用于WDM系统的集成解复用接收技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文工作是围绕任晓敏教授担任首席科学家的国家973项目分课题“单片集成光电子器件的异质兼容理论与重要结构工艺创新”(项目编号:2003CB314901),教育部“新世纪人才支持计划”(NCET-05-0111)和国家863研究项目“用于可重构分插复用具有波长处理机制的平面光集成解复用接收器件的研究”(项目编号:2007AA032418)展开的。
     近年来,对通信带宽的需求不断增长,推动了光通信技术的飞速发展。波分复用(WDM)技术作为长距离大容量通信技术的首选,获得了快速发展。作为其中关键技术之一的波长解复用接收器件是波分复用技术能够应用于实际通信系统并发挥自身强大功能的保证。目前普遍采用的解复用接收器件由“解复用器/滤波器+探测器”组合而成,这种分立方式存在很多缺点,如成本高、尺寸大以及额外的插入损耗等。相对于分立器件而言,集成光电子器件可以在同一芯片中集成多个不同功能的元器件,通过元器件的组合可以实现比分立器件更复杂的功能,同时由于其具有更紧凑的结构,更小的光学和电学连接损耗,具有较好光学和电学性能,稳定性和可靠性方面都更具优势,且极大地降低了器件封装的成本。谐振腔增强型(RCE)光电探测器是一类具有开拓创新意义的集成了解复用与接收功能的新型垂直腔器件,RCE光探测器在一定程度上解决了传统PIN光探测器的量子效率和响应速度之间存在相互制约的问题,同时具有波长选择和吸收的功能,作为波分复用(WDM)光通信中的高性能、低成本的新型集成解复用接收器件得到了广泛的关注。本论文对波分复用系统中的集成解复用接收技术进行了研究。
     以下是本论文的主要工作:
     1、对波分复用技术的发展情况、波分复用系统中的关键技术、用于光纤通信的高速光探测器进行了总结和探讨。
     2、提出了一种新型的并行探测集成解复用接收器,利用转移矩阵方法对这种新型并行解复用接收器进行了理论分析,给出了并行解复用接收器并行探测四个波长的具体设计实例。最后使用数值模拟的方法对这种新型并行探测集成解复用接收器的解复用性能和串扰特性进行了计算,并作了分析,分析表明此结构的集成解复用接收器有较好的解复用性能,有望用于WDM系统中。
     3、为了实现阶梯腔结构的并行探测集成解复用接收器,用湿法腐蚀在同一个GaAs基片上得到了四个不同厚度的阶梯结构,用显微镜观察了制备的阶梯结构GaAs基片,记录下了表面显微图和横截面显微图,测量出了阶梯相差的厚度,并计算出了H_2SO_4:H_2O_2:H_2O=1:1:30腐蚀GaAs基片的腐蚀速率大约是1.985nm/s。为最终成功实现可控的阶梯腔的实验制备,积累了实验经验和实验数据。
     4、为了改进一镜斜置三镜腔结构,增加光在吸收腔中的反射次数,使得光得到更充分的吸收,研究了弧形悬臂的制作。用选择性腐蚀方法在InP基片上制作出了弧形悬臂,并对不同悬臂尺寸作了扫描电镜测量,悬臂尺寸不同的时候,得到了不同角度的弧形悬臂。
The research work in this thesis was supported by grants from one of the sub-projects of National Basic Research Program of China (National "973" Program No.2003CB314901, Prof. Ren Xiao-min as Chief Scientist), New Century Excellent Talents at the University of China (NCET-05-0111) and National High Technology R&D Project (National "863" Project No. 2007AA03Z418).
     Recently, the increasing demand for bandwidth of telecommunication has greatly promoted the development of optical fiber communications. One of the promising technologies is wavelength-division multiplex (WDM) that has been developed rapidly in the long haul communications. Wavelength-selective receiving has become the key technology of WDM applications. The structure of current demultiplexing receiver is basically "demultiplexer + photodetector" and its performance is not quite well, such as high cost, over-size and additional insertion loss etc. In comparison, the integrated optoelectronic devices can integrate several different optoelectronic components; they can achieve more functions than the devices which are based on the combination of separate components. At the same time, due to a more compact structure, weak optical and electrical connections loss, optical and electrical properties, the integrated optoelectronic devices are more advantages on stability, and reliability, and greatly reduce the cost of the device package.
     Resonant-cavity-enhanced(RCE) photodetectors is a kind of innovative vertical cavity structure, which integrats demultiplexing and receiving functions in one, with placing a PIN photodetector in Fabry-Perot (F-P) cavity. RCE photodetectors decouples the quantum efficiency (QE) with the carrier transiting time and overcome the tradeoff between QE and response speed lies in conventional PIN photodetectors to some extend. The enhanced effect in resonant wavelengths resulting form resonant cavity enables RCE photodetectors with inherent wavelength selectivity, which is quite attractive for WDM systems. In this thesis, the Integrated Wavelength Demultiplexing Photodetecting Technologies for the WDM are studied.
     The main research work is listed below:
     1、Summed up the development of WDM system, the key technologies of WDM application, high-speed photodetectors in optical fiber communications.
     2、A novel integrated demultiplexing receiver for parallel detecting is proposed, which is analyzed by the method of transfer matrix. An example of this kind of the novel integrated demultiplexing receiver which can detect four light-waves parallelly was designed, the demultiplexing capability is investigated and the cross-talk is calculated. The result demonstrated that the demultiplexing performance of this receiver is preferable, and can be applied in the WDM system.
     3、In order to get the parallel integrated demultiplexing receiver with the ladder structure, I got four different thickness of the ladder structure by wet etching in the same GaAs substrate, observed the ladder structure of the GaAs substrate, recorded the surface and cross-section micrograph, measured the thickness difference between the ladders, and calculated the etching rate of the H_2SO_4: H_2O_2: H_2O=1: 1: 30 which is about 1.985nm/s. All of that accumulated the experimental experience and data for realizing the controllable ladder cavity successfully.
     4、In order to improve the structure of OMITMIC, increase the times of reflection in the absorbing cavity, and make the light be absorbed more sufficiently, I studied the fabrication of the curved cantilever. By the way of selected etching, I fabricated the curved cantilevers on the InP substrate, and then measured the sizes of the curved cantilevers by SEM. The curved cantilevers have different angles with different sizes.
引文
[1].唐晋发,顾培夫,刘旭,李海峰,“现代光学薄膜技术”,浙江大学出版社,2006,5—160页
    [2].顾畹仪,李国瑞.“光纤通信系统”.北京:北京邮电大学出版社,1999
    [3].Mukherjee B."WDM optical communication networks:progress and challenges",Selected Areas in Communications,IEEE Journal on,Vol.18,Issue10,Oct.2000 pp:1810-1824
    [4].闻和,顾畹仪.“长距离大容量DWDM传输关键技术”.通信世界,2004年10月
    [5].黄辉,《WDM光接收机核心器件前沿技术研究》[博士学位论文],北京邮电大学,2001
    [6].Frank Tong,"Multiwavelength receivers for WDM systems ",IEEE Communication Magazine,Dec 1998
    [7].M.S.Unlu and S.Strite,"Resonant cavity enhanced photonic devices",J.Appl.Phys.,vol.78,pp.607-639,1995
    [8].娄丽芳,盛钟延.“光通信中波分复用器件的实现技术”SEMICONDUCTOR OPTOELECTRONICS Vol.24 No.1 February,2003
    [9].黄永清,黄辉,王兴妍等,“刚于光波分复用系统的高性能解复用接收器件”。中国有色金属学报,2004,S1,p421-426
    [1].张煦.“从OFC 2001看大容量光纤传输系统的新进展[J]”.光通信研究,2001,(4).
    [2].Mukherjee B."WDM optical communication networks:progress and challenges",Selected Areas in Communications,IEEE Journal on,Vol.18,Issue10,Oct.2000 pp:1810-1824
    [3].Mark Kuznetsov,Nan M.Froberg,"A Next-Generation Optical Regional Access Network".IEEE Communications Magazine·January 2000
    [4].I.P.Kaminow,C.R.Doerr,C.Dragone,et al,"A Wideband All-Optical WDM Network",IEEE Journal on Selected Areas in Communications,Vol:14,Issue:5,June 1996 pp:780-799
    [5].A.H.Gnauck,G.Raybon,S.Chandrasekhar,et al."2.5 Tb/s(64~*42.7Gb/s)transmission over 40~*100 km NZDSF using RZ-DPSK format and all-Raman-amplified spans," in OFC2002,2002,post-deadline paper FC-2.
    [6].C.Rasnussen,T.Fjelde,J.Bennike,et al."DWDM 40G transmission over trans-Pacific distance(10000 km)using CSRZ-DPSK,enhanced FEC and all-Raman amplified 100 km ultrawave fiber spans," presented at the OFC2003,Atlanta,GA,2003.
    [7].S.Kawanishi,H.Takara,K.Uchiyama et al,"Tbit/s(160Gb/s 19ch)OTDM /WDM transmission experiment",in OFC'99,paper PD1-1.
    [8]." CAINONET—China Advanced Information Optical Networks" available on http://www.ee.tsinghua.edu.cn
    [9].韦乐平.光纤通信系统技术的发展与展望[J].电信网技术,2006,(11):1-6.
    [10].孙学康,张金菊等.“光纤通信技术”.北京:北京邮电大学出版社,2000
    [11].闻和,顾畹仪.“长距离大容量DWDM传输关键技术”.通信世界,2004年10月
    [12].王志明,孙树东.“粗波分复用(CWDM)技术及其应用”.电力系统通信 Vol.26,No.148,Feb.10,2005
    [13].张成良,张海懿,韦乐平.“光波分复用系统总体技术要求”.电信网技术,1999年12月第4期
    [14].顾畹仪,李国瑞.“光纤通信系统”.北京:北京邮电大学出版社,1999
    [15].黄章勇,“光纤通信用光电子器件和组件”[M],北京:北京邮电大学出版社,2001年7月
    [16].张文化,薛媛,肖建康等,“光纤通信使用的高速光检测器特性研究”,甘肃科技,2004,20(1):54-55.
    [17].孙亚春,王庆康,“金属-半导体-金属光电探测器的瞬态特性分析”[J].光电子技术,2003,23(2):121-125.
    [18].娄丽芳,盛钟延.“光通信中波分复用器件的实现技术”SEMICONDUCTOR OPTOELECTRONICS Vol.24 No.1 February,2003
    [19].黄辉,《WDM光接收机核心器件前沿技术研究》[博士学位论文],北京邮电大学,2001.
    [20].Frank Tong,"Multiwavelength receivers for WDM systems",IEEE Communication Magazine,Dec 1998
    [21].M.S.Unlu and S.Strite,"Resonant cavity enhanced photonic devices",J.Appl.Phys.,vol.78,pp.607-639,1995
    [22].Hari Singh Nalwa,"Photodetectors and Fiber Optics"[M],Los Angeles:Academic Press 2002,Chapter 2 "Resonant Cavity Enhanced Photodetector" pp98-196.
    [23].E.Mao,D.R.Yankelevich,et al,"Wavelength-selective semiconductor in-line fiber photodetectors",Electronics Letters,,vol.36,no.6,pp.515-516,2000
    [24].Xiao-min Ren,Joe C.Campbell."Theory and Simulations of Tunable Two-Mirror and Three-Mirror Resonant Cavity Photo-detectors with a Built-In Liquid-Crystal Layer".[J].IEEE J.of Quan.Electron.,1996,vol.32,no.11,p2012-2025
    [25].A.Salvador,etal.,"Resonant cavity enhanced InP/InGaAs Photdiode on Si using epitaxial liftoff",Appl.Phys.Lett.,vol.65,no.15,pp.1880.
    [26].Joseph A.Jervase and Yousef Zebda,"Characteristic Analysis of Rsonant-Cavity-Enhanced (RCE)Photodetectors",IEEE J.of Quantum Electron.,vol.34,no.7,pp.1129-1134.
    [27].Kai Liu,Yongqing Huang,Xiaomin Ren,"Exact numerical analysis of Resonant-Cavity-Enhanced-Photodetectors with matrix simulation",SPIE's International Symposium on Photonics East'98,1-6 Nov.1998 at Boston,MA USA,Vol.3532,pp.197-202.
    [28].黄永清,黄辉等,“用于光波分复用(OWDM)系统的高性能解复用接收器件的研究”,中国有色金属学报,vol.14,S1,MAY.,2004,pp.409-413
    [29].王兴妍,黄辉,王琦等,“新型光电探测器的研究”,通信学报,Vol.25,No.12,2004年12月,p124-128
    [30].王琦,黄辉,王兴妍等,“新型长波长InP基谐振腔增强型光探测器”,中国激光,Vol.31,No.12,2004,pp.1487-1490
    [31].黄永清,黄辉,于兴妍等,“用于光波分复用系统的高性能解复用接收器件”。中国有色金属学报,2004,S1,p421-426
    [32].黄辉,王兴妍,王琦等,“基于InP/空气隙布拉格反射镜的长波长谐振腔光电探测器”。半导体学报,2004,02,p51-54
    [33].Hui Huang,Yuan Zhong,Qi Wang etc."Theory and Experiments of the One-mirror-inclined Three-mirror-cavity Photodetectors"..Vol.4580,APOC 2001,Beijing,China(2001)
    [34].N.E.J.Hunt,E.E Schubert,and G.J.Zydzik,"Resonant-cavity pin Photodetector utilizing an electron-beam evaporated Si/SiO2 microcavity",Appl.Phys.Lett.,vol.63,no.3,pp.391.
    [1].唐晋发,顾培大,刘旭,李海峰,“现代光学薄膜技术”,浙江大学出版社,2006,5-160页
    [2].黄章勇,“光纤通信用光电子器件和组件”[M],北京:北京邮电大学出版社,2001年7月
    [3].Jerome Prieur,Patrice Davi,Valery Beaud."DWDM multidielectric narrow band optical filters manufacture".SPIE,1998,38(4):168-171
    [4].Angus Macleod."Challenges in the design and production of narrow band filters for optical fiber telecommunications".SPIE,2000,40(3):PP46-57
    [5].Fang Li,Yongchang Lin."Design of optical interference filter for DWDM".SPIE,2001,41(5):384-389
    [6].张瑞君.WDM光滤波器及其应用[J].世界产品与技术,2002,(1):28-31.
    [7].林洪榕,迟晓玲,李利军.光滤波器:结构、原理与特性[J].激光与光电子学进展,2001,(11).
    [8].妹清,晨曦.光通信用滤波器[J].光机电信息,2001,(1).
    [9].原荣.光通信技术讲座——(四):光滤波器和波分解复用器[J].光通信技术,2003,(4).
    [10].冯丹琴,盛秋琴,陈凯,贾宝华,韩军.几种常用滤波器的特性[J].光通信技术,2002,(1).
    [11].顾培夫,白胜元,李海峰,章岳光,刘旭,唐晋发.密集型波分复用薄膜干涉滤光片的设计[J].光学学报,2002,(7):794-797
    [12].M.S.Unlu and S.Strite,"Resonant cavity enhanced photonic devices",J.Appl.Phys.,vol.78,pp.607-639,1995
    [13].黄辉,《WDM光接收机核心器件前沿技术研究》[博士学位论文],北京邮电大学,2001.
    [1].黄永清,黄辉等,“用于光波分复用(OWDM)系统的高性能解复用接收器件的研究”,中国有色金属学报,vol.14,S1,MAY.,2004,pp.409-413
    [2].M.S.Unlu and S.Strite,"Resonant cavity enhanced photonic devices",J.Appl.Phys.,vol.78,pp.607-639,1995.
    [3].Xiaomin Ren,Joe C.Campbell.A novel structure:one-mirror-inclined three-mirror-cavity high performance photodetectors[A].Technical Proceedings:International Topic Meeting On Photoelectronics(ITMPE'97)[C].Beijing,1997,81-84.
    [4].黄成,黄辉,王文娟,黄永清.一种具有平顶陡边响应的InP基长波长可调谐光探测器的设计[J].半导体光电,2005,(2).
    [5].钟源,潘钟,李联合,黄永清,任晓敏.一种具有平顶陡边响应的新型谐振腔增强型(RCE)光电探测器的理论分析及模拟[J].中国激光,2002,4(29):347-350
    [6].钟源,黄永清,任晓敏,牛智川,吴荣汉.平顶陡边响应的谐振腔增强型(RCE)光电探测器的分析[J].半导体光电,2002,(1).
    [7].蔡晓,左玉华,王启明.平顶响应的热光可调谐Fabry-Perot滤波器[J].光电子.激光,2004,(10).
    [8].左玉华,蔡晓,毛容伟,王启明.Si基热光可调谐窄带平顶滤波器[J].半导体学报,2005,(11).
    [9].唐晋发,顾培夫,刘旭,李海峰,“现代光学薄膜技术”,浙江大学出版社,2006,5-160页
    [10].Jerome Prieur,Patrice Davi,Valery Beaud."DWDM multidielectric narrow band optical filters manufacture".SPIE,1998,38(4):168-171
    [11].Angns Macleod."Challenges in the design and production of narrow band filters for optical fiber telecommunications".SPIE,2000,40(3):PP46-57
    [12].Fang Li,Yongchang Lin."Design of optical interference filter for DWDM".SPIE,2001,41(5):384-389
    [13].Mukherjee B."WDM optical communication networks:progress and challenges",Selected Areas in Communications,IEEE Journal on,Vol.18,Issue10,Oct.2000 pp:1810-1824.
    [14].阎嫦玲,鲁平,刘德明,吴粤湘.一种简单实用的CWDM器件的设计与制作[J].光通信研究,2005,(2).
    [15].王兴妍,黄辉,王琦,黄永清,任晓敏.新型光电探测器的研究[J].通信学报,2004,(12).
    [16].周震,黄永清,任晓敏.晶片键合技术及其在垂直腔型器件研制中的应用[J].半导体光电,2003,(4).
    [17].J.A.Wahl,Jay S.Van Delden,and Sandip Tiwari,"Tapered Fabry-Perot Filters"IEEE PHOTONICS TECHNOLOGY LETIERS,VOL.16NO.8,AUGUST 2004
    [18].B.Pezeshki,EK.Tong,J.A.Kash,D.W.Kisker,and R.M.Potemski," Tapered Fabry-Perot Waveguide Optical Demultiplexer",IEEE PHOTONICS TECHNOLOGY LETTERS,VOL.5,NO.9,SEPTEMBER 1993
    [19].H.A.Macleod.Thin-Film Optical Filters(Third Edition).Institute of Physics Publishing,Bristol and Philadelphia,2001
    [1].Michael Quirk,Julian Serda著,韩郑生等译,“半导体制造技术”[M],电子工业出版社, 2004年
    [2].武鹏“波分复用系统集成解复用光接收机核心器件的研究”北京邮电大学 硕士论文2005年
    [3].http://www.sim.ac.cn/yanjiushi/gongneng/hhw/index.html
    [4].http://www.21semi.com/
    [5].http://baike.baidu.com/view/381170.htm
    [6].唐晋发,顾培夫,刘旭,李海峰,“现代光学薄膜技术”,浙江大学出版社,2006,5-160页
    [7].黄章勇,“光纤通信用光电子器件和组件”[M],北京:北京邮电大学出版社,2001年7月
    [8].黄辉,《WDM光接收机核心器件前沿技术研究》[博士学位论文],北京邮电大学,2001.
    [9].A.Shahar,W.J.Thonilinson,A.Vi-Yan et al,"Dynamic etch mask technique for fabricating tapered semiconductor optical waveguides and other structures"[J],Appl.Phys.Lett,Vol.56,no.12,pp.1098-1100,1990.
    [10].J.Weyher,J.van de.Ven,'Selective etching and photoetching of {100} gallium arsenide in CrO3-HF aqueous solutions Ⅰ.Influence of composition on etching behaviour"[J],Journal of Crystal Growth.,Vol.63,pp.285-291,1983.
    [11].J.Weyher,J.van de.Ven,'Selective etching and photoetching of {100} gallium arsenide in CrO3-HF aqueous solutions Ⅱ.The nature of hillocks"[J],Journal of Crystal Growth.,Vol.63,pp.292-298,1983.
    [12].J.Weyher,J.van de.Ven,'Selective etching and photoetching of {100} gallium arsenide in CrO3-HF aqueous solutions Ⅲ.Interpretation of defect-related etch figures"[J],Journal of Crystal Growth.,Vol.78,pp.191-216,1986.
    [13].J.A.Wahl,Jay S.Van Delden,and Sandip Tiwari,"Tapered Fabry-Perot Filters"IEEE PHOTONICS TECHNOLOGY LETTERS,VOL.16NO.8,AUGUST 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700