体育场挑篷结构抗震性能及减震研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
体育场挑篷结构是一种复杂体型建筑结构形式,设计难度大。目前,国内外学者对于挑篷结构的研究主要集中在风荷载响应及人群荷载引起的楼面振动上,而对于其在地震作用下的响应研究略显不足。本文以济南奥林匹克体育中心体育场看台为研究背景,通过地震模拟振动台试验和精细的结构分析,对挑篷结构的抗震性能进行了深入的研究。通过设置位移型软钢阻尼器(HADAS)对结构进行耗能减震控制,有效地减少了结构的地震响应。
     对济南奥林匹克中心体育场部分主体结构1/20模型进行模拟地震振动台试验,测试了模型结构的动力特性、阻尼比及其在当地多遇、设防、罕遇地震作用下的响应。试验中,着重分析了挑篷结构在竖向地震激励下的响应,通过量测挑篷测点的位移、速度、加速度等参数,揭示了挑篷结构在高位支撑时,其竖向地震作用效应(节点加速度响应)放大多达几倍到十几倍这一重要现象,设计中应注意提高挑篷结构支座的强度要求。
     对模型结构的有限元理论计算分析,进一步揭示了结构的地震响应规律,与振动台试验结果吻合较好。通过水平向及竖向静力弹塑性分析,揭示了结构产生塑性铰的顺序,改进的能力谱法进一步验证了结构的抗震能力。针对挑篷结构对于竖向地震动敏感的这一特性,建立了多模态组合的竖向静力弹塑性分析方法,特别提出了在竖向静力弹塑性分析时考虑高阶模态的贡献,计算结果显示,若采用传统的单阶竖向模态加载模式,会使计算结果明显偏于不安全,因此建议对挑篷这类结构进行竖向静力弹塑性分析时,宜采用多模态组合的加载模式。
     将多维虚拟激励法进一步应用于挑篷结构的多维地震随机响应分析中。详细介绍了多维地面运动功率谱密度函数模型及其参数,给出了均值响应和峰值响应的评估方法,比较了挑篷结构在单向和多向地震动输入下的关键节点位移反应,计算结果表明,多维地震动会明显加大结构的响应。将虚拟激励法的计算结果与时程法的进行比较,两者的计算结果吻合较好。多维虚拟激励法作为一种高效的随机振动分析方法,为对大型体育场挑篷这类结构进行多维地震随机振动分析提供了有效的途径。
     对施加位移型软钢阻尼器的模型结构进行弹塑性时程分析,比较设置前后结构的塑性反应。结果显示,无论是从钢结构挑篷杆件塑性铰的出现情况,还是从杆件的地震响应,以及不同位置的阻尼器滞回曲线,都可以看出阻尼器有效地吸收了一部分地震动传给结构的能量,减少了其地震响应。通过模拟分析,验证了位移型软钢阻尼器对于挑篷这类结构的耗能减震的效果,为今后同类结构的耗能减震设计提供一定的参考依据。
Stadium structure with cantilever roof is so complicated that it's hard to be designed. At present, home and abroad scholars pay more attention to the response of cantilever roof structure under the wind loads and the vibration on the floor which caused by crowd moving human loads, and the seismic responses are little to be concerned relatively. Based on the shaking table experiment of Jinan Olympic Center and finite element analysis, the seismic performances of cantilever roof structure were deeply studied. Attempt of setting the displacement-type mild steel damper (HADAS) on the structure, the responses under seismic excitation were controlled, and it effectively reduced the seismic response.
     A shaking table test of a 1/20 scale model of the Jinan Olympic Center was carried out. The model's dynamic properties, damping ratio and seismic responses under different earthquake levels were studied. During the test, the vertical seismic responses of cantilever roof structure were specially analysised. By measuring the key point's displacement、velocity and acceleration responses, the phenomenon that the seismic effects on cantilever roof structure which with high supports were amplified over 10 times in the vertical direction was revealed, and it guide the design to focus on the improvement of the strength requirement of cantilever roof structure's supports.
     Finite element analysis further revealed the laws of the seismic responses, and they were in good agreement with the shaking table test results. A sequence of generating hinges was studied by horizontal and vertical elasto-plastic analysis, and the structural seismic performance was further evaluated by capacity spectrum method. Because the cantilever roof structure was sensitive for the vertical ground motion, the vertical multi-model combination nonlinear static analysis method had been established. The contribution of higher modes was specifically taken into account, and the results show that the use of traditional single-modal loading mode method will obviously lead to unsafe results. Therefore, the multi-modal method is recommended for the vertical static elasto-plastic analysis of canopy structure.
     The pseudo excitation method was further improved and used for multi-dimensional random seismic analysis of the cantilever roof structure. Theoretical formulations for multi-dimensional pseudo excitation algorithm were derived. A method of evaluating average peak responses was recommended. Seismic random models and parameters under multiple seismic ground motions were detailed introduced. The displacement responses of key nodes under single dimension and multiple dimensions were compared by calculating. The structure response under multi-dimension seismic input would be significantly magnified. The results of pseudo excitation method and the time history analysis were compared to verify the accuracy of multi-dimensional pseudo excitation method, and they were in good agreement. Multi-dimensional pseudo excitation method as an efficient random vibration analysis method provides an effective way to the field of random vibration analysis of large-scale stadium structure with cantilever roof.
     Nonlinear time history analysis on the modal structure with displacement-type mild steel damper was carried out. Compared with the plastic responses results of the two structures (with and without damper), no matter the appearance of plastic hinges, or the seismic response of members, even the hysteretic curve of dampers on different positions, all indicate that dampers effectively absorbed part of ground motion energy which passed to the structure, and reduced its seismic response. By simulation analysis, the energy dissipation effect of cantilever roof structural with displacement-type mild steel damper were verified, and it provide a reference for the future design of energy dissipation wiith similar structures.
引文
[1]北京市建设设计研究院.奥林匹克与体育建筑[M].天津大学出版社,2002.
    [2]刘锡良.现在空间结构[M].天津大学出版社,2003.
    [3]施红梅,范懋达.越南中央体育场主桁架胎架设计[J].施工技术,2003,32(11):4-5.
    [4]刘洪波等.河南省体育中心体育场罩棚结构施工监理[J].施工技术,2003,32(11):18-20.
    [5]黄真等.芜湖体育中心主馆复杂造型屋面体系[J]_工业建筑,2003,33(5):66-67.
    [6]何幼刚.上海八万人体育场马鞍型大悬挑空间钢结构安装技术[J].建筑钢结构发展,2003,5(1):54-60.
    [7]黄宗蓑.广东奥林匹克体育场空间钢桁架施工技术[J].施工技术,2002,31(5):14-15.
    [8]林颖儒,黄本才.上海虹口足球场大悬挑钢屋盖结构自振特性和风振动力响应分析[J].空间结构,2001,7(3):12-17.
    [9]张孚佩.深圳体育场[J].建筑学报,1996,11:13-15.
    [10]张文英.义乌体育会展中心体育场索膜结构蓬盖的设计与施工[J].建筑技术,2001,32(12):21-23.
    [11]赵秀福,黄达达等.青岛颐中体育场膜结构挑篷的设计与施工[J].建筑结构,2001,31(12):31-35.
    [12]赵鹏飞,焦俭.浙江省黄龙体育中心主体育场挑篷结构模型试验研究[J].建筑结构学报,1999,20(5):16-23.
    [13]廖海黎等.重庆市袁家岗体育中心体育场风动试验研究[J].四川建筑,2003,23(B08):143-146.
    [14]刘锡良.体育场挑篷结构综述[A].第十届空间结构论文集[C].中国建筑工业出版社,2002.
    [15]马国馨.第三代体育场的开发和建设[J].建筑学报,19955(5):49-55.
    [16]张昕,黄本才.体育场悬挑屋盖空间风激动力响应和风荷载实用计算[J].建筑结构学报,2005.26(2):45-47.
    [17]陆峰,楼文娟等.大跨度平屋面的风振响应及风振系数[J].工程力学,2002,19(2):76-82.
    [18]顾明,杨伟.上海铁路南站屋盖结构平均风荷载的数值模拟[J].同济大学学报,2004,32(2):12-15.
    [19]何艳丽,董仕林等.空间网格结构频域风振响应分析模态补偿法[J].工程力学,2002,19(4):7376.
    [20]Melbourne W. H., Cheung J. C. K. Reducing the wind load on large cantilevered roofs[J]. Wind Eng Ind Aerodyn,1988,28:401-410.
    [21]Melbourne W. H. The response of large roofs to wind action[J]. Wind Eng Ind Aerodyn,1995,54/55: 325-335.
    [22]Kawai H, Shimura M, Yoshie R, Wei R. Wind induced response of a large cantilevered roof [R]. Proceedings of the Asia-Pacific Symposium on Wind Engineering, Gold Coast, University of Queensland 14-16 July,1997, P:191-194.
    [23]Killen G. P., Letchford C. W. A parametric study of wind loads on grandstand roofs[J]. Engineering Structure,2001,23:725-735.
    [24]Letchford, C. W., Killen, G. P. Equivalent static wind loads for cantilever grandstand roofs[M]. submitted for publication.
    [25]Holmes J. D., Denoon R. O., Kwok K. C. S, Glanville M. J. Wind loading and response of large stadium roofs[R]. Proceedings of the IASS Symposium on Shells and Spatial Structures, Singapore,10-14 November,1997.
    [26]Ellis, B. R. Serviceability evaluation of floor vibration induced by walking loads[J]. Engineering Structure,2001,79 (21):30-36.
    [27]Ellis, B. R., Littler, J. D. Response of cantilever grandstands to crowd loading. Part Ⅱ:Serviceability evaluation[R]. Proc. Inst. Civ. Engineering Structure Build.,2004,157 (4):235-241.
    [28]Salyards, K. Analytical prediction of the dynamic behavior ofstadium structures for vertical vibration serviceability assessment[R]. Ph.D. dissertation, Pennsylvania State Univ., University Park, Pa.,2007.
    [29]ISO. Bases for design of structures—Serviceability of buildings against vibrations[S]. ISO 10137, Geneva,1992.
    [30]ISO. Mechanical vibration and shock—Evaluation of human exposure to whole-body vibration. Part 1: General requirements[S]. ISO 2631:199, Geneva,1997.
    [31]Wyatt, T. A. Design guide on the vibration of floors[R]. Rep. No.076, Steel Construction Institute, Ascot, U.K.,1989
    [32]工业与民用建筑抗震设计规范(试行)(TJ11-74)[S],1974.
    [33]工业与民用建筑抗震设计规范修订版(TJ11-78)[S],1978.
    [34]建筑抗震设计规范(GBJ 11-89)[S],中国建筑工业出版社,1989.
    [35]建筑抗震设计规范(GB50011-2001)[S],中国建筑工业出版社,2001.
    [36]李应斌,刘伯权等.基于结构性能的抗震设计理论研究与展望[J],地震工程与工程振动,2001,21(4):73-79.
    [37]Moehle J. P. Displacement based design of RC structure[R], Eerva A eds. Proceedings of the 10th World Conference on Earthquake Engineering (WCEE), Mexico,1992:724-732.
    [38]小谷俊介.日本基于性能结构抗震设计方法的发展[J].建筑结构,2000,30(1):6-9.
    [39]Ridell R., Dela J. C. Lora. Seismic analysis and design current practice and future trends[R], Proceedings of the 11th World Conference on Earthquake Engineering (WCEE), Mexico,1996.
    [40]Medhekar M. S., Kennedy D. J. L. Displacement-based seismic design of building-theory[J]. Engineering Structure,2002,22(3):201-209.
    [41]Applied Technology Council, A Critical Review of Current Approaches to Earthquake- Resistant Design[R]. ATC-34,1995:75-81.
    [42]Applied Technology Council (ATC), (1996). Seismic evaluation and retrofit of existing concrete building[R]. ATC-40, Redwood City, Calif.
    [43]Federal Emergency Management Agency (FEMA), (1997). NEHRP guidelines for the seismic rehabilitation of buildings[S]. FEMA-273, Washington, D. C.
    [44]Federal Emergency Management Agency (FEMA), (2000). Pre standard and commentary for the seismic rehabilitation of buildings[S]. FEMA-356, Washington, D. C.
    [45]钱稼茹,方鄂华.基于位移延性的剪力墙抗震设计研究[C].第15届全国高层建筑结构学术交流会论文集.1998:293-297.
    [46]方鄂华,钱稼茹.我国高层建筑设计的若干问题[J],土木工程学报,1999,32(2):1-5.
    [47]吕西林,郭子雄.建筑结构在罕遇地震作用下弹塑性变形验算的讨论[J],工程抗震,1999,1(1):15-20.
    [48]王光远,吕大刚.基于最优设防烈度和损伤性能的抗震结构优化设计[J].哈尔滨建筑大学学报,1999,32(10):1-5.
    [49]王亚勇.我国2000年抗震设计模式展望[J].建筑结构,1999,26(6):13-19.
    [50]建筑工程抗震形态设计通则(试用)CECS 160:2004,中国设计出版社,2004.
    [51]Medhekar M. S., Kennedy D. J. L. Displacement-based seismic design of building application[J]. Engineering Structure,2002,22(3):210-221.
    [52]邹超.高层建筑振动台试验误差分析与研究[D].同济大学硕士论文.2005.
    [53]Katayama T. Construction of E-Defense-A Large-sized 3-dimensional Shaking Table Proceeding of the First Conference on Advances in Experimental Structural Engineering (AESE), Vol.1,2005:29-37.
    [54]沈德建,吕西林.地震模拟振动台及模型试验研究进展[J].结构工程师,2006,22(6):55-63.
    [55]王鑫.钢筋混凝土模型框架振动台试验分析和抗震性能评估[D].西安建筑科技大学,2006.
    [56]Jingjiang Sun, et al. Earthquake simulator tests of one-sixth scale nine-sotory RC model[C].13WCEE, Canada,2004.
    [57]孙杰.复杂体型高层钢结构模拟地震振动台试验研究[D].北京科技大学,2007.
    [58]杜东升.高耸塔台结构振动台试验研究和理论分析[D].东南大学,2003.
    [59]Xilin Lu, Peizhen Li, et al. Shaking table model testing on dynamic soil-structure interaction system[C]. 13WCEE, Canada,2004.
    [60]Noriko TOKUI, et al. Simplified shaking table test methodology using extremely small scaled models[C]. 13WCEE, Canada,2004.
    [61]J. C. WU, et al. Establishment of mathematical model for an experimental full-scale building with active bracing system[C].12WCEE, New Zealand,2000.
    [62]于澈.带RC耗能器-限位斜撑底部大空间结构振动台试验研究[D].北京工业大学,2007.
    [63]K. F. Moustafa, et al. Shaking table testing and analysis of two-column bents[C].13WCEE, Canada, 2004.
    [64]范锋.空间网壳结构弹塑性地震响应及抗震性能分析[J].哈尔滨建筑大学学报,1999,32(1):32-37.
    [65]徐赵东.磁流变阻尼器及其对建筑结构的半主动控制研究[D].西安交通大学博士后出站报告,2002。
    [66]王星,董石麟.板锥网壳结构的拟三层壳分析法[J].建筑结构学报,2001,22(6):43-48.
    [67]沈祖炎,李元齐.拱支网壳结构的力学性能分析[J].同济大学学报,2001,29(2):127-133.
    [68]韩庆华,刘锡良.周边双层中部单层球面网壳结构的特征值屈曲分析及极限承载力[J].建筑结构学报,2002,23(3):69-74.
    [69]R. Malla, B. Wang. A method to Determine Dynamic Response of Truss Structures during Sudden Consecutive Member Failure[J]. Space Structures.1993(4).
    [70]S. Kato, Y. Mukaiyama. Study on dynamic behavior and collapse acceleration of single layer reticular domes subjected to horizontal and vertical earthquake motions[J]. Journal of Structural and Construction Engineering,1995,77 (4):87-96.
    [7]]叶继红,沈祖炎.单层网壳在地震作用下的动力稳定性分析[J].空间结构,1996,2(1):18-25.
    [72]S. D. Kim, M. M. Kang, T. J. Kwun. Dynamic instability of shell-like shallow trusses considering damping[J]. Computers and Structures,1997,64:481-489.
    [73]周岱,沈祖炎.斜拉网壳结构的非线性地震响应特性[J].同济大学学报,1999,27(3):273-277.
    [74]张锦虹,陈扬骥.双层圆柱面网壳的抗震性能研究[J].同济大学学报,1998,26(5):498-502.
    [75]曹资,张毅刚.各类常用网壳结构的地震反应规律[R].国家自然科学基金重大项目专题年度研究报告(5.3),1999.
    [76]李忠学,沈祖炎,等.钢网壳模型的动力稳定性振动台试验研究[J].实验力学,1999,14(4):484-491.
    [77]张毅刚.单层双曲抛物面网壳的抗震性能[J].北京工业大学学报,2001,27(1):31-34.
    [78]薛素铎,王健宁,曹资,等.钢网壳弹塑性地震反应分析[J].北京工业大学学报,2001,27(1):50-53.
    [79]罗尧治,沈雁彬,严慧.大型体育场罩棚网壳结构的稳定性和抗震性能分析[J].建筑结构学报,2001,22(5):62-66.
    [80]李建俊,林家浩,等.大跨度结构受多点随机地震激励的响应[J].计算结构力学及其应用,1995,12(4):445-452.
    [81]薛素铎,曹资等.多维地震作用下网壳结构的随机分析方法.空间结构,2002,8(1):44-51.
    [82]Q. S. Li, J. M. Chen. Nonlinear elasto-plastic dynamic analysis of single-layer reticulated shells subjected to earthquake excitation[J]. Computers and Structures,2003,81(4):177-188.
    [83]范峰,沈世钊.单层球壳模拟地震振动台试验及结构减振试验研究[J].哈尔滨建筑大学学报,2000,33(3):18-22.
    [84]叶继红,陈月明,沈世钊.网壳结构TMD减震系统的优化设计[J].振动工程学报,2000,13(3):376-384.
    [85]周晓峰,陈福江,董石麟.粘弹性阻尼材料支座在网壳结构减震控制中的性能研究[J].建筑结构学报,2000,6(4):21-28.
    [86]胡继军,黄金贵,李春祥,等.网壳-TMD风振动控制分析[J].建筑结构学报,2001,22(3):31-35.
    [87]瞿伟廉,徐幼麟.ER/MR智能阻尼器对空间网壳结构地震反应的半主动控制[J].地震工程与工程振动,2001,21(4):24-31.
    [88]高博青,董石麟.折板式网壳结构的抗震及减震研究[J]浙江大学学报,2002,29(5):589-594.
    [89]T. Aida, T. Aso, K. Nakamoto, et cl. Vibration control of shell structures using a shell-type dynamic vibration absorber[J]. Journal of Sound and Vibration,1998,218 (2):245-267.
    [90]A. M. Horr, L. C. Schmidt. Dynamic response of a damped large space structure:a new fraction-spectral approach [J]. International Journal of Space Structure,1995,10(2):113-120.
    [91]A. M. Horr, L. C. Schmidt. Frequency domain dynamic analysis of large space structures with added electrometric dampers[J]. International Journal of Space Structure,1996,11(3):279-289.
    [92]A. M. Horr, L. C. Schmidt. Fractional-spectral method for vibration of damped space structures[J]. Engineering Structure,1996,18(12):947-956.
    [93]K. Shingu, T. Kawanishi, M. Harumoto. A study on active control of a conical shell subjected to seismic forces [J]. IASS, Dresden and Cottbus, East Germany,1990 (3):305-309.
    [94]Zhou Y H, H. S. Tzou. Active control of nonlinear piezoelectric circular shallow spherical shells[J]. International Journal of Solids and Structure,2000,37(12):1663-1677.
    [95]高耸结构设计规范(GBJ135-90),中国建筑工业出版社,1990.
    [96]余志祥.鞍形索网竖向地震响应非线性时程分析[J].工程结构,2003,23(2):48-50.
    [97]刘京红,杜旭冉,郝文秀,等.斜搁四角锥三层网架的竖向地震响应分析[J].四川建筑科学研究,2008,34(1):117-119.
    [98]杜东升,娄宇,李爱群,等.高耸塔台结构竖向地震模拟振动台试验研究[J].特种结构,2003,20(2):46-48.
    [99]张永康,刘洪兵.巨型框架结构竖向地震作用抗震性能研究[J].工程抗震与加固改造,2005,27(3):17-19.
    [100]李湛,栾茂田,刘占阁,等.竖向地震加速度对堤坝抗震性能影响的分析[J].大连理工大学学报,2006,46(4):538-543.
    [101]李世超,刘洪兵,王巍峰,等.悬挂结构水平与竖向地震耦合作用时程分析[J].西华大学学报(自然科学版),2008,27(2):98-100.
    [102]冯维,郭文华.竖向地震对大跨高墩连续刚构的影响[J].山西建筑,2006,32(2):72-73.
    [103]YAO. J. P. Concept of Structural Control[J], Journal of Structural Division, ASCE,1972.
    [104]Yao J T P. Concept of structure control[J]. Journal of Structural Division, ASCE,1972,98(7): 1567-1574.
    [105]Soong T. T., Dargush G. F. Passive energy dissipation systems in structure engineering[M]. Chichester: John Wiley & Sons Ltd,1997.
    [106]周福霖.工程结构减震控制[M].北京:地震出版社,1997.
    [107]薛素铎,赵 均,高向宇.建筑抗震设计[M].北京:科学出版社,2003.
    [108]韦德香,崔湘玲,张元超.结构被动控制研究进展[J].贵州工业大学学报:自然科学版,2001,30(6):77-83.
    [109]Mahmoodi P. Structural dampers[J], ASCE, Journal of Structural Division,1969,95(8):1661-1672
    [110]Pall A.S., Marsh. C. Response of friction damped braced frames[J], ASCE, Journal of Structural Division,1982,108(6):1313-1323.
    [111]Pall A.S., Pall R. Friction-dampers used for seismic control of new and existing building in Canada[C]. Proc. ATC 17-1 on Seismic Isolation Energy Dissipation and Active Control,1993(2):675-686
    [112]Pall A.S., Pall R. Friction-dampers for seismic control of building:A Canadian Experience[C]. Proc. Of the 11th World Conference on Earthquake Engineering (WCEE), Mexico,1996.
    [113]宋波,黄世敏.图说现代城市灾害与减灾对策[M],中国建筑工业出版社,2008.
    [114]王亚勇,薛彦涛,欧进萍.北京饭店耗能减震抗震加固分析与设计[C].国家结构控制与健康诊断研讨会,中国深圳,2000.
    [115]周福霖.工程结构减震控制[M].地震出版社,1997.
    [116]薛素铎,菜炎城,李雄彦,等.被动控制技术在大跨空间结构中的应用概况[J].世界地震工程,2009,25(3):25-32.
    [117]汪大绥,姚利民,花更生,等.东方艺术中心点支式玻璃幕墙钢架2支撑2索网结构支承体系研究[J].建筑结构学报,2006,27(3):113-119.
    [118]薛素铎.隔震与消能减振技术在大跨屋盖中的应用[J].建筑结构,2005,35(3):51-53.
    [119]陈以一.世界建筑结构设计精品选2日本篇[M].北京:中国建筑工业出版社,2001.
    [120]Cermak J E, Kawakita S. Viscoelastic damping system to mitigate wind-induced dynamic response of a long2span roof[C]. Structural Engineering World Wide,1998, ISBN:0-08-042 045-2, Paper Reference: T179-3.
    [121]Daniels, Stephen H. Let the sun shine in four long years of work so roof can retract in minutes[J]. Engineering News Record,1999, (8):36-40.
    [122]罗仁全,程文.合肥奥体中心大悬臂钢网架风振控制研究[J].特种结构,2007,24(2):27-30.
    [123]Takeuchi T., Ogawa T., et al. A basic study on damage-controlled design concept for truss frame structures[J]. Journal of Structural Engineering,2005, (51B):31-37.
    [124]Kawaguchi M., The Meanings of response control[C]. The possibilities of response control techniques on the design of spatial structure. Proceedings of A I Jannual meeting,2003.
    [125]Kaneda K., Saitoh M. Endeavors to control the vibration of long span structures[C]. Nagoya:IASS Symposium,2001:TP116.
    [126]Hosozawa O., Mizutani T.. Structural design of shimokita dome[C]. Bucharest:IASS Symposium, 2005:TP707.
    [127]中建国际设计深圳顾问设计有限公司.济南奥林匹克中心体育场超限建筑工程抗震专项审查报告[R].2007.
    [128]程绍革,张自平.大型高性能振动台模拟地震实验室[J]_工程抗震与加固改造,2006,28(5):39-42.
    [129]济南奥林匹克体育中心工程场址地震安全性评价报告[R].中国地震局工程力学研究所,2007.
    [130]北京金土木软件设计有限公司.Sap2000中文版使用指南[M].人民交通出版社,2008.
    [131]Peter K. ANSYS, Inc. Theory Release5.7[M]. ANSYS, Inc. Southpointe 275 Technology Drive Canonsburg, PA 15317.
    [132]ANSYS, Inc. Structural Analysis Guide Release5.7[M]. ANSYS, Inc. Southpointe 275 Technology Drive Canonsburg, PA 15317.
    [133]高层建筑混凝土结构技术规程(JGJ3-2002)[S],中国建筑工业出版社,2002.
    [134]胡聿贤.地震工程学[M].地震出版社,2006.
    [135]陈国兴,孙士军,宰金珉.多维地震动输入下结构地震反应分析[J].南京建筑工程学院学报,1999,49(2):7-14.
    [136]S. D. Xue, et al. Random vibration analysis of lattice shells subjected to multi-dimensional earthquake inputs. Edited by Ko J. M. and Xu Y. L. Advances in Structural Dynamics. Hong Kong,2000:777-784.
    [137]林家浩,张亚辉.随机振动的虚拟激励法[M].科学出版社,2006.
    [138]薛素铎,曹资,王雪生等.多维地震作用下网壳结构的随机分析方法[J].空间结构,2002,8(1):44-51.
    [139]Housner G. W. Characteristic of Strong Motion Earthquake[J]. Bull. Seism. Soc. Am.,1947,37:17-31.
    [140]Kanai K. An Empirical Formula for the spectrum of strong Earthquake Motions[J]. Bull. Earthquake Res. Int., Univ. Tokyo,1961,39(1):85-95.
    [141]胡聿贤,周锡元.弹性体系在平稳和平文化地面运动下的反应[R].地震工程研究所报告集,第一集,1962.
    [142]Ruiz P., Penzien J. Probabilistic Study of the Behavior of Structures during Earthquake[J]. Earthquake Engineering C. UCB, CA, Report No. ERRC69-03,1969.
    [143]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动,1991,11(3):45-53.
    [144]杜修力,陈厚群.地震动随机模拟及其参数确定方法[J].地震工程与工程振动,1994,14(4):1-5.
    [145]杜修力.水工建筑物抗震可靠度设计和分析用的随机地震输入模型[J].地震工程与工程振动,1998 18(4):76-81.
    [146]王君杰,江近仁.关于地震动平稳自功率谱模型的注记[J].世界地震工程,1997,13(2):37-40.
    [147]Penzien T., Watabe M. Characteristic of 3-Dimensional Earthquake Ground Motions[J]. Earthquake Engineering and Structural Dynamics,1975,3(4):363-373.
    [148]Kubo T., Penzien J. Analysis of Three-Dimensional Strong Ground Motion along Principal Axes, San Fernando Earthquake[J]. Earthquake Engineering and Structural Dynamics,1979,7(3):265-278.
    [149]Kubo T., Penzien J. Simulation of Three-Dimensional Strong Ground Motion along Principal Axes, San Fernando Earthquake[J]. Earthquake Engineering and Structural Dynamics,1979,7(3):279-294.
    [150]Ghafory A. M., Singh. M. P. Structural Response for Six Correlated Earthquake Components[J]. Earthquake Engineering and Structural Dynamics,1986,14(1):103-119.
    [151]Lopez O. A. Critical Response of Structures to Multicomponent Earthquake Excitation[J]. Earthquake Engineering and Structural Dynamics,2000,29(12):1759-1778.
    [152]李宏男.结构多维抗震理论和设计方法[M].科学出版社,1998.
    [153]李宏男.结构多维地震反应[D].国家地震局工程力学研究所博士学位论文,1990.
    [154]Wilson E. L., Subarwardy I., Habibullah A. A Clarification of the Orthogonal Effects in A Three Dimensional Seismic Analysis[J]. Earthquake Spectra,1995,11(4):659-666.
    [155]Lopez O. A., Torres R. Discussion of "A Clarification of the Orthogonal Effects in A Three Dimensional Seismic" by E. L. Wilson, I. Subarwardy, A. Habibullah, Earthquake Spectra,1996,12(2):357-361.
    [156]Menun C., Kiureghian A. D. A Replacement for the 30%,40%, and SRSS Rules For Multicomponent Seismic Analysis. Earthquake Spectra,1998,14(1):153-163.
    [157]陈国兴,孙士军,等.多维相关地震动作用结构地震反应的反应谱法[J].南京建筑工程学院学报,1999,(4):15-23.
    [158]Semby W., Kiureghian A. D. Modal Combination Rules for Multi-Component Earthquake Excitation[J]. Earthquake Engineering and Structural Dynamics,1985,13(1):1-12.
    [159]黄玉平,刘季.双向水平地震动的空间相关性[J].哈尔滨建筑工程学院学报,1987,(3):10-14.
    [160]Key D. Earthquake Design Practice for Buildings[J]. Thomas Telford,1988,37-39.
    [161]王君杰.多点多维地震动随机模型及结构的反应谱分析方法[D].国家地震局工程力学研究所博士学位论文,1992.
    [162]Hammoutene M., Tiliounine B., Bard P. Y. A Two Dimensional Nonstationary Optimized Accelerogram Scaled for Magnitude, Distance and Soil Conditions. Proc.10th World Conf. On Earthquake Engineering, Madrid, Spain,1992,2:817-821.
    [163]Naganuma T. Deodatic G Shinozuka M. ARMA Modal for Two-Dimensional[J]. Engineering Mechanics, ASCE,1987,113(2):234-251.
    [164]Clark R.W,彭津.结构动力学[M],科学出版社,1981.
    [165]张治勇,孙柏涛,宋天舒.新抗震规范地震动功率谱模型参数的研究[J].世界地震工程,2000,16(3):33-38.
    [166]薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究[J],土木工程学报,2003,36(5):5-10.
    [167]王亚勇,白雪霜.台湾921地震中钢筋混凝土结构震害特性[J],工程抗震,2001,3.
    [168]胡庆昌.1995年1月17日日本阪神大地震中神户市房屋结构震害简介[J].建筑结构学报,1995,3.
    [169]胡庆昌.1985年智利地震多层及高层钢筋混凝土剪力墙结构的表现及其设计方法的探讨[J].建筑结构,1993,9.
    [170]李英民,王亚勇.结构静力弹塑性分析(Push-over)方法的改进[J].建筑结构学报,2000,1.
    [171]李峻,叶燎原.Push-over分析法及其与非线性动力分析方法的对比[J].世界地震工程.1999,2.
    [172]叶燎原,潘文.结构静力弹塑性分析(Push-over)的原理和计算实例[J]I建筑结构学报,2000,21(1):37-43.
    [173]朱伯龙,董振祥.钢筋混凝土非线性分析[M].同济大学出版社,1985.
    [174]吕西林,金国芳,吴晓涵.钢筋混凝土结构非线性有限元理论与应用[M].同济大学出版社,1997.
    [175]张宇峰.巨型框架结构的抗震性能及抗震设计方法的研究[D].东南大学,2002.
    [176]赵鸿铁.钢与混凝土混合结构[M].科学出版社,2001.
    [177]薛建阳,赵鸿铁.型钢混凝土框架弹塑性地震反应试验研究[J].西安建筑科技大学学报,1997,4.
    [178]薛建阳,赵鸿铁.型钢混凝土框架模型试验的弹塑性地震反应分析[J].建筑结构学报,2000,4.
    [179]刘劲松.带高位大跨转换层建筑结构抗震性能研究[D].浙江大学,2004.
    [180]李康宁,洪亮,叶献国.结构三维弹塑性分析方法及其在建筑物震害研究中的应用[J].建筑结构,2001,3.
    [181]混凝土结构设计规范(GB50010-2002).中国建筑工业出版社,2002.
    [182]肖建庄,张建荣.混凝土框架柱轴压比限值分析[J].建筑结构,2002,30(2):33-35.
    [183]Peter F. Capacity spectrum method based on inelastic demand spectrum[J]. Earthquake Engineering and Structure Dynamics,1999,28:979-993.
    [184]Chopra A. K., Geol R. K. Capacity-demand-diagram methods for estimating seismic deformation of inelastic structures: SDF systems[R]. Rep. No. PEER-1999.2, Pacific Earthquake Engineering Research Ctr., University of California, Berkeley, Calif.1999.
    [185]Newmark N. M., Hall W. J. Procedures and criteria for earthquake resistant design[R]. Building Research Series No.46[R]. National Bureau of Standards, U.S. Dept. of Commence, Washington,1973, 209-236.
    [186]Nassar A. A., Krawinkle H. Seismic demands for SDOF and MDOF systems[R]. John A. Blume Earthquake Engineering Center Report No 95, Stanford University, CA,1991.
    [187]Miranda E. Site-dependent strength reduction factors[J]. Journal of Structural Engineering,1993, 116(12):3503-3519.
    [188]Vidic T., Fajfar P. Consistent inelastic design spectra:strength and displacement[J]. Earthquake Engineering and Structural Dynamics,1994,24(5):507-521.
    [189]Li H. L., Sang W. H., Young H. O. Determination of ductility factor considering different hysteretic models[J]. Earthquake Engineering and Structural Dynamics,1999,28(9):957-977.
    [190]Borzi B., Elnashai A. S. Refined force reduction factors for seismic design[J]. Engineering Structure, 2000,22(9):1244-1260.
    [191]范立础,卓卫东.桥梁延性抗震设计[M].人民交通出版社,2001.
    [192]杨木旺.大跨度刚性空间结构竖向地震的静力弹塑性分析[D].同济大学,2007.
    [193]顾明,黄友钦,黄鹏,等.体育场挑篷的风荷载试验研究[J].同济大学学报(自然科学版),2008,36(9):1170-1175.
    [194]沈国辉,孙炳楠,楼文娟.体育场看台挑篷的风荷载及干扰效应分析[J].空气动力学学报,2005.23(4):490-495.
    [195]耿淑伟,陶夏新.地震加速度反应谱竖向分量与水平分量的比值[J].地震工程与工程振动,2004,24(5):33-38.
    [196]叶献国,种迅,等.Pushover方法与循环往复加载分析的研究[J].合肥工业大学学报(自然科学版),2001,24(6):
    [197]Ghobarah A., Abou-Elfath H., Biddah A. Response-based damage assessment of structures[J]. Earthquake Engineering and Structural Dynamics,1999,28(1):79-104.
    [198]熊学玉,李春祥,耿耀明.大跨预应力混凝土框架结构的静力弹塑性(Pushover)分析[J].地震工程与工程振动,2004,24(1):101-107.
    [199]Chopra A. K., Goel R. K. A Modal Pushover Analysis Procedure for estimating seismic demands for building[J]. Earthquake Engineering and Structural Dynamics,2002,31(3):561-582.
    [200]Jan T. S., Ming W. L., Kao Y. C. An upper-bound pushover analysis procedure for estimating the seismic demands of high-rise building[J]. Engineering Structural,2004,26:117-128.
    [201]卢文生,吕西林.框架剪力墙结构模态静力非线性抗震分析方法研究[J].地震工程与工程振动, 2005.25:58-66.
    [202]Bracci J. M., Kunnath S. M., Reinborn A. M. Seismic Performance and Retrofit Evaluation for Reinforced Concrete Structural[J]. Earthquake Engineering, ASCE,1997,123(1):3-10.
    [203]Soong T. T., Dargush G F. Passive energy dissipation systems in structural engineering[M]. New York: John Wley and Sons,1997.
    [204]欧进萍,吴斌.摩擦型与软钢屈服型消能器的性能与减震效果的试验比较[J].地震工程与工程振动,1995,15(3):73-85.
    [205]高小旺,龚思礼,苏经宇等.建筑抗震设计规范理解与应用[M].中国建筑工业出版社,2002.
    [206]Li Hong Nan, Yang Jia. Theoretical and Experimental Studies on Reduction for Multi-Modal Seismic Response of High-Rise Structures by TLDs[J]. Journal of Vibration and Control,2004,10(7):1041-1056.
    [207]Kelly J. M., Skinner R. I. Heine A. J. Mechanisms of energy absorption in special devices for use in earthquake resistant structures[J]. Bulletin of N. Z. society for Earthquake Engineering.1972,5(3): 63-88.
    [208]Whittaker A. S., Bertero V. V., Thompson C. I., and Alsonson L. J. Seismic testing of steel plate energy dissipation devices[J]. Earthquake Spectra,1991,7(4):563-604.
    [209]Tsai K. C., Chen H. W., Hong C. P. and Su Y. F. Design of steel triangular plate energy absorbers for seismic resistant construction[J]. Earthquake Spectra,1993,19(3):505-528.
    [210]HADAS钢板消能器构架与构件性能试验[R].中国台湾地震工程研究中心试验报告,2004.
    [211]中国建筑科学研结构研究所试验报告[R],建结(结构)字(2003)第040号.中国建筑科学研结构研究所,2003.
    [212]胡克旭,吕西林,陈清祥.开孔式软钢阻尼器在某公司机房大楼抗震加固中的应用[J].结构工程师,2006,增刊(1):7-11.
    [213]Housner G. W., Bergman L. A., Caughey T. K. Structure control:past, present and future[J]. Journal of Engineering Mechanics,1997,123(9):897-909.
    [214]赵一.摩擦耗能减震结构分析设计的非线性静力方法[D].重庆大学土木工程学院,2004.
    [215]周福霖.工程结构减震控制[M].地震工程出版社,1997.
    [216]周云,周福霖.耗能减震体系的能量设计方法[J].世界地震工程,1997,13(4):7-13.
    [217]Housner G. W. Limit design of structure to resist earthquake[C]. Proc. of First World Conf on Earthquake Enginnring, Berkeley, CA,1956.
    [218]何政,欧进萍.钢筋混凝土结构基于改进能力谱法的地震损伤性能设计[J].地震工程与工程振动, 2000,20(01):115-122.
    [219]欧进萍,吴斌,龙旭.耗能减震结构的抗震设计方法[J].地震工程与工程振动,1998,18(2):98-107.
    [220]薛素铎,王雪生,曹资.结构多维地震作用研究综述及展望(Ⅱ)——分析方法及展望[J].世界地震工程2002,18(1):34-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700