聚砜中空纤维复合膜基膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以聚砜中空纤维超滤膜为基膜,分别以间苯二胺和哌嗪为水相单体,均苯三甲酰氯为有机相单体,通过界面聚合反应在基膜表面形成超薄功能层,制备了芳香族聚酰胺/聚砜中空纤维复合膜。研究了中空纤维基膜的纺丝工艺,基膜预处理、单体结构对复合膜性能的影响,复合膜的分离性能等。
     以聚砜为基质材料,选择了多种成孔添加剂制成纺丝液,采用干-湿法纺丝工艺制成聚砜中空纤维基膜。研究了添加剂组成对基膜结构和性能的影响。其中,复合添加剂各组分的致孔机理有机配合,协同作用,使纺丝液处于亚稳定状态,有效控制纺丝液中凝固液的界面润湿性,控制相转化成膜机理,纺制出性能稳定、孔径适当、高透水通量的聚砜中空纤维基膜。在0.1MPa下,对4g/L卵清蛋白水溶液的截留率在85%左右,纯水通量高于250L.m~(-2).h~(-1)。并对复合添加剂纺制基膜的工艺进行了详细的研究。
     本文选择两种水相单体与均苯三甲酰氯反应制备了聚酰胺/聚砜中空纤维复合膜。结果表明:采用哌嗪单体得到聚哌嗪均苯三甲酰胺/聚砜复合纳滤膜,对二价盐有较好的截留,0.7MPa下对2g/L MgSO_4水溶液的截留率为96.4%,水通量达94.4 L.m~(-2).h~(-1),但对一价盐截留率较低,0.7MPa下对0.5g/LNaCl的截留率低于30%;采用间苯二胺单体得到聚均苯三甲酰间苯二胺/聚砜复合膜,对一价和二价盐均有较高的截留,0.7MPa下对2g/L MgSO_4水溶液的截留率为98.8%,对0.5g/L NaCl的截留率为91.5%,但通量很低。详细研究了聚哌嗪均苯三甲酰胺/聚砜复合纳滤膜的分离性能,结果表明:该复合膜对二价或多价离子和相对分子质量大于300的物质均有较好的截留。
     将基膜经过乙醇预处理后制备聚哌嗪均苯三甲酰胺/聚砜复合纳滤膜,在0.7MPa下对2g/LMgSO_4水溶液的通量提高近一倍,截留性能变化不大。红外谱图分析结果表明,经过乙醇预处理,基膜表面有氢键产生,复合膜表面聚酰胺大分子的端基N-H或O-H伸缩振动吸收峰变强,说明乙醇预处理增强基膜表面极性,有利于提高界面聚合反应效率。依据膜分离机理中的溶解-扩散模型,存在于多孔支撑层和超薄功能层之间的氢键增强了复合膜与水分子之间的相互作用,有助于提高复合膜的产水率。
In this paper, polyamide/ polysulfone(PSf) composite hollow fiber membrane was prepared by using PSf ultrafiltration hollow fiber membrane as support membrane, m-phenylene diamine(MPD) and piperazine(PIP) as the monomer in aqueous, trimesoylchloride(TMC) as the monomer in organic phase, fabricating an ultra thin polyamide functional layer on the substrate through interfacial polymerization. Spinning technics of hollow fiber, the effects of pre-treatment of substrate and the structure of monomers on the performance of composite membrane, and separate capability of composite membrane were studied.
     PSf hollow fiber membrane was prepared by dry-wet spinning technics, using kinds of additives, the effect of additives on the structure and performance of substrate membrane was researched. The components in composite additives make the induce-porous mechanism cooperate effectively, resulting in the spinning solution having proper dispersibility and stabilization, controlling the wetting capability of coagulating solution in spinning dope effectively, controlling the formation of membrane, preparing PSf hollow fiber membrane with steady performance, proper hole, and high flux. The membrane has a rejection of 85% for the solution of egg white albumin at the concentration of 4g/L, and water flux more than 250 L .m~(-2).h~(-1) under an operating pressure of 0.1MPa. Spinning technics of substrate membrane with composite additives was investigated in detail.
     Two monomers in aqueous were selected, reacting with TMC, PA/PSf composite membranes were prepared. The results showed as follows, when using PIP as monomer, the composite membrane prepared has a good rejection for salt with two charges, but a worse rejection for salt with one charge. It has a salt rejection of 96.4% for MgSO_4 at the concentration of 2g/L, and a high water flux of 94.4 L .m~(-2).h~(-1) under an operating pressure of 0.7MPa. But a low salt rejection for NaCl, lower than 30%. When using MPD as monomer, the composite membrane prepared has a good rejection both for salt with one charge and two charges, but a low permeating flux. Separate capability of Polypiperazine trimesoyl amid/PSf nanofiltration composite membrane was studied, it has a good rejection for multi-valent ions and substance with molecular weight higher than 300.
     Polypiperazine trimesoyl amid/PSf nanofiltration composite hollow fiber membrane was prepared using substrate pre-treated with ethanol. The permeating flux of composite membrane increased about one times for MgSO_4 at the concentration of 2g/L, under an operating pressure of 0.7MPa, while salt rejection changed little. Hydrogen bond was formed between porous substrate and ultra thin polyamide functional layer, it strengthened the action between composite membrane and water compound, according to the model of dissolve and diffuse from the mechanism of membrane separating.
引文
[1]Mulder M.,膜技术基本原理(李琳译),北京:清华大学出版社,1999,1-3
    
    [2]Pellegrino J., Separation and Purification Methods, 2000, 29(1): 91
    
    [3]Loeb S., Sourirajan S., UCLA Dept. Eng. Report, 1961, No. 60-60
    
    [4]Loeb S., Sourirajan S., Sea water demineralization by means of an osmotic membrane, Advances in Chemistry Series, 1963, 38: 117-119
    
    [5]缪晖,膜分离技术的发展及应用,天然气与石油,2004,22(3):46-49
    
    [6]赵之平,王志,王世昌,现代分析测试技术在膜结构与性能研究中的应用, 膜科学与技术,2001,21(6):34-39
    
    [7]Lonsdale H. K., Growth of membrane technology, J. Membr. Sci., 1982, 81: 10-14
    
    [8]Mason E., From pig bladders and cracked jars to polysulfones: an historical perspective on membrane transport, J. Membr. Sci., 1991,125: 60-65
    
    [9]安树林,膜科学技术实用教程,北京:化学工业出版社,2005,5-6
    
    [10]武少禹,郑国栋,陈玉东等,高分子合金微孔底膜的制备与性能,水处理 技术,1994,20(6):309-312
    
    [11]俞三传,金可勇,高从增,高性能聚砜支撑膜研制,膜科学与技术,1999, 19(6): 52-55
    
    [12]王建黎,计建炳,徐又一,膜分离技术在水处理领域的应用,膜科学与技 术,2003,23(5):65-70
    
    [13]Lakshminarayan Raman P., Munir Cheryan, Nandakishore Rajagopalan, Consider nonafiltration for membrane separations, Chemical EngineeringProgress, 1994(3): 68-74
    
    [14]Cadotte J E., Novel water softening membranes, US Pat., 4812270,1989-03-14
    
    [15]Hodgdon R B., Polyamine-polyamide composite nanofiltration membrane for water softening, US Pat., 5152901,1992-10-06
    
    [16]Ikeda K, Nakano T, Ito H, et al., New composite charged reverse osmosis membrane, Desalination, 1998, 68:109-119
    
    [17]高从堦,鲁学仁等,纳滤膜,全国RO、UF、MF膜技术报告讨沦会,兴城, 1993,15-18
    
    [18]高从堦,张建飞,鲁学仁等,纳滤纯化和浓缩染料试验,水处理技术,1996, 22(3):147-150
    
    [19]俞三传,高从堦,张建飞等,荷电纳滤膜的研制,第二届全国膜和膜过程 学术报告会论文集,杭州,1996:96-99
    
    [20]Johan Schaep, Carlo Vandecasteele, Evaluating the charge of nanofiltration membranes, J. Membr. Sci., 2001,188: 129-136
    
    [21]武春瑞,张守海,杨法杰等,聚酰胺表面结构及其对复合膜分离性能的影 响,高分子学报,2007(7):621-626
    
    [22]Cadotte J E., Interfacially synthesized reverse osmosis membrane, US Pat, 4277344,1981-07-07
    
    [23]张建飞,高脱盐反渗透复合膜的研究,工业水处理和海水淡化技术应用与 发展研讨会文集,1996,349-354
    
    [24]俞三传,高从增,浸入沉淀相转化法制膜,膜科学与技术,2000,20(5): 36-41
    
    [25]Mulder M.,膜技术基本原理(李琳译),北京:清华大学出版社,1999,82-89
    
    [26]Wljmans J G.., J. Membr. Sci,1983,14:253
    
    [27]Reuvers A J, Berg J W A van den, Smolders C A, Formation of membranes bymeans of immersion precipitation. A model to describe the mass transfer duringimmersion precipitation, J. Membr. Sci., 1987, 34:45-65
    
    [28]Smolders C A, Reuvers A J, Boom R M, et al., Microstructures in Phase-inversion membranes, Part I: Formation of macrovoids. J. Membr. Sci., 1992,73: 259-275
    
    [29]安树林,张宇峰,以盐水为成孔剂的聚砜中空纤维膜的制备及性能,天津 工业大学学报,2002,21(4):31-33
    
    [30]李伟,黄颂安,非离子表面活性剂对聚砜超滤膜结构和性能的影响,华东 理工大学学报,1995,21(1):12-16
    
    [31]王军,奚旦立,表面活性剂对聚氯乙烯中空纤维膜性能的影响,膜科学与 技术,2004,24(4):4-8
    
    [32]熊艳芳,黄小华,孙树东等,PSf-DMAc-醇类非溶剂体系中非溶剂沉淀能力 的研究,膜科学与技术,2006,26(3):22-26
    
    [33]吕晓龙,胡成松,胡新萍,高性能聚偏氟乙烯中空纤维膜纺制,纺织学报, 1998,20(4):44-46
    
    [34]Sue Ryeon Kim, Kew Ho Lee, Mu Shik Jhon, The effect of ZnCl_2 on the formation of polysulfone membrane, J. Membr Sci., 1996 (119): 59-64
    
    [35]Qing-Zhu Zheng, Peng Wang, Ya-Nan Yang, Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process, J. Membr Sci., 2006(279):230-237
    
    [36]Jeong-Hoon Kim, Keew-Ho Lee, Effect of PEG additive on membrane formation by phase inversion, J. Membr Sci., 1998(138):153-163
    
    [37]Jian-Jun Qin, Fook-Sin Wong, Ying Li, et al., A high flux ultrafiltration membrane spun from PSU/PVP(K90)/DMF/l,2-propanediol, J. Membr Sci, 2003(211):139-147
    
    [38]江成璋,林一铮,高渗透聚砜中空纤维超滤膜制备,环境科学,1966,17(5): 5-7
    
    [39]Zeman L J, Zydney A L. Microfiltration and ultrafiltration: Principles and applications, New York: Marcel Dekker Inc, 1996, 51-117
    
    [40]Bokhorst H, Alena F W, Smolders C A, Formation of asymmetric cellulose acetate membranes, Desalination, 1981,33:349-351
    
    [41]Wijmans J G, Baaij J P, Smolders C A, J. Membr. Sci., 1983,14: 263-268
    
    [42]秦建军,王正建,田燕等,聚砜中空纤维超滤膜制备条件的考察,水处理 技术,1994,20(4):197-200
    
    [43]秦建军,林一铮,江成璋,聚砜中空纤维超滤膜的结构形念研究,膜科学 与技术,1991,11(1,2):7-18
    
    [44]杨兰娜,郑领英,胡家俊等,聚砜超滤膜凝胶过程研究,水处理技术,1992, 28(5): 289-295
    
    [45]Da-Guang Yu, Wen-Li Chou, M.-C. Yang, Effect of bore liquid temperature and dope concentration on mechanical properties and permeation performance of polyacrylonitrile hollow fibers, Separation and Purification Technology, 2006, 51: 1-9
    
    [46]吕少丽,朱宝库,徐又一,凝固浴温度对相转化聚醚砜中空纤维膜结构与 性能的影响,膜科学与技术,2006,26(5):26-31
    
    [47]祝振鑫,吴立明,胡晓珺,用鸡蛋清中的卵清蛋白测定常用超滤膜的切割 分子量,膜科学与技术,1999,19(5):44-50
    
    [48]徐培琴,刘长芹,一种简便快速测定超滤膜对卵清蛋白分子截留率的方法, 膜科学与技术,1990,,10f2):60-63
    
    [49]许振良,瞿晓东,陈桂娥,高孔隙率聚偏氟乙烯中空纤维超滤膜的研究, 膜科学与技术,2000,20f4):10-13
    
    [50]张烽,徐平,反渗透、纳滤膜及其在水处理中的应用,膜科学与技术,2003, 23(4): 241-245
    
    [51]Matsuura T, Progress in Membrane Science and Technology for Seawater Desalination-a Review, Desalination, 2001,134:47-54
    
    [52]Cadotte J E., US Patent, B01D, 4277344,1981-07-07
    
    [53]Wu S Y, Zheng C, Zheng G D, J. Appl. Poly. Sci.,1996, 61: 1147-1150
    
    [54]Wu S Y, Zheng C, Zheng G D, Polymer, 1996, 37: 4193-4195
    
    [55]武少禹,郑灿,郑国栋,超薄复合膜的界面控制,科学通报,1996,41(4): 383-385
    
    [56]曹艳霞,郑国栋,徐纪平,高分子复合膜的界面与性能的相关性,科学通 报,1998,43(23):108-109
    
    [57]曹艳霞,郑国栋,吴集成等,界面控制与复合膜的性能,功能高分子学报, 1999,1:97-101
    
    [58]汪锰,王湛,李政雄,膜材料及其制备,北京:化学工业出版社, 2003, 141-142
    
    [59]Kim C K, Kim J H, Roh I J, et al., J. Membr. Sci., 2000,165:189-199
    
    [60]Petersen R J., Composite reverse osmosis and nanofiltration membranes, J. Membr. Sci., 1993, 83:81-150
    
    [61]俞三传,金可勇,高从增,高性能聚砜支撑膜研制,膜科学与技术,1999, 19(6):45-48
    
    [62]Rao AP, Joshi S V, Trivedi J J, et al., J. Membr. Sci,, 2003, 211:13-24
    
    [63]Kosutic K, Kastelan L, Kunst B, J. Membr. Sci., 2000,168:101-108
    
    [64]Hirose M, Minamizaki Y, Kamiyama Y, The relationship between polymer molecular structure of RO membrane skin layers and their RO performance, J. Membr. Sci, 1997,123:151-156
    
    [65]高以桓,叶凌碧,膜分离技术基础,北京:科学出版社,1989
    
    [66]刘茉娥,陈欢林,新型分离技术基础,浙江:浙江大学出版社,1993
    
    [67]王湛,膜分离技术基础,北京:化学工业出版社,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700