was measured using an ABI7500Sequence Detection System. U6was used as the internal control.
     2. Oligonucleotide and siRNA transfection
     The miRNA mimic, the inhibitors, the control oligonucleotides and UBQLN1siRNA were purchased from RiBoBio. Transfection of oligonucleotides and siRNA was performed using Lipofectamine2000reagent according to the manufacturer's protocol. For efficient inhibition of the miR-200bc/429cluster, equivalent amounts of miR-200c and miR-429inhibitors were combined.
     3. Irradiation and clonogenic survival assays
     Increasing numbers of cells were seeded on6-well plates (previously transfected with oligonucleotides or siRNA for48hours) in triplicate and exposed to the indicated dose of radiation using6MV X-rays generated from linear accelerators at a dose rate of5Gy/min. After incubation at37℃for10to14days, the cells on the plates were fixed using100%methanol and stained using1%crystal violet. Colonies containing>50cells were counted via microscopic inspection. The surviving fraction was calculated according to the multi-target single-hit model.
     4. Western blot analysis
     Whole cell protein lysates were extracted using radio-immunoprecipitation assay (RBPA) buffer containing proteinase and phosphatase inhibitor cocktails and quantified using a bicinchoninic acid protein assay kit. Equivalent amounts of total protein were resolved via SDS-polyacrylamide gel electrophoresis and transferred to polyvinylidene difluoride membranes. The membranes were then blocked using5%nonfat milk for1hour at room temperature, followed by incubation in the primary antibodies overnight at4℃. After washing three times, the membranes were incubated in HRP-conjugated secondary antibodies for1hour at room temperature. The immunoreactive bands were visualized using an ECL western blot substrate.
     5. Preparation of stable GFP-LC3-expressing cells
     The recombinant lentivirus containing GFP-LC3was purchased from Genepharma (Shanghai, China). MDA-MB-231cells were infected with lentivirus particles and isolated via fluorescence-activated cell sorting to generate populations stably expressing GFP-LC3.
     6. Bioinformatic analysis for predicting miR-200c target genes regulating autophagy
     To investigate the molecular mechanism by which miR-200c suppressed irradiation-induced autophagy, we identified potential targets of miR-200c based on three publicly available databases (TargetScan, Pictar and miRBase) and then intersected the results from these databases, followed by searching in the Pubmed to analyze the relationship between these genes and autophagy.
     7. Analysis of the expression of UBQLN1mRNA and protein after ectopic expression of miR-200c in breast cancer cells
     Quantitative real-time PCR (RT-PCR) and Western blot analysis were used to analyzed the expression of UBQLN1mRNA and protein after transfection with miR-200c mimic.
     8. Luciferase reporter assay
     The3' untranslated region (UTR) of UBQLN1and mutant3'UTR, which contains the putative miR-200c binding site, were amplified from genomic DNA via PCR and cloned into the Renilla luciferase gene (pLUC-REPORT vector, Promega, Madison, WI, USA). For the luciferase reporter assay, MDA-MB-231cells were co-transfected with a luciferase reporter vector (either pLUC-3'UTR-UBQLN1or pLUC-3'UTR-mut-UBQLN1) and negative control miRNA or the miR-200c mimic. Forty-eight hours after transfection, the cells were assayed for luciferase activity using the Dual-Luciferase Assay Kit (Promega) according to the manufacturer's instructions. For each sample, the relative luciferase activity was normalized to firefly luciferase activity. Three independent experiments were performed in triplicate.
     9. Detection of the expression of UBQLN1and LC3in breast cancer tissue.
     Immunohistochemical staining (IHC) was performed on3-μm-thick sections excised from paraffin blocks. The sections were fixed using4%formaldehyde overnight and embedded in paraffin, followed by deparaffinization and hydration. Then, the sections were pretreated with sodium citrate buffer in a microwave for antigen retrieval and blocked using goat serum. The sections were stained using rabbit anti-UBQLN1and anti-LC3A/B overnight at4℃. Then, the sections were incubated in biotinylated goat anti-rabbit IgG secondary antibody for1hour, followed by staining with the avidin-biotin peroxidase complex according to the manufacturer's instructions. Scoring of the sections was performed by two independent pathologists.
     10. Detection of the miR-200c level in breast cancer tissue
     For detection of the expression of miR-200c in breast cancer tissue, in situ hybridization (ISH) was performed.
     11. Statistical analysis
     In the experimental studies, the data are presented as the means±standard deviation. The samples were analyzed using Student's t test or analysis of variance (ANOVA). The Pearson Chi-square test, Fisher's Exact test or t test was used to analyze the relationship between miR-200c expression and the clinical characteristics. All statistical analysis was performed using SPSS13.0software, and a P value of<0.05was considered to be statistically significant. The qualitative data were representative of more than three independent experiments that were performed in triplicate.
     Results:
     1. The expression level of miR-200c in breast cancer cell lines
     In this study, we first investigated miR-200c expression in four breast cancer cell lines and the normal breast epithelial cell line MCF-10A. The results of quantitative real-time PCR indicated that the expression of miR-200c was higher in luminal phenotype breast cancer cells (MCF-7and BT474) and lower in basal phenotype breast cancer cells (MDA-MB-231and BT549) compared to the normal breast epithelial cell line MCF-10A.
     2. MiR-200c sensitizes breast cancer cells to radiation treatment.
     Overexpression of miR-200c enhanced the radiosensitivity of the MDA-MB-231and BT549cell lines, while inhibition of the expression of miR-200c led to radioresistance in MCF-7cells. These results suggest that restoring the normal expression level of miR-200c can enhance the radiosensitivity of breast cancer cells.
     3. Autophagy is induced by irradiation
     Autophagy may contribute to either cytoprotective or cytotoxic effects, depending on the type of cell and stress. Western blot analysis indicated that, after receiving6Gy radiation at various time points, autophagy was activated in three human breast cancer cell lines, as demonstrated by the increased expression of LC3Ⅱ, accompanied by decreased expression of p62. However, the activity of autophagy in MCF-7cells was not significant different compared to the MDA-MB-231and BT549cell lines.
     4. Autophagy acts as a protective mechanism in breast cancer cells after irradiation.
     Western blot analysis indicated that,3-MA, an autophagy inhibitor that blocks autophagosome formation, can effective inhibited the activity of autophagy induced by irradiation. Clonogenic assays demonstrated that3-MA significantly decreased the survival fraction of three human breast cancer cell lines after irradiation. These results indicate that autophagy is activated due to an adaptive response to promote the survival of breast cancer cells after receiving irradiation.
     5. miR-200c inhibited radiation-induced autophagy
     To determine whether miR-200c can inhibit irradiation-induced autophagy, we established a MDA-MB-231cell line stably expressing the GFP-LC3fusion protein. After24hours of irradiation, miR-200c overexpression significantly decreased the lipidation of LC3and increased p62protein expression, suggesting a decreased level of autophagy.
     6. miR-200c inhibited the formation of autophagosome
     To further investigate the specific stage of autophagy that was inhibited by miR-200c, we used bafllomycin Al, a fusion inhibitor of lysosomes and autophagosomes, which can inhibit the degradation of LC3Ⅱ. Twenty-four hours after irradiation, the bafilomycin Al-treated control group displayed markedly increased accumulation of LC3Ⅱ, whereas the miR-200c-treated group displayed only a small alteration. These data indicate that the inhibitory effect of miR-200c on autophagy resulted from the suppression of the early stage of autophagy, the inhibition of autophagosome formation, rather than from the suppression of autophagosome degradation.
     7. MiR-200c modulates irradiation-activated autophagy, which is associated with the radioresistance of human breast cancer cells.
     Next, we sought to determine whether miR-200c-induced radiosensitization was dependent on suppression of autophagy. Clonogenic survival assay indicated that3-MA significantly increased radiosensitivity, as miR-200c expression was suppressed in MCF-7cells. In MDA-MB-231cells,3-MA also enhanced radiosensitivity when miR-200c was overexpressed, but this effect was not significant when miR-200c expression was suppressed in MCF-7cells. Additionally, we found that miR-200c overexpression increased the irradiation-induced activation of caspase-3and PARP in MDA-MB-231cells. In MCF-7cells, suppression of miR-200c expression decreased the irradiation-induced activation of PARP. Because MCF-7cells are a caspase-3deficient breast tumor cell line, we failed to detect the expression of activation of caspase-3after treatment with irradiation,3-MA or both. Combined treatment of3-MA and radiation significantly increased the activation of apoptosis-related proteins in both groups. These results suggest that miR-200c enhanced the radiosensitivity of breast cancer cells in a manner that may be associated with the suppression of IR-induced autophagy.
     8. Identified the autophagy related target genes of miR-200c by bioinformatic analysis
     To investigate the molecular mechanism by which miR-200c suppressed irradiation-induced autophagy, we identified potential target of miR-200c based on three publicly available databases (TargetScan, Pictar and miRBase) and then intersected the results from these databases. After this, we predicted11target genes of miR-200c. Then we searched in the Pubmed to analyze the relationship between these genes and autophagy, and screened four genes, RAC1(ras-related C3botulinum toxin substrate1), NPC1(Niemann-Pick disease, type C1), PPP2CA (Serine/threonine-protein phosphatase2A catalytic subunit alpha isoform) and UBQLN1(ubiquilin1). According to the mirSVR score and PhastCons score of prediction from microRNA.ORG database, we choose UBQLN1as the target gene of miR-200c in this study finally.
     9. miR-200c inhibit the expression of UBQLNl
     Ectopic expression of miR-200c exhibited no effect on the mRNA expression level of UBQLN1, whereas overexpression of miR-200c significantly suppressed the protein expression of UBQLN1. In addition, the luciferase reporter assay revealed that miR-200c significantly suppressed the luciferase activity of the wild-type3'UTR of UBQLN1but not that of the mutant reporter gene, indicating the specificity of miR-200c to target the UBQLNl3'UTR. These results indicated that miR-200c suppressed UBQLN1expression at the post-transcriptional level via translational arrest.
     10. Silencing the expression of UBQLNl enhanced the radiosensitivity and suppressed the autophagy activity of breast cancer cells
     To confirm that miR-200c enhanced radiosensitivity due to the direct targeting of UBQLN1, we examined the effect of silencing the expression of UBQLN1on radiosensitivity. A clonogenic assay indicated that knockdown of the expression of UBQLN1significantly enhanced the radiosensitivity of MDA-MB-231and BT549cells. Furthermore, silencing of the expression of UBQLN1led to significant inhibition of irradiation-induced autophagy, consistent with the phenotype induced by the overexpression of miR-200c. These results demonstrate that miR-200c suppressed irradiation-induced autophagy by directly targeting UBQLN1.
     11. The expression of miR-200c, UBQLNl and LC3are inversely correlated in human breast cancer tissue
     To investigate the correlation between the expression of miR-200c, UBQLN1and LC3in human breast cancer tissue, we measured the expression levels of miR-200c, UBQLN1and LC3in human breast cancer specimens via in situ hybridization and immunohistochemistry. We found decreased expression of miR-200c in human breast cancer tissues that exhibited elevated UBQLN1and LC3 expression, and increased miR-200c expression correlated with decreased UBQLN1and LC3expression. In matched adjacent noncancerous breast tissues, we detected moderate expression of miR-200c and did not detect any expression of UBQLN1and LC3. Furthermore, the expression of miR-200c, UBQLN1and LC3displayed little correlation with the clinical and pathological characteristics of breast cancer. However, the miR-200c expression level inversely correlated with lymph node metastasis, but the UBQLN1and LC3expression level displayed little correlation with this characteristic. Whether the expression of UBQLN1influences breast cancer metastasis requires further investigation. These results are consistent with the above finding that decreased expression of miR-200c correlated with increased UBQLN1expression.
     Conclusion:
     1. The expression of miR-200c was higher in luminal phenotype breast cancer cells and lower in basal phenotype breast cancer cells compared to the normal breast epithelial cell line MCF-10A.
     2. Ectopic expression of miR-200c enhanced the radiosensitivity of breast cancer cells.
     3. Overexpression of miR-200c suppressed the activity of radiation-induced autophagy, which may associated with radioresistance.
     4. UBQLN1is a directly functional target of miR-200c.
     5. The expression of miR-200c, UBQLN1and LC3are inversely correlated in human breast cancer tissue.
引文
[1]Jemal A, Siegel R, Xu J, et al. Cancer statistics,2010[J]. CA Cancer J Clin,2010,60 (5):277-300.
    [2]Darby S, Mcgale P, Correa C, et al. Effect of radiotherapy after breast-conserving surgery on 10-year recurrence and 15-year breast cancer death:meta-analysis of individual patient data for 10,801 women in 17 randomised trials[J]. Lancet.2011,378(9804):1707-1716.
    [3]Voduc K D, Cheang M C, Tyldesley S, et al. Breast cancer subtypes and the risk of local and regional relapse[J]. J Clin Oncol,2010,28(10):1684-1691.
    [4]Nguyen P L, Taghian A G, Katz M S, et al. Breast cancer subtype approximated by estrogen receptor, progesterone receptor, and HER-2 is associated with local and distant recurrence after breast-conserving therapy[J]. J Clin Oncol,2008,26(14):2373-2378.
    [5]Kyndi M, Sorensen F B, Knudsen H, et al. Estrogen receptor, progesterone receptor, HER-2, and response to postmastectomy radiotherapy in high-risk breast cancer:the Danish Breast Cancer Cooperative Group[J]. J Clin Oncol,2008,26(9):1419-1426.
    [6]Mizushima N, Levine B, Cuervo A M, et al. Autophagy fights disease through cellular self-digestion[J].Nature,2008,451(7182):1069-1075.
    [7]Choi A M, Ryter S W, Levine B. Autophagy in human health and disease[J]. N Engl J Med,2013,368(7):651-662.
    [8]Johansen T, Lamark T. Selective autophagy mediated by autophagic adapter proteins[J]. Autophagy,2011,7(3):279-296.
    [9]Wang K, Klionsky D J. Mitochondria removal by autophagy[J]. Autophagy,2011,7(3): 297-300.
    [10]Lamark T, Johansen T. Aggrephagy:selective disposal of protein aggregates by macroautophagy[J]. Int J Cell Biol,2012,2012:736905.
    [11]Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy[J].Cell,2005,122(6):927-939.
    [12]Chen Z H, Lam H C, Jin Y, et al. Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema[J]. Proc Natl Acad Sci U S A,2010,107(44):18880-18885.
    [13]Ravikumar B, Sarkar S, Davies J E, et al. Regulation of mammalian autophagy in physiology and pathophysiology[J]. Physiol Rev,2010,90(4):1383-1435.
    [14]Rubinsztein D C, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases[J]. Nat Rev Drug Discov,2012,11(9):709-730.
    [15]Liang X H, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1[J]. Nature,1999,402(6762):672-676.
    [16]Giatromanolaki A, Koukourakis M I, Koutsopoulos A, et al. High Beclin 1 expression defines a poor prognosis in endometrial adenocarcinomas[J]. Gynecol Oncol,2011,123(1): 147-151.
    [17]Koukourakis M I, Giatromanolaki A, Sivridis E, et al. Beclin 1 over-and underexpression in colorectal cancer:distinct patterns relate to prognosis and tumour hypoxia[J]. Br J Cancer,2010,103(8):1209-1214.
    [18]Kim M S, Song S Y, Lee J Y, et al. Expressional and mutational analyses of ATG5 gene in prostate cancers[J]. APMIS,2011,119(11):802-807.
    [19]Levine B, Kroemer G. Autophagy in the pathogenesis of disease[J]. Cell,2008,132(1):27-42.
    [20]Ladoire S, Chaba K, Martins I, et al. Immunohistochemical detection of cytoplasmic LC3 puncta in human cancer specimens[J]. Autophagy,2012,8(8):1175-1184.
    [21]White E. Deconvoluting the context-dependent role for autophagy in cancer[J]. Nat Rev Cancer,2012,12(6):401-410.
    [22]Wang P, Zhang J, Zhang L, et al. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells[J]. Gastroenterology,2013,145(5):1133-1143.
    [23]Chang Y, Yan W, He X, et al. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions[J]. Gastroenterology,2012,143(1): 177-187.
    [24]Mcalpine F, Williamson L E, Tooze S A, et al. Regulation of nutrient-sensitive autophagy by uncoordinated 51-like kinases 1 and 2[J]. Autophagy,2013,9(3):361-373.
    [25]Yu Y, Yang L, Zhao M, et al. Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells[J]. Leukemia,2012,26(8): 1752-1760.
    [26]Lee Y, Ann C, Han J, et al. The nuclear RNase III Drosha initiates microRNA processing[J]. Nature,2003,425(6956):415-419.
    [27]Hutvagner G, Mclachlan J, Pasquinelli A E, et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA[J]. Science,2001,293(5531):834-838.
    [28]Ambros V. The functions of animal microRNAs[J]. Nature,2004,431(7006):350-355.
    [29]Wienholds E, Kloosterman W P, Miska E, et al. MicroRNA expression in zebrafish embryonic development[J]. Science,2005,309(5732):310-311.
    [30]Yi R, O'Carroll D, Pasolli H A, et al. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs[J]. Nat Genet,2006,38(3):356-362.
    [31]Croce C M. Causes and consequences of microRNA dysregulation in cancer[J]. Nat Rev Genet,2009,10(10):704-714.
    [32]Iorio M V, Croce C M. MicroRNAs in cancer:small molecules with a huge impact[J]. J Clin Oncol,2009,27(34):5848-5856.
    [33]Calin G A, Croce C M. MicroRNA signatures in human cancers[J]. Nat Rev Cancer,2006, 6(11):857-866.
    [34]Mayr C, Bartel D P. Widespread shortening of 3'UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells[J]. Cell,2009,138(4):673-684.
    [35]Piepoli A, Tavano F, Copetti M, et al. Mirna expression profiles identify drivers in colorectal and pancreatic cancers[J]. PLoS One,2012,7(3):e33663.
    [36]Chen X M. MicroRNA signatures in liver diseases[J]. World J Gastroenterol,2009,15 (14): 1665-1672.
    [37]Lu Y, Govindan R, Wang L, et al. MicroRNA profiling and prediction of recurrence/relapse-free survival in stage I lung cancer[J]. Carcinogenesis,2012,33(5):1046-1054.
    [38]Hu Z, Dong J, Wang L E, et al. Serum microRNA profiling and breast cancer risk:the use of miR-484/191 as endogenous controls[J]. Carcinogenesis,2012,33(4):828-834.
    [39]Lee E J, Gusev Y, Jiang J, et al. Expression profiling identifies microRNA signature in pancreatic cancer[J]. Int J Cancer,2007,120(5):1046-1054.
    [40]Slaby O, Svoboda M, Fabian P, et al. Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer[J]. Oncology,2007,72(5-6): 397-402.
    [41]Castoldi M, Vujic S M, Altamura S, et al. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice[J]. J Clin Invest,2011,121(4):1386-1396.
    [42]Iorio M V, Croce C M. MicroRNA dysregulation in cancer:diagnostics, monitoring and therapeutics. A comprehensive review[J]. EMBO Mol Med,2012,4(3):143-159.
    [43]Zhu H, Wu H, Liu X, et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells[J]. Autophagy,2009,5(6):816-823.
    [44]Zou Z, Wu L, Ding H, et al. MicroRNA-30a sensitizes tumor cells to cis-platinum via suppressing beclin 1-mediated autophagy[J]. J Biol Chem,2012,287(6):4148-4156.
    [45]Kovaleva V, Mora R, Park Y J, et al. miRNA-130a targets ATG2B and DICER1 to inhibit autophagy and trigger killing of chronic lymphocytic leukemia cells[J]. Cancer Res,2012,72 (7):1763-1772.
    [46]Frankel L B, Wen J, Lees M, et al. microRNA-101 is a potent inhibitor of autophagy[J]. EMBO J,2011,30(22):4628-4641.
    [47]Korkmaz G, le Sage C, Tekirdag K A, et al. miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1[J]. Autophagy,2012,8(2):165-176.
    [48]Tazawa H, Yano S, Yoshida R, et al. Genetically engineered oncolytic adenovirus induces autophagic cell death through an E2F1-microRNA-7-epidermal growth factor receptor axis[J]. Int J Cancer,2012,131(12):2939-2950.
    [49]Choi P S, Zakhary L, Choi W Y, et al. Members of the miRNA-200 family regulate olfactory neurogenesis[J]. Neuron,2008,57(1):41-55.
    [50]Gregory P A, Bert A G, Paterson E L, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J]. Nat Cell Biol,2008,10(5): 593-601.
    [51]Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells[J]. EMBO Rep,2008,9(6): 582-589.
    [52]Yu J, Ohuchida K, Mizumoto K, et al. MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation[J]. Mol Cancer,2010,9:169.
    [53]Jurmeister S, Baumann M, Balwierz A, et al. MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F[J]. Mol Cell Biol,2012,32(3):633-651.
    [54]Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop-a motor of cellular plasticity in development and cancer?[J]. EMBO Rep,2010,11(9):670-677.
    [55]Hurteau G J, Carlson J A, Spivack S D, et al. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin[J]. Cancer Res,2007,67(17):7972-7976.
    [56]Gregory P A, Bracken C P, Smith E, et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition[J]. Mol Biol Cell,2011,22(10):1686-1698.
    [57]Chang C J, Chao C H, Xia W, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs[J]. Nat Cell Biol,2011,13(3):317-323.
    [58]Shimono Y, Zabala M, Cho R W, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells[J]. Cell,2009,138(3):592-603.
    [59]Schickel R, Park S M, Murmann A E, et al. miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1[J]. Mol Cell,2010,38(6):908-915.
    [60]Magenta A, Cencioni C, Fasanaro P, et al. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition[J]. Cell Death Differ,2011,18(10):1628-1639.
    [61]Cochrane D R, Howe E N, Spoelstra N S, et al. Loss of miR-200c:A Marker of Aggressiveness and Chemoresistance in Female Reproductive Cancers[J]. J Oncol,2010,2010: 821717.
    [62]Park S M, Gaur A B, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2[J]. Genes Dev,2008,22(7):894-907.
    [63]Hurteau G J, Carlson J A, Roos E, et al. Stable expression of miR-200c alone is sufficient to regulate TCF8 (ZEB1) and restore E-cadherin expression[J]. Cell Cycle,2009,8(13):2064-2069.
    [64]Lin J, Liu C, Gao F, et al. miR-200c enhances radiosensitivity of human breast cancer cells[J]. J Cell Biochem,2013,114(3):606-615.
    [65]Shi L, Zhang S, Wu H, et al. MiR-200c Increases the Radiosensitivity of Non-Small-Cell Lung Cancer Cell Line A549 by Targeting VEGF-VEGFR2 Pathway[J]. PLoS One,2013, 8(10):e78344.
    [1]Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research[J]. Cell,2010,140(3):313-326.
    [2]Bjorkoy G, Lamark T, Brech A, et al. p62/SQSTMl forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death[J]. J Cell Biol,2005, 171(4):603-614.
    [3]Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response[J]. Mol Cell,2010,40(2):280-293.
    [4]Mizushima N, Komatsu M. Autophagy:renovation of cells and tissues[J]. Cell,2011,1 47(4):728-741.
    [5]Choi A M, Ryter S W, Levine B. Autophagy in human health and disease[J]. N Engl J Med,2013,368(7):651-662.
    [6]Deretic V. Autophagy:an emerging immunological paradigm[J]. J Immunol,2012,189(1): 15-20.
    [7]Pattingre S, Levine B. Bcl-2 inhibition of autophagy:a new route to cancer?[J]. Cancer Res,2006,66(6):2885-2888.
    [8]Botti J, Djavaheri-Mergny M, Pilatte Y, et al. Autophagy signaling and the cogwheels of cancer[J]. Autophagy,2006,2(2):67-73.
    [9]Maiuri M C, Tasdemir E, Criollo A, et al. Control of autophagy by oncogenes and tumor suppressor genes[J]. Cell Death Differ,2009,16(1):87-93.
    [10]Liu E Y, Ryan K M. Autophagy and cancer-issues we need to digest[J]. J Cell Sci,2012,125(Pt 10):2349-2358.
    [11]Levine B. Cell biology:autophagy and cancer[J]. Nature,2007,446(7137):745-747.
    [12]Ogier-Denis E, Codogno P. Autophagy:a barrier or an adaptive response to cancer[J]. Biochim Biophys Acta.2003,1603(2):113-128.
    [13]Liang X H, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1[J]. Nature,1999,402(6762):672-676.
    [14]Aita V M, Liang X H, Murty V V, et al. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21[J]. Genomics,1999,59(1):59-65.
    [15]Qu X, Yu J, Bhagat G, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene[J]. J Clin Invest,2003,112(12):1809-1820.
    [16]Yue Z, Jin S, Yang C, et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor [J]. Proc Natl Acad Sci U S A,2003, 100(25):15077-15082.
    [17]Takahashi Y, Coppola D, Matsushita N, et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis[J]. Nat Cell Biol,2007,9(10):1142-1151.
    [18]Coppola D, Khalil F, Eschrich S A, et al. Down-regulation of Bax-interacting factor-1 in colorectal adenocarcinoma[J]. Cancer,2008,113(10):2665-2670.
    [19]Kim S Y, Oh Y L, Kim K M, et al. Decreased expression of Bax-interacting factor-1 (Bif-1) in invasive urinary bladder and gallbladder cancers[J]. Pathology,2008,40(6):553-557.
    [20]Kang M R, Kim M S, Oh J E, et al. Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability[J]. J Pathol,2009,217(5):702-706.
    [21]Marino G, Salvador-Montoliu N, Fueyo A, et al. Tissue-specific autophagy alterations and increased tumorigenesis in mice deficient in Atg4C/autophagin-3[J]. J Biol Chem,2007, 282(25):18573-18583.
    [22]Takamura A, Komatsu M, Hara T, et al. Autophagy-deficient mice develop multiple liver tumors[J]. Genes Dev,2011,25(8):795-800.
    [23]Morselli E, Galluzzi L, Kepp O, et al. Oncosuppressive functions of autophagy[J]. Antioxid Redox Signal,2011,14(11):2251-2269.
    [24]Pimkina J, Humbey O, Zilfou J T, et al. ARF induces autophagy by virtue of interaction with Bcl-xl[J]. J Biol Chem,2009,284(5):2803-2810.
    [25]He C, Levine B. The Beclin 1 interactome[J]. Curr Opin Cell Biol,2010,22(2):140-149.
    [26]Karantza-Wadsworth V, Patel S, Kravchuk O, et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis[J]. Genes Dev,2007,21(13):1621-1635.
    [27]Mathew R, Kongara S, Beaudoin B, et al. Autophagy suppresses tumor progression by limiting chromosomal instability [J].Genes Dev,2007,21(11):1367-1381.
    [28]Mathew R, Karp C M, Beaudoin B, et al. Autophagy suppresses tumorigenesis through elimination of p62[J]. Cell,2009,137(6):1062-1075.
    [29]Poulogiannis G, Mcintyre R E, Dimitriadi M, et al. PARK2 deletions occur frequently in sporadic colorectal cancer and accelerate adenoma development in Apc mutant mice[J]. Proc Natl Acad Sci U S A,2010,107(34):15145-15150.
    [30]Veeriah S, Taylor B S, Meng S, et al. Somatic mutations of the Parkinson's disease-associated gene PARK2 in glioblastoma and other human malignancies[J]. Nat Genet,2010,42(1):77-82.
    [31]Moscat J, Diaz-Meco M T. p62 at the crossroads of autophagy, apoptosis, and cancer[J]. Cell,2009,137(6):1001-1004.
    [32]Takamura A, Komatsu M, Hara T, et al. Autophagy-deficient mice develop multiple liver tumors[J]. Genes Dev,2011,25(8):795-800.
    [33]Inami Y, Waguri S, Sakamoto A, et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells[J]. J Cell Biol,2011,193(2):275-284.
    [34]Duran A, Linares J F, Galvez A S, et al. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis[J]. Cancer Cell,2008,13(4):343-354.
    [35]Duran A, Amanchy R, Linares J F, et al. p62 is a key regulator of nutrient sensing in the mTORC1 pathway[J]. Mol Cell,2011,44(1):134-146.
    [36]Nezis I P, Stenmark H. p62 at the interface of autophagy, oxidative stress signaling, and cancer[J]. Antioxid Redox Signal,2012,17(5):786-793.
    [37]White E. Deconvoluting the context-dependent role for autophagy in cancer[J]. Nat Rev Cancer,2012,12(6):401-410.
    [38]Villeneuve N F, Lau A, Zhang D D. Regulation of the Nrf2-Keapl antioxidant response by the ubiquitin proteasome system:an insight into cullin-ring ubiquitin ligases[J]. Antioxid Redox Signal,2010,13(11):1699-1712.
    [39]Hayes J D, Mcmahon M. NRF2 and KEAP1 mutations:permanent activation of an adaptive response in cancer[J]. Trends Biochem Sci,2009,34(4):176-188.
    [40]Loukopoulos P, Shibata T, Katoh H, et al. Genome-wide array-based comparative genomic hybridization analysis of pancreatic adenocarcinoma:identification of genetic indicators that predict patient outcome[J]. Cancer Sci,2007,98(3):392-400.
    [41]Birnbaum D J, Adelaide J, Mamessier E, et al. Genome profiling of pancreatic adenocarcinoma[J]. Genes Chromosomes Cancer,2011,50(6):456-465.
    [42]Kwei K A, Shain A H, Bair R, et al. SMURF1 amplification promotes invasiveness in pancreatic cancer[J]. PLoS One,2011,6(8):e23924.
    [43]Gewirtz D A. Autophagy, senescence and tumor dormancy in cancer therapy[J]. Autophagy,2009,5(8):1232-1234.
    [44]Young A R, Narita M, Ferreira M, et al. Autophagy mediates the mitotic senescence transition[J]. Genes Dev,2009,23(7):798-803.
    [45]Degenhardt K, Mathew R, Beaudoin B, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis[J]. Cancer Cell,2006,10(1):51-64.
    [46]Qu X, Zou Z, Sun Q, et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development[J]. Cell,2007,128(5):931-946.
    [47]Edinger A L, Thompson C B. Defective autophagy leads to cancer[J]. Cancer Cell,2003, 4(6):422-424.
    [48]Carew J S, Kelly K R, Nawrocki S T. Autophagy as a target for cancer therapy:new developments[J]. Cancer Manag Res,2012,4:357-365.
    [49]Wei H, Wei S, Gan B, et al. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis[J]. Genes Dev,2011,25(14):1510-1527.
    [50]Parkhitko A, Myachina F, Morrison T A, et al. Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTMl)-dependent[J]. Proc Natl Acad Sci U S A,2011,108(30):12455-12460.
    [51]Valentin-Vega Y A, Kastan M B. A new role for ATM:regulating mitochondrial function and mitophagy[J]. Autophagy,2012,8(5):840-841.
    [52]Yang S, Wang X, Contino G, et al. Pancreatic cancers require autophagy for tumor growth[J]. Genes Dev,2011,25(7):717-729.
    [53]Izuishi K, Kato K, Ogura T, et al. Remarkable tolerance of tumor cells to nutrient deprivation:possible new biochemical target for cancer therapy[J]. Cancer Res,2000,60(21):6201-6207.
    [54]Mathew R, Karantza-Wadsworth V, White E. Role of autophagy in cancer[J]. Nat Rev Cancer,2007,7(12):961-967.
    [55]Harris A L. Hypoxia--a key regulatory factor in tumour growth[J]. Nat Rev Cancer,2002, 2(l):38-47.
    [56]Liu X W, Su Y, Zhu H, et al. HIF-1alpha-dependent autophagy protects HeLa cells from fenretinide (4-HPR)-induced apoptosis in hypoxia[J]. Pharmacol Res,2010,62(5):416-425.
    [57]Martinez-Outschoorn U E, Trimmer C, Lin Z, et al. Autophagy in cancer associated fibroblasts promotes tumor cell survival:Role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment[J]. Cell Cycle,2010,9(17):3515-3533.
    [58]Papandreou I, Lim A L, Laderoute K, et al. Hypoxia signals autophagy in tumor cells via AMPK activity, independent of HIF-1, BNIP3, and BNIP3L[J]. Cell Death Differ,2008, 15(10):1572-1581.
    [59]Wullschleger S, Loewith R, Hall M N. TOR signaling in growth and metabolism[J]. Cell,2006,124(3):471-484.
    [60]Jin S, Dipaola R S, Mathew R, et al. Metabolic catastrophe as a means to cancer cell death[J]. J Cell Sci,2007,120(Pt 3):379-383.
    [61]Lum J J, Bauer D E, Kong M, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis[J]. Cell,2005,120(2):237-248.
    [62]Lu Z, Luo R Z, Lu Y, et al. The tumor suppressor gene ARHI regulates autophagy and tumor dormancy in human ovarian cancer cells[J]. J Clin Invest,2008,118(12):3917-3929.
    [63]Ding Z B, Shi Y H, Zhou J, et al. Association of autophagy defect with a malignant phenotype and poor prognosis of hepatocellular carcinoma[J]. Cancer Res,2008,68(22): 9167-9175.
    [64]Giatromanolaki A N, Charitoudis G S, Bechrakis N E, et al. Autophagy patterns and prognosis in uveal melanomas[J]. Mod Pathol,2011,24(8):1036-1045.
    [65]Wu W K, Coffelt S B, Cho C H, et al. The autophagic paradox in cancer therapy[J]. Oncogene,2012,31(8):939-953.
    [66]Bursch W, Ellinger A, Kienzl H, et al. Active cell death induced by the anti-estrogens tamoxifen and ICI 164 384 in human mammary carcinoma cells (MCF-7) in culture:the role of autophagy[J]. Carcinogenesis,1996,17(8):1595-1607.
    [67]Amaravadi R K, Yu D, Lum J J, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma[J]. J Clin Invest.2007,117(2):326-336.
    [68]Yang Z J, Chee C E, Huang S, et al. The role of autophagy in cancer:therapeutic implications[J]. Mol Cancer Ther,2011,10(9):1533-1541.
    [69]Neilson J R, Zheng G X, Burge C B, et al. Dynamic regulation of miRNA expression in ordered stages of cellular development[J]. Genes Dev,2007,21(5):578-589.
    [70]Sontheimer E J. Assembly and function of RNA silencing complexes[J]. Nat Rev Mol Cell Biol,2005,6(2):127-138.
    [71]Vasudevan S, Tong Y, Steitz J A. Switching from repression to activation:microRNAs can up-regulate translation[J]. Science,2007,318(5858):1931-1934.
    [72]Wienholds E, Kloosterman W P, Miska E, et al. MicroRNA expression in zebrafish embryonic development J]. Science,2005,309(5732):310-311.
    [73]Yi R, O'Carroll D, Pasolli H A, et al. Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs[J]. Nat Genet,2006,38(3):356-362.
    [74]Croce C M. Causes and consequences of microRNA dysregulation in cancer[J]. Nat Rev Genet,2009,10(10):704-714.
    [75]Iorio M V, Croce C M. MicroRNAs in cancer:small molecules with a huge impact[J]. J Clin Oncol,2009,27(34):5848-5856.
    [76]Calin G A, Croce C M. MicroRNA signatures in human cancers[J]. Nat Rev Cancer,2006, 6(11):857-866.
    [77]Bartel D P. MicroRNAs:genomics, biogenesis, mechanism, and function[J]. Cell,2004, 116(2):281-297.
    [78]Si M L, Zhu S, Wu H, et al. miR-21-mediated tumor growth[J]. Oncogene,2007, 26(19):2799-2803.
    [79]Meng F, Henson R, Wehbe-Janek H, et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer[J]. Gastroenterology,2007,133(2):647-658.
    [80]Xiao C, Srinivasan L, Calado D P, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes[J]. Nat Immunol,2008,9(4):405-414.
    [81]Frezzetti D, De Menna M, Zoppoli P, et al. Upregulation of miR-21 by Ras in vivo and its role in tumor growth[J]. Oncogene,2011,30(3):275-286.
    [82]Johnson C D, Esquela-Kerscher A, Stefani G, et al. The let-7 microRNA represses cell proliferation pathways in human cells[J]. Cancer Res,2007,67(16):7713-7722.
    [83]Johnson S M, Grosshans H, Shingara J, et al. RAS is regulated by the let-7 microRNA family[J]. Cell,2005,120(5):635-647.
    [84]Sampson V B, Rong N H, Han J, et al. MicroRNA let-7a down-regulates MYC and reverts MYC-induced growth in Burkitt lymphoma cells[J]. Cancer Res,2007,67(20):9762-9770.
    [85]Cho W C, Chow A S, Au J S. MiR-145 inhibits cell proliferation of human lung adenocarcinoma by targeting EGFR and NUDT1 [J]. RNA Biol,2011,8(1):125-131.
    [86]Fuse M, Nohata N, Kojima S, et al. Restoration of miR-145 expression suppresses cell proliferation, migration and invasion in prostate cancer by targeting FSCNl[J]. Int J Oncol,2011,38(4):1093-1101.
    [87]Li J H, Xiao X, Zhang Y N, et al. MicroRNA miR-886-5p inhibits apoptosis by down-regulating Bax expression in human cervical carcinoma cells[J]. Gynecol Oncol,2011, 120(1):145-151.
    [88]Mott J L, Kobayashi S, Bronk S F, et al. mir-29 regulates Mcl-1 protein expression and apoptosis[J].Oncogene,2007,26(42):6133-6140.
    [89]Cimmino A, Calin G A, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2[J]. Proc Natl Acad Sci U S A,2005,102(39):13944-13949.
    [90]Bracken C P, Gregory P A, Khew-Goodall Y, et al. The role of microRNAs in metastasis and epithelial-mesenchymal transition[J]. Cell Mol Life Sci,2009,66(10):1682-1699.
    [91]Steeg P S. Cancer:micromanagement of metastasis[J]. Nature,2007,449(7163):671-673.
    [92]Liu M, Lang N, Qiu M, et al. miR-137 targets Cdc42 expression, induces cell cycle G1 arrest and inhibits invasion in colorectal cancer cells[J]. Int J Cancer,2011,128(6):1269-1279.
    [93]Giles K M, Barker A, Zhang P M, et al. MicroRNA regulation of growth factor receptor signaling in human cancer cells[J]. Methods Mol Biol,2011,676:147-163.
    [94]Li H, Bian C, Liao L, et al. miR-17-5p promotes human breast cancer cell migration and invasion through suppression of HBP1[J]. Breast Cancer Res Treat,2011,126(3):565-575.
    [95]Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis[J]. Nat Cell Biol,2008,10(2):202-210.
    [96]Fang L, Deng Z, Shatseva T, et al. MicroRNA miR-93 promotes tumor growth and angiogenesis by targeting integrin-beta8[J]. Oncogene,2011,30(7):806-821.
    [97]Hua Z, Lv Q, Ye W, et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia[J]. PLoS One,2006,1:e116.
    [98]Li B, Shi X B, Nori D, et al. Down-regulation of microRNA 106b is involved in p21-mediated cell cycle arrest in response to radiation in prostate cancer cells[J]. Prostate,2011,71(6):567-574.
    [99]Josson S, Sung S Y, Lao K, et al. Radiation modulation of microRNA in prostate cancer cell lines[J]. Prostate,2008,68(15):1599-1606.
    [100]Weeraratne S D, Amani V, Neiss A, et al. miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma[J]. Neuro Oncol,2011,13(2):165-175.
    [101]Tsang T Y, Tang W Y, Chan J Y, et al. P-glycoprotein enhances radiation-induced apoptotic cell death through the regulation of miR-16 and Bcl-2 expressions in hepatocellular carcinoma cells[J]. Apoptosis,2011,16(5):524-535.
    [102]Zhu H, Wu H, Liu X, et al. Regulation of autophagy by a beclin 1-targeted microRNA, miR-30a, in cancer cells[J]. Autophagy,2009,5(6):816-823.
    [103]Yu Y, Yang L, Zhao M, et al. Targeting microRNA-30a-mediated autophagy enhances imatinib activity against human chronic myeloid leukemia cells[J]. Leukemia,2012,26(8): 1752-1760.
    [104]Zou Z, Wu L, Ding H, et al. MicroRNA-30a sensitizes tumor cells to cis-platinum via suppressing beclin 1-mediated autophagy[J]. J Biol Chem,2012,287(6):4148-4156.
    [105]Kovaleva V, Mora R, Park Y J, et al. miRNA-130a targets ATG2B and DICER1 to inhibit autophagy and trigger killing of chronic lymphocytic leukemia cells[J]. Cancer Res,2012,72(7):1763-1772.
    [106]Frankel L B, Wen J, Lees M, et al. microRNA-101 is a potent inhibitor of autophagy[J]. EMBO J,2011,30(22):4628-4641.
    [107]Chang Y, Yan W, He X, et al. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions[J]. Gastroenterology,2012,143(1):177-187.
    [108]Korkmaz G, le Sage C, Tekirdag K A, et al. miR-376b controls starvation and mTOR inhibition-related autophagy by targeting ATG4C and BECN1[J]. Autophagy,2012,8(2):165-176.
    [109]Tazawa H, Yano S, Yoshida R, et al. Genetically engineered oncolytic adenovirus induces autophagic cell death through an E2F1-microRNA-7-epidermal growth factor receptor axis[J]. Int J Cancer,2012,131(12):2939-2950.
    [110]Wang P, Zhang J, Zhang L, et al. MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells[J]. Gastroenterology,2013,145(5):1133-1143.
    [111]Choi P S, Zakhary L, Choi W Y, et al. Members of the miRNA-200 family regulate olfactory neurogenesis[J]. Neuron,2008,57(1):41-55.
    [112]Gregory P A, Bert A G, Paterson E L, et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J]. Nat Cell Biol,2008,1 0(5):593-601.
    [113]Burk U, Schubert J, Wellner U, et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells[J]. EMBO Rep,2008,9(6):582-589.
    [114]Yu J, Ohuchida K, Mizumoto K, et al. MicroRNA, hsa-miR-200c, is an independent prognostic factor in pancreatic cancer and its upregulation inhibits pancreatic cancer invasion but increases cell proliferation[J]. Mol Cancer,2010,9:169.
    [115]Jurmeister S, Baumann M, Balwierz A, et al. MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F[J]. Mol Cell Biol,2012,32(3):633-651.
    [116]Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop--a motor of cellular plasticity in development and cancer?[J]. EMBO Rep,2010,11(9):670-677.
    [117]Hurteau G J, Carlson J A, Spivack S D, et al. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin[J]. Cancer Res,2007,67(17):7972-7976.
    [118]Gregory P A, Bracken C P, Smith E, et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition[J]. Mol Biol Cell,2011,22(10):1686-1698.
    [119]Chang C J, Chao C H, Xia W, et al. p53 regulates epithelial-mesenchymal transition and stem cell properties through modulating miRNAs[J]. Nat Cell Biol,2011,13(3):317-323.
    [120]Shimono Y, Zabala M, Cho R W, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells[J]. Cell,2009,138(3):592-603.
    [121]Schickel R, Park S M, Murmann A E, et al. miR-200c regulates induction of apoptosis through CD95 by targeting FAP-1[J]. Mol Cell,2010,38(6):908-915.
    [122]Magenta A, Cencioni C, Fasanaro P, et al. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition[J]. Cell Death Differ,2011,18(10):1628-1639.
    [123]Cochrane D R, Howe E N, Spoelstra N S, et al. Loss of miR-200c:A Marker of Aggressiveness and Chemoresistance in Female Reproductive Cancers[J]. J Oncol,2010,2010: 821717.
    [124]Park S M, Gaur A B, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2[J]. Genes Dev,2008,22(7):894-907.
    [125]Hurteau G J, Carlson J A, Roos E, et al. Stable expression of miR-200c alone is sufficient to regulate TCF8 (ZEB1) and restore E-cadherin expression[J]. Cell Cycle,2009,8(13):2064-2069.
    [126]Lin J, Liu C, Gao F, et al. miR-200c enhances radiosensitivity of human breast cancer cells[J]. J Cell Biochem,2013,114(3):606-615.
    [127]Shi L, Zhang S, Wu H, et al. MiR-200c Increases the Radiosensitivity of Non-Small-Cell Lung Cancer Cell Line A549 by Targeting VEGF-VEGFR2 Pathway[J]. PLoS One,2013, 8(10):e78344.
    [1]Shimono Y, Zabala M, Cho R W, et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells[J]. Cell,2009,138(3):592-603.
    [2]Park S M, Gaur A B, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2[J]. Genes Dev,2008,22(7):894-907.
    [3]Jurmeister S, Baumann M, Balwierz A, et al. MicroRNA-200c represses migration and invasion of breast cancer cells by targeting actin-regulatory proteins FHOD1 and PPM1F[J]. Mol Cell Biol,2012,32(3):633-651.
    [4]Lin J, Liu C, Gao F, et al. miR-200c enhances radiosensitivity of human breast cancer cells[J]. J Cell Biochem.2013,114(3):606-615.
    [5]Shi L, Zhang S, Wu H, et al. MiR-200c Increases the Radiosensitivity of Non-Small-Cell Lung Cancer Cell Line A549 by Targeting VEGF-VEGFR2 Pathway[J]. PLoS One,2013,8(10):e78344.
    [6]Zhang Z, Yang M, Chen R, et al. IBP regulates epithelial-to-mesenchymal transition and the motility of breast cancer cells via Racl, RhoA and Cdc42 signaling pathways[J]. Oncogene,2013.
    [7]Zhu G, Wang Y, Huang B, et al. A Racl/PAKl cascade controls beta-catenin activation in colon cancer cells[J]. Oncogene,2012,31(8):1001-1012.
    [8]Fritz G, Just I, Kaina B. Rho GTPases are over-expressed in human tumors[J]. Int J Cancer,1999,81(5):682-687.
    [9]Schnelzer A, Prechtel D, Knaus U, et al. Rac1 in human breast cancer:overexpression, mutation analysis, and characterization of a new isoform, Raclb[J]. Oncogene,2000,19(26): 3013-3020.
    [10]Downward J. Targeting RAS signalling pathways in cancer therapy[J]. Nat Rev Cancer,2003,3(1):11-22.
    [11]Sahai E, Marshall C J. RHO-GTPases and cancer[J]. Nat Rev Cancer,2002,2(2):133-142.
    [12]Du J, Liu J, Smith B J, et al. Role of Racl-dependent NADPH oxidase in the growth of pancreatic cancer[J]. Cancer Gene Ther,2011,18(2):135-143.
    [13]Bosco E E, Nakai Y, Hennigan R F, et al. NF2-deficient cells depend on the Racl-canonical Wnt signaling pathway to promote the loss of contact inhibition of proliferation[J]. Oncogene,2010,29(17):2540-2549.
    [14]Sanlioglu S, Luleci G, Thomas K W. Simultaneous inhibition of Racl and IKK pathways sensitizes lung cancer cells to TNFalpha-mediated apoptosis[J]. Cancer Gene Ther,2001,8(11): 897-905.
    [15]Embade N, Valeron P F, Aznar S, et al. Apoptosis induced by Rac GTPase correlates with induction of FasL and ceramides production[J]. Mol Biol Cell,2000,11(12):4347-4358.
    [16]Tan W, Palmby T R, Gavard J, et al. An essential role for Racl in endothelial cell function and vascular development J]. FASEB J,2008,22(6):1829-1838.
    [17]Soga N, Connolly J O, Chellaiah M, et al. Rac regulates vascular endothelial growth factor stimulated motility[J]. Cell Commun Adhes,2001,8(1):1-13.
    [18]Ma Q, Cavallin L E, Yan B, et al. Antitumorigenesis of antioxidants in a transgenic Racl model of Kaposi's sarcoma[J]. Proc Natl Acad Sci U S A,2009,106(21):8683-8688.
    [19]Mettouchi A, Klein S, Guo W, et al. Integrin-specific activation of Rac controls progression through the G(1) phase of the cell cycle[J]. Mol Cell,2001,8(1):115-127.
    [20]Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells[J]. Annu Rev Biochem,1999,68:459-486.
    [21]Kaibuchi K, Kuroda S, Amano M. Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells[J]. Annu Rev Biochem,1999,68:459-486.
    [22]Condeelis J S, Wyckoff J B, Bailly M, et al. Lamellipodia in invasion[J]. Semin Cancer Biol,2001,11(2):119-128.
    [23]Shintani Y, Wheelock M J, Johnson K R. Phosphoinositide-3 kinase-Racl-c-Jun NH2-terminal kinase signaling mediates collagen Ⅰ-induced cell scattering and up-regulation of N-cadherin expression in mouse mammary epithelial cells[J]. Mol Biol Cell,2006,17(7):2963-2975.
    [24]Bakin A V, Rinehart C, Tomlinson A K, et al. p38 mitogen-activated protein kinase is required for TGFbeta-mediated fibroblastic transdifferentiation and cell migration[J]. J Cell Sci,2002,115(Pt 15):3193-3206.
    [25]Kuang L, Wang L, Wang Q, et al. Cudratricusxanthone G inhibits human colorectal carcinoma cell invasion by MMP-2 down-regulation through suppressing activator protein-1 activity[J]. Biochem Pharmacol,2011,81(10):1192-1200.
    [26]Wang L, Kuang L, Pan X, et al. Isoalvaxanthone inhibits colon cancer cell proliferation, migration and invasion through inactivating Racl and AP-1 [J]. Int J Cancer,2010,127(5):1220-1229.
    [27]Vanier M T. Niemann-Pick disease type C[J]. Orphanet J Rare Dis,2010,5:16.
    [28]Cheruku S R, Xu Z, Dutia R, et al. Mechanism of cholesterol transfer from the Niemann-Pick type C2 protein to model membranes supports a role in lysosomal cholesterol transport[J]. J Biol Chem,2006,281 (42):31594-31604.
    [29]Goldman S D, Krise J P. Niemann-Pick C1 functions independently of Niemann-Pick C2 in the initial stage of retrograde transport of membrane-impermeable lysosomal cargo[J]. J Biol Chem,2010,285(7):4983-4994.
    [30]Kwon H J, Abi-Mosleh L, Wang M L, et al. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol[J]. Cell,2009,137(7):1213-1224.
    [31]Ikonen E, Holtta-Vuori M. Cellular pathology of Niemann-Pick type C disease[J]. Semin Cell Dev Biol,2004,15(4):445-454.
    [32]Amigo L, Mendoza H, Castro J, et al. Relevance of Niemann-Pick type C1 protein expression in controlling plasma cholesterol and biliary lipid secretion in mice[J]. Hepatology, 2002,36(4 Pt 1):819-828.
    [33]Zhang J R, Coleman T, Langmade S J, et al. Niemann-Pick Cl protects against atherosclerosis in mice via regulation of macrophage intracellular cholesterol trafficking[J]. J Clin Invest,2008,118(6):2281-2290.
    [34]Ma W, Xu J, Wang Q, et al. Interaction of functional NPC1 gene polymorphism with smoking on coronary heart disease[J]. BMC Med Genet,2010,11:149.
    [35]Welch C L, Sun Y, Arey B J, et al. Spontaneous atherothrombosis and medial degradation in Apoe-/-,Npc1-/-mice[J]. Circulation,2007,116(21):2444-2452.
    [36]Meyre D, Delplanque J, Chevre J C, et al. Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations[J]. Nat Genet,2009,41(2):157-159.
    [37]Jelinek D, Heidenreich R A, Erickson R P, et al. Decreased Npcl gene dosage in mice is associated with weight gain[J]. Obesity (Silver Spring),2010,18(7):1457-1459.
    [38]Shamburek R D, Pentchev P G, Zech L A, et al. Intracellular trafficking of the free cholesterol derived from LDL cholesteryl ester is defective in vivo in Niemann-Pick C disease: insights on normal metabolism of HDL and LDL gained from the NP-C mutation[J]. J Lipid Res,1997,38(12):2422-2435.
    [39]Sontag E. Protein phosphatase 2A:the Trojan Horse of cellular signaling[J]. Cell Signal,2001,13(1):7-16.
    [40]Janssens V, Goris J. Protein phosphatase 2A:a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling[J]. Biochem J,2001,353(Pt 3):417-439.
    [41]Longin S, Zwaenepoel K, Louis J V, et al. Selection of protein phosphatase 2A regulatory subunits is mediated by the C terminus of the catalytic Subunit[J]. J Biol Chem,2007, 282(37):26971-26980.
    [42]Janssens V, van Hoof C, Martens E, et al. Identification and characterization of alternative splice products encoded by the human phosphotyrosyl phosphatase activator gene[J]. Eur J Biochem,2000,267(14):4406-4413.
    [43]Tamaki M, Goi T, Hirono Y, et al. PPP2R1B gene alterations inhibit interaction of PP2A-Abeta and PP2A-C proteins in colorectal cancers[J]. Oncol Rep,2004,11(3):655-659.
    [44]Ruediger R, Pham H T, Walter G. Disruption of protein phosphatase 2A subunit interaction in human cancers with mutations in the A alpha subunit gene[J]. Oncogene,2001,20(1):10-15.
    [45]Zhou J, Pham H T, Ruediger R, et al. Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A:differences in expression, subunit interaction, and evolution [J]. Biochem J,2003,369(Pt 2):387-398.
    [46]Kim S W, Jung H K, Kim M Y. Induction of p27(kipl) by 2,4,3',5'-tetramethoxystilbene is regulated by protein phosphatase 2A-dependent Akt dephosphorylation in PC-3 prostate cancer cells[J]. Arch Pharm Res,2008,31(9):1187-1194.
    [47]Woo M M, Salamanca C M, Symowicz J, et al. SV40 early genes induce neoplastic properties in serous borderline ovarian tumor cells[J]. Gynecol Oncol,2008,111(1):125-131.
    [48]Westermarck J, Li S P, Kallunki T, et al. p38 mitogen-activated protein kinase-dependent activation of protein phosphatases 1 and 2A inhibits MEK1 and MEK2 activity and collagenase 1 (MMP-1) gene expression[J]. Mol Cell Biol,2001521(7):2373-2383.
    [49]Bennin D A, Don A S, Brake T, et al. Cyclin G2 associates with protein phosphatase 2A catalytic and regulatory B1 subunits in active complexes and induces nuclear aberrations and a G1/S phase cell cycle arrest[J]. J Biol Chem,2002,277(30):27449-27467.
    [50]Silverstein A M, Barrow C A, Davis A J, et al. Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits[J]. Proc Natl Acad Sci U S A,2002,99(7):4221-4226.
    [51]Klumpp S, Krieglstein J. Serine/threonine protein phosphatases in apoptosis[J]. Curr Opin Pharmacol,2002,2(4):458-462.
    [52]Martin-Granados C, Philp A, Oxenham S K, et al. Depletion of protein phosphatase 4 in human cells reveals essential roles in centrosome maturation, cell migration and the regulation of Rho GTPases[J]. Int J Biochem Cell Biol,2008,40(10):2315-2332.
    [53]Meisinger J, Patel S, Vellody K, et al. Protein phosphatase-2A association with microtubules and its role in restricting the invasiveness of human head and neck squamous cell carcinoma cells[J]. Cancer Lett,1997,111(1-2):87-95.
    [54]Liao Y, Hung M C A new role of protein phosphatase 2a in adenoviral E1A protein-mediated sensitization to anticancer drug-induced apoptosis in human breast cancer cells[J]. Cancer Res,2004,64(17):5938-5942.
    [55]Modak C, Bryant P. Casein Kinase I epsilon positively regulates the Akt pathway in breast cancer cell lines[J]. Biochem Biophys Res Commun,2008,368(3):801-807.
    [56]Zhou J, Pham H T, Ruediger R, et al. Characterization of the Aalpha and Abeta subunit isoforms of protein phosphatase 2A:differences in expression, subunit interaction, and evolution[J]. Biochem J,2003,369(Pt 2):387-398.
    [57]Sablina A A, Chen W, Arroyo J D, et al. The tumor suppressor PP2A Abeta regulates the RalA GTPase[J]. Cell,2007,129(5):969-982.
    [58]Sablina A A, Hector M, Colpaert N, et al. Identification of PP2A complexes and pathways involved in cell transformation[J]. Cancer Res,2010,70(24):10474-10484.
    [59]Chen W, Possemato R, Campbell K T, et al. Identification of specific PP2A complexes involved in human cell transformation[J]. Cancer Cell,2004,5(2):127-136.
    [60]Keen J C, Garrett-Mayer E, Pettit C, et al. Epigenetic regulation of protein phosphatase 2A (PP2A), lymphotactin (XCL1) and estrogen receptor alpha (ER) expression in human breast cancer cells[J]. Cancer Biol Ther,2004,3(12):1304-1312.
    [61]Keen J C, Zhou Q, Park B H, et al. Protein phosphatase 2A regulates estrogen receptor alpha (ER) expression through modulation of ER mRNA stability[J]. J Biol Chem,2005,280 (33): 29519-29524.
    [62]Lu Q, Surks H K, Ebling H, et al. Regulation of estrogen receptor alpha-mediated transcription by a direct interaction with protein phosphatase 2A[J]. J Biol Chem,2003,278(7): 4639-4645.
    [63]Liu J, Sidell N. Anti-estrogenic effects of conjugated linoleic acid through modulation of estrogen receptor phosphorylation[J]. Breast Cancer Res Treat,2005,94(2):161-169.
    [64]Li C, Liang Y Y, Feng X H, et al. Essential phosphatases and a phospho-degron are critical for regulation of SRC-3/AIB1 coactivator function and turnover[J]. Mol Cell,2008,31(6):835-849.
    [65]Suzuki K, Takahashi K. Induction of E-cadherin endocytosis by loss of protein phosphatase 2A expression in human breast cancers[J]. Biochem Biophys Res Commun,2006,349 (1):255-260.
    [66]Suzuki K, Chikamatsu Y, Takahashi K. Requirement of protein phosphatase 2A for recruitment of IQGAP1 to Rac-bound betal integrin[J]. J Cell Physiol,2005,203(3):487-492.
    [67]Hui L, Rodrik V, Pielak R M, et al. mTOR-dependent suppression of protein phosphatase 2A is critical for phospholipase D survival signals in human breast cancer cells[J]. J Biol Chem,2005,280(43):35829-35835.
    [68]Kleijnen M F, Shih A H, Zhou P, et al. The hPLIC proteins may provide a link between the ubiquitination machinery and the proteasome[J]. Mol Cell,2000,6(2):409-419.
    [69]Ko H S, Uehara T, Tsuruma K, et al. Ubiquilin interacts with ubiquitylated proteins and proteasome through its ubiquitin-associated and ubiquitin-like domains[J]. FEBS Lett,2004, 566(1-3):110-114.
    [70]Mah A L, Perry G, Smith M A, et al. Identification of ubiquilin, a novel presenilin interactor that increases presenilin protein accumulation[J]. J Cell Biol,2000,151(4):847-862.
    [71]Hiltunen M, Lu A, Thomas A V, et al. Ubiquilin 1 modulates amyloid precursor protein trafficking and Abeta secretion[J]. J Biol Chem,2006,281(43):32240-32253.
    [72]Thomas A V, Herl L, Spoelgen R, et al. Interaction between presenilin 1 and ubiquilin 1 as detected by fluorescence lifetime imaging microscopy and a high-throughput fluorescent plate reader[J]. J Biol Chem,2006,281(36):26400-26407.
    [73]Slifer M A, Martin E R, Haines J L, et al. The ubiquilin 1 gene and Alzheimer's disease[J]. N Engl J Med,2005,352(26):2752-2753,2752-2753.
    [74]Bertram L, Hiltunen M, Parkinson M, et al. Family-based association between Alzheimer's disease and variants in UBQLN1[J]. N Engl J Med,2005,352(9):884-894.
    [75]Lu A, Hiltunen M, Romano D M, et al. Effects of ubiquilin 1 on the unfolded protein response[J]. J Mol Neurosci,2009,38(1):19-30.
    [76]De Strooper B, Annaert W. Novel research horizons for presenilins and gamma-secretases in cell biology and disease[J]. Annu Rev Cell Dev Biol,2010,26:235-260.
    [77]Sherrington R, Rogaev E I, Liang Y, et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease[J]. Nature,1995,375(6534):754-760.
    [78]Levy-Lahad E, Wasco W, Poorkaj P, et al. Candidate gene for the chromosome 1 familial Alzheimer's disease locus[J]. Science,1995,269(5226):973-977.
    [79]Massey L K, Mah A L, Ford D L, et al. Overexpression of ubiquilin decreases ubiquitination and degradation of presenilin proteins[J]. J Alzheimers Dis,2004,6(1):79-92.
    [80]Torreilles F, Touchon J. Pathogenic theories and intrathecal analysis of the sporadic form of Alzheimer's disease[J]. Prog Neurobiol,2002,66(3):191-203.
    [81]Doi H, Mitsui K, Kurosawa M, et al. Identification of ubiquitin-interacting proteins in purified polyglutamine aggregates[J]. FEBS Lett,2004,571(1-3):171-176.
    [82]Heir R, Ablasou C, Dumontier E, et al. The UBL domain of PLIC-1 regulates aggresome formation[J]. EMBO Rep,2006,7(12):1252-1258.
    [83]N'Diaye E N, Kajihara K K, Hsieh I, et al. PLIC proteins or ubiquilins regulate autophagy-dependent cell survival during nutrient starvation[J]. EMBO Rep,2009,10(2):173-179.
    [84]Viswanathan J, Haapasalo A, Bottcher C, et al. Alzheimer's disease-associated ubiquilin-1 regulates presenilin-1 accumulation and aggresome formation[J]. Traffic,2011,12(3):330-348.
    [85]Rothenberg C, Srinivasan D, Mah L, et al. Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy[J]. Hum Mol Genet,2010,19(16):3219-3232.
    [86]Wu S, Mikhailov A, Kallo-Hosein H, et al. Characterization of ubiquilin 1, an mTOR-interacting protein[J]. Biochim Biophys Acta,2002,1542(1-3):41-56.
    [87]Stieren E S, El A A, Xiao Y, et al. Ubiquilin-1 is a molecular chaperone for the amyloid precursor protein[J]. J Biol Chem,2011,286(41):35689-35698.
    [88]Beverly L J, Lockwood W W, Shah P P, et al. Ubiquitination, localization, and stability of an anti-apoptotic BCL2-like protein, BCL2L10/BCLb, are regulated by Ubiquilinl [J]. Proc Natl Acad Sci U S A,2012,109(3):E119-E126.
    [89]Rothenberg C, Srinivasan D, Mah L, et al. Ubiquilin functions in autophagy and is degraded by chaperone-mediated autophagy[J]. Hum Mol Genet,2010,19(16):3219-3232.
    [90]Tang H, Deng M, Tang Y, et al. miR-200b and miR-200c as prognostic factors and mediators of gastric cancer cell progression[J]. Clin Cancer Res,2013,19(20):5602-5612.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700