车内声品质评价预测与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将汽车声品质作为车内噪声的评价标准,以此为目标指导汽车产品的声学研发设计、声品质优化改进,从而提高车内的声学舒适性,满足消费者的需求,是汽车车内噪声研究的重要内容和发展方向。国内对汽车声品质的研究刚起步,虽然在评价方法和模型建立方面取得了一定成果,但建模方法单一、精度不高,且不能对车内声品质优化改进提供指导。
     本文旨在研究车内噪声品质的预测及在实际工程中的应用,为车内声品质改进设计提供技术方法。以主观评价试验结果及心理声学客观参数为基础,通过遗传算法改进BP神经网络,建立汽车声品质的评价模型,并通过权重分析与模型重建,找出对主观评价结果有重要影响的客观参量。采用传递路径合成技术,建立了整车车内噪声合成模型,并结合声品质评价模型建立了虚拟车内声品质预测模型。将试验数据与仿真计算相结合,进行路径贡献量与传递函数分析,找出了对车内声品质有重要影响的噪声来源。在虚拟车内声品质预测模型中,通过修改主要的噪声源的传递路径,模拟实际的改进措施。声品质仿真预测结果说明对主要路径的修改具有良好的效果,为车内声品质优化提供指导。通过对降噪策略和影响因素的研究,提出切实可行的声品质优化方案。试验结果表明,优化后车内烦躁度等级提升,声品质与国外同等级车相差0.5以内,达到满意效果。
With the continuous development of society and economy, vehicle interiornoise gradually become one of the most important indicators to measure thequality of vehicles, and it is become an important factor to evaluate and buying acar. Reducing interior noise to increase acoustic comfort has also become animportant part of the automotive product development design, and the relatedresearches become the hotspot in automotive industry. At present, A-weightedsound level is taken as standard and optimization objective in vehicles interiornoise evaluation study. However, A sound level can not fully reflect the physicalcharacteristics of interior noise and people subjective feeling, simply reduce thecar sound level A method has been unable to meet the demand of passengers.Consumers began to pay attention to sound quality. So creating a comfortable interior acoustic environment and taking sound quality as vehicles interioroptimized design target become an important research and future developmentdirection.
     Works in this thesis are based on the projec(t20100361)form Jilin ProvinceScience and Technology Development. In the paper, steady-state interior noisewas focused as research targets, subjective evaluation test was performed forannoyance grade. Based on the subjective and objective evaluation data, a soundquality evaluation model was established by neural network. By weight analysisand model reconstruction, the objective parameters that have importantimplications to subjective evaluation results were found out. Combine thetransmission path synthesis technology with sound quality evaluation mode, avirtual car sound quality equivalent model is established. In the model, mainnoise source that have important influence on sound quality can be identified bytransfer path analysis. In the model, sound quality simulation was preformed by modify the transmission characteristic of the primary path. With the analysisovercome, improvement was applied on original car, and achieved good results.The main contents are as follows:
     Firstly, subjective evaluation test was carried out and the objectiveparameters were calculated for interior noise of the steady-state operatingconditions based on the theories of vehicle noise and psychoacoustics. Theobjective parameters as input, the subjective value as output, a GA-BP neuralnetwork was adopted to establish a sound quality evaluation model. Comparedwith BP model, the model convergence rate nearly three times the averageprediction error is reduced by3.29%, and gave good predictions of highcorrelation (0.928) and low error (±8%). It proves that the proposed model hashigh accuracy and effectiveness. Weight analysis and reconstruction modelshowed that loudness, sharpness and roughness are the most influentialparameters in vehicle interior sound quality, other objective parameters have little effect.
     Next, with the composing analysis of interior noise, combining the interiornoise model, a vehicle interior noise simulation model based on transfer path analysis is established. In order to improve model accuracy, the m sequencecorrelative identification method of airborne noise transfer function wasproposed, and matrix inverse method was used to calculate excitation ofstructure-born noise. The model prediction spectrum is same as experiments data,the error of A-weighted sound level is less than2.0%, the error of loudnessis less than6.8%, the relative error of sharpness is4.7%, the relative error ofroughness is less than6.0%. This shows that the established synthesis model hashigh prediction accuracy, the synthetic interior noise can reflect the actual carnoise characteristics. Combine noise synthetic model with sound qualityevaluation model, a virtual car sound quality equivalent model was established.In the model, the sound quality as a result of the output and the final destination, the interior noise synthesis model extends to a prediction of sound quality,objective parameters can be calculated and directly to obtain annoyance values.
     Then, the contribution of each transmission path is calculated, main noisesource transfer path is identified as rear suspension. In order to simulate designthe sound quality, transfer characteristics of engine rear mounting Z andX-direction paths that have great influence in sound quality are modified inprediction model. The simulation results show that, just take effective noisereduction measures in main noise source path can get good sound qualityimprovement effect. These works provide a guide for sound qualityimprovement.
     Finally, the technique of vibration isolation and decrease interior noise areresearch and some situations are applied on real vehicle. The body mountbracket system is optimized to improve stiffness and vibration resistance byfinite element dynamic analysis method. Real vehicle tests show that, applying the improvement on original car, the sound quality is enhanced, andcompared with foreign car the gap is less than0.5. The result verify theeffectiveness of the optimization measures.
     In this thesis, a sound quality prediction model and a virtual car soundquality equivalent model are established. The research gives an integratedtechnique of vehicle sound quality prediction, evaluation and control and have ahigh theoretical significance and a good prospect.
引文
[1] Stumpf C. Ton psychologie[M].Leipzig:Hirzel,1883,1890.
    [2] Blauert J. Product-sound assessments: An enigmatic issue from the point ofview of engineering [C].Inter-noise,Yokohama,1994(2):857-862.
    [3] Schiffbanker H,Brandl F K, Thien G E. Development and application of anevaluation technique to assess the subjective character of enginenoise[C].Traverse City: SAE Noise and Vibration Conference andExhibition,911081.
    [4] Noumura K, Yoshida J. Perception modeling and quantification of soundquality in cabin[C].Traverse City: SAE Noise and Vibration Conferenceand Exhibition,2003-01-1514.
    [5] Hussain M, Golles J, Ronache A, et al. Statistical evaluation of an annoyanceindex for engine noise recordings[C].Traverse City: SAE Noise andVibration Conference and Exhibition,911080.
    [6] R Bisping. Emotional effect of car interior sounds: pleasantness And powerand their relation to acoustic key features [J]. SAE Technical Paper,No.951284,1995:1203-1209.
    [7] R Bisping. Car interior sound quality: Experimental analysis by synthesis[J].Acta Acustica united with Acustica,1997,83:813-818.
    [8]R Guski. Psychological methods for evaluating sound quality and assessingacoustic information [J].Acta Acustica united with Acustica,1997,83(5):765-774.
    [9]Norman C Otto. Listening test methods for automotive sound quality[C].AES103rd Convention, New York, September26-29,1997.
    [10]R. Hoeldrich. M. Pflueger. A generalized psycho-acoustical model ofmodulation parameters (roughness) for objective vehicle noiseevaluation[J]. Proceeding of the1999Noise and Vibration Conference,SAE Paper, No.1999-01-1817.
    [11] M.Pflueger, R.Hoeldrich, F.Brand. Subjective assessment of roughness as abasis for objective vehicle interior noise quality evaluation[C].Proceedingof the1999Noise and Vibration Conference, SAE Paper:1999-01-1850.
    [12] Amman Scott; Greenberg Jeff. Subjective evaluation and objectivequantification of automobile structure-noise[J]. Noise controlEng,1999,47(1):17-27.
    [13] R.Heinrichs, M.Bodden. Perceptual and instrumental description of thegear-rattle phenomenon for diesel vehicles[C].6TH Proc Int Congress onSound and Vibration, Copenhagen,Denmark,1999:3103-3112.
    [14] M Bodden, R Heinrichs. Analysis of the time structure of gear rattle inproceedings of the inter-noise [C].SAE paper,1999:1273-1278.
    [15] Brandl F K,Biermayer W.A new tool for the on board objective assessmentof vehicle interior noise quality[C].SAE Noise and Vibration Conferenceand Exhibition,1999-01-1695.
    [16] Ronacher A W,Hussain M,Biermayer W,et al. Evaluating vehicle interiornoise quality under transient driving conditions[C].SAE Noise andVibration Conference and Exhibition,1999-01-1683.
    [17] Hashimoto T.Sound quality approach on vehicle interior and exteriornoise-quantification of frequency related attributes and impulsiveness [J].Journal of Acoustical Society of Japan(E),2000,21:337-340.
    [18] Otto M,Carsten Z.Psychoacoustic model for the objective determinationofengine roughness[C]. Michigan:Sound Quality Symposium,2002.
    [19] Sang-Kwon Lee,Byung-Soo Kim,Hee-Chang Chae. Sound quality analysisof a Passenger car based on rumbling index [J].SAEPaper,No.2005-01-2481.
    [20] Sung-Jong Kim,Sang-Kwon Lee. Objective Evaluation for the PassengerCar During Acceleration Based on the Sound Metric and Artificial NeuralNetwork[J]. Noise and Vibration Conference and Exhibition St. Charles,Illinois May15-17,2007
    [21] Vanni Falasca, Francesca Bandera,Giorgio Irato Centro Ricerche FIAT.Acoustic Quality Evaluation of Heavy Commercial Vehicles[J]. SAE2010.
    [22] Rinaudo S, Sanon A, Duputel P, et al. The sound quality of cooling fansystems [C]. SAE International Congress and Exposition,980587.
    [23] Lim T C. Correlations between deficiencies in power window systemsinfluencing sound quality and some psychoacoustic metrics [J]. AppliedAcoustics,2001,62(9):1025-1047.
    [24] Hamilton D. Sound quality of impulsive noises: an applied study ofautomotive door closing sounds[C]. SAE Noise and Vibration Conferenceand Exhibition,1999-01-1684.
    [25] Carbary K, Ulep D, Witczak R, et al. Power steering pump sound qualityand vibration–test stand development[C]. SAE Noise and VibrationConference and Exhibition,2003-01-1662.
    [26] Frank E C, Pickering D J, Raglin C. In-vehicle tire sound quality predictionfrom tire noise data[C]. SAE Noise and Vibration Conference andExhibition,2007-01-2253.
    [27] Sung-Jong Kim,Sang-Kwon Lee. Objective Evaluation for the PassengerCar during Acceleration Based on the Sound Metric and Artificial NeuralNetwork [J]. SAE paper2007.
    [28] Blauert J. Cognitive and aesthetic aspects of noiseengineering[C].Boston:Proc. Internoise,1986(1):5-14.
    [29] Bodden M. Instrumentation for sound quality evaluation[J].Acta Acusticaunited with Acustica,1997,83:775-783.
    [30]毛东兴,俞悟周,王佐民.声品质成对比较法主观评价的数据检验及判据[J].声学学报,2005,30(5):468-472.
    [31]毛东兴,王勇,姜在秀.车内噪声品质低沉度参量的数学模型[J].声学技术,2006,25(6):533-539.
    [32]刘宗巍,王登峰,梁杰.车内噪声质量的主观评价及其改善措施的研究与发展[J].汽车技术,2006,(7):1-4.
    [33]焦风雷,刘克,毛东兴.运用多维尺度分析进行噪声品质的主观评价[J].声学技术,2004,23(22):95-96.
    [34]焦风雷,刘克,毛东兴.基于非度量多维尺度分析的噪声声品质主观评价研究[J].声学学报,2005,30(6):521-295.
    [35]焦风雷.噪声信号声品质评价及分析方法研究[D].北京:中国科院声学研究所,2005.
    [36]梁杰.基于双耳听觉模型的车内声品质分析与评价方法研究[D].长春:吉林大学汽车工程学院,2007.
    [37]闫靓,陈克安.低频噪声声品质评价实验研究[J].声学技术,2006,25(6):540-546.
    [38]陈剑.汽车声品质主观评价试验方法探究[J].汽车工程,2009,4:389-392.
    [39]谢军.汽车声品质评价技术及方法研究[D].长春:吉林大学仪器科学与电气工程学院,2009.
    [40]申秀敏,左曙光,李林,等.车内噪声声品质的支持向量机预测[J].振动与冲击,2010,29(6):66-68.
    [41]孙强.基于人工神经网络的汽车声品质评价及应用研究[D].长春:吉林大学仪器科学与电气工程学院,2010.
    [42]何融,左曙光,申秀敏,等.燃料电池汽车低频噪声声品质分析[J].噪声与振动控制,2010,30(3):97-99.
    [43] Klaus Genuit,W ade R. Bray. A Virtual Car: Prediction of Sound andVibration in an Interactive Simulation Environment [J].SAE paper,1991.
    [44] Marleen Adams and Patrick van de Ponseele. Sound Quality EquivalentModeling for Virtual Car Sound Synthesis [J]. SAE paper,2001.
    [45] Hueser M G, Govindswamy, et al. Sound quality and engine performanceoptimization development utilizing air-to-air simulation and interior noisesynthesis[C]. SAE Noise and Vibration Conference andExhibition,2003-01-1652.
    [46] Musser C T,Young S.Application of transient SEA for vehicle door closuresound quality[C].SAE Noise and Vibration Conference andExhibition,2005-01-2433.
    [47] Herman Van, Karl Janssens. Virtual prototyping for sound quality design ofautomobiles.Based on a paper presented at Inter-Noise[C]. InternationalCongress on Noise Control Engineering, Honolulu, HI, December2006.
    [48] Dunne G, Williams R, Mark A W. An efficient approach to power-trainsound quality decision making based on interactive evaluations using anNVH simulator[C]. St. Charles: SAE Noise and Vibration Conference andExhibition,2007-01-2392.
    [49] René Visser. Virtual Transfer Path Analysis at Daimler Trucks[J].2009SAE.
    [50] Avnish Gosain, Mugundaram Ravindran, Amit GautamMaruti.Vibro-Acoustic Sensitivity Analysis of Automotive Engine Mountsfor NVH Refinement [J]. SAE2011.
    [51] Todd Tousignant, Kiran Govindswamy, Christian Leibling. Evaluation ofSource and Path Contributions to Sound Quality Using Vehicle InteriorNoise Simulation [C].SAE paper:2011-01-1685.
    [52] Wookeun Song,Haruki Saito and Karim Haddad. Improved Noise SourceIdentification Using Sound Quality Metrics Mapping in Vehicle NoiseMeasurements [J]. SAE2011.
    [53]赵彤航.基于传递路径分析的车内噪声识别与控制[D].长春:吉林大学汽车院学院,2008.
    [54]宋继强.商用车驾驶室内中高频噪声的分析预测与控制[D].长春:吉林大学汽车院学院,2010.
    [55]刘宗巍,王登峰,姜吉光,梁杰,王世刚.用主动噪声控制法改善车内声品质[J].吉林大学学报(工学版).2008(02):258-262.
    [56]汽车工程手册编委会.汽车工程手册——试验篇[M].北京:人民交通出版社,2001.
    [57]张志华,周松.内燃机排放与噪声控制[M].哈尔滨:哈尔滨工程大学出版社,1999.
    [58] Carlucci P, Ficarella A, Chiara F. Preliminary studies on the effects ofinjection rate modulation on the combustion noise of a common rail dieselengine[J].SAE Paper,2004-01-1848.
    [59] Izuho H, Masahiko K, Youichi U. Using multiple regression analysis toestimate the contributions of engine-radiated noise components [J].JSAEreview20:363-368,1999.
    [60]谢鼎华,伍伟景,徐立,丁大连等.基础与应用听力学[M].长沙:湖南科学技术出版社,2003.
    [61]马大猷,沈豪.声学手册[M].第二版.北京:科学出版社,2004.(2):10-32.
    [62] Paterson R D. The sound of a sinusoid: spectral models[J]. JASA,1994,96(3):1409-1418.
    [63] Paterson R.D. The sound of a sinusoid: time-interval models[J]. JASA,1994,96(3):1419-1428.
    [64]诸挥明,梁路光等.人耳听阈曲线的测定[J].2003,16(1):44-45.
    [65] Schroeder M, Atal B, Hall J. Optimizing speech coders by exploitingmasking properties of the human ear[J]. JASA,1979,66(6):1647-1652.
    [66] Moore B C J. Glasberg B R, Baer T. A model for the prediction ofthresholds, loudness, and partial loudness [J].J Audio EngSoc.1997,45(4):224-237.
    [67] Moore B C J, Glasberg B R. Masking patterns of synthetic vowels insimultaneous and forward masking[J]. JASA,1983,73(3):906-917.
    [68]Moore B C J. Suggested formulae for calculating auditory filter bandwidthsand excitation patterns [J].J Acoust Soc Am.1983,74(3):750-753.
    [69]Moore B C, Glasberg B R. Suggested formulae for calculatingauditory-filter shapes and excitation paterns [J].J Acoust SocAm.1983,74(2):750-753.
    [70] Zwicker E, Fastl H. Psychoacoustics: Facts and Models[M].2nd ed.NewYork:Springer,1999.
    [71] Zwicker E, Fastl H.Psychoacoustics,Facts and Models[J].Berlin,Heidelberg:Springer Verlag,1990.
    [72] Zwicker E,Terhardt E. Analytical Expressions for Critical Bandwidth as AFunction of Frequency [J].JASA,68(5):1523-1525,1980.
    [73]赵忠峰,陈克安.基于Zwicker理论的噪声客观评价方法[J].电声技术.2005(10):63-65.
    [74]钟秤平,陈剑,汪念平.工业产品声品质的评价与分析方法研究[J].噪声与振动控制,2008,28(1):129-131.
    [75] Kendall M G, Smith B B. On the method of paired comparisons[J].Biometrika31,1940:324-325.
    [76] Bradley R.A,Terry M.E. The method of paired comparisons[J]. Biometrika39,1952:324-345
    [77] Chouard N, Weber R. On the influence of the ordering of noise insequences for paired comparison judgment utilization[J]. Yokohama, Japan:Proceeding of Inter-noise,1994:1089-1092.
    [78] Gro mann H, Holling H, Schwabe R. Optimal designs for main effects inlinear paired comparison models[J]. Journal of Statistical Planning andInference,126,361-376.
    [79] Parizet E. Paired comparison listening tests and circular error rates[J]. ActaAcustica united with Acustic,2002,88(4):594-598.
    [80]薛薇.SPSS统计分析方法及应用[M].北京:电子工业出版社,2004:320-323.
    [81] Robert H N. Theory of the back-propagation neural network[J]. NeuralNetworks,1989,(1):593-605.
    [82]唐荣江.基于神经网络的汽车振动乘坐舒适性评价方法研究[D].长春:吉林大学硕士论文,2007.
    [83]王文成.神经网络及其在汽车工程中的应用[M].北京:北京理工大学出版社,1998:247-250.
    [84]韩力群.人工神经网络理论/设计及应用[M].北京:化学工业出版社,2007:58-59.
    [85]飞思科技产品研发中心. MATLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社,2003(1):67-74.
    [86]李小荣.基于遗传算法优化神经网络权值的损伤识别[J].噪声与振动控制,2008,6:47-51.
    [87]杨宇冰. MC-CDMA系统中基于遗传算法和蚁群算法的多用户检测[D].陕西:西安电子科技大学,2010,27-37.
    [88] MENG XIANGPING, ZHANG HUAGUANG, TAN WANYU.A hybridmethod of GA and BP for short-term economic dispatch of hydrothermalpower systems [J].2000,51(4):341-348.
    [89]刘林.基于遗传算法的汽车配送问题的研究[D].江西:南昌大学,2007.
    [90]姚文俊.基于遗传算法的故障诊断的研究[J].现代电子技术,2003,23(166):85-87.
    [91]周明,孙树东.遗传算法原理及应用[M].北京:国防工业出版社,1996,18-32.
    [92] Goldberg D E.Genetic Algorithms in Search[M].Optimization andMachine Learning Reading, MA, Addison-Wesley Publishing,1989.
    [93] Kreinovich V, Quintana C, Fuentes O. Genetic Algorithms-What FitnessScaling is Optimal [J]. Cylern And Systems,1993,24(1):9-26.
    [94] Montana D J, Davis L, Training feed For ward neural network using geneticalgorithm[C]. Proc of the11th International Joint Conference on ArtificialIntelligence, San Mateo,1989:762-767.
    [95]郭海湘,诸克军,胡杰.GA-BP嵌套算法的理论及应用[J].数学的实践与认识,2008.1(38):116-125.
    [96]王擘,胡蜀徽,曹志剑.GA-BP神经网络在雷达目标跟踪中的应用研究[J].火控雷达技术.2010,39(3):18-22.
    [97]杨建宇.遗传算法及其工具软件包的研究与设计[D].天津:南开大学,1999.
    [98] Liu Xiaoling,Yang Peiran, Analysis of the thermal elastohydro-dynamiclubrication of a finite line contact[J], TribologyInternational,2002(35):137-144.
    [99] A. ALEBOYEH, M.B. KASIRI. Prediction of azo dye decolorization byUV/H2O2using artificial neural networks[J]. Dyes and Pigments,2008:288-294.
    [100]庞剑,谵刚,何华.汽车噪声与振动理论与应用[M].北京:北京理工大学出版社,2006,6:83-84.
    [101] K. Noumura, J. Yoshida, Method of transfer path analysis for vehicleinterior sound with no excitation experiment [J].in: Proc. FISITA2006,F2006D183, Yokohama, Japan, October2006.
    [102]汤井田,公劲喆,罗维斌.基于CPLD的逆重复m序列伪随机信号发生器[J].工程地球物理学报,2008,5(2):141-147.
    [103] Xiang Ning. Using m-sequences for determining the impulse responses ofLTI-systems [J]. IEEE Trans on Signal Processing,1992,28:139-152.
    [104] Bruce Hobbs,Anton Ziolkowski, David Wright. Multi-TransientElectromagnetics (MTEM)-controlled source equipment for subsurfaceresistivity investigation [A].18th EM Induction Workshop, Spain,2006,(September):17-23.
    [105]李白男.伪随机信号及相关辨识[M].北京:科学出版社,1987:6-17.
    [106]Schoukens J, Rolain Y, Pintelon R. Improved frequency response functionmeasurements for random noise excitations [J]. IEEE Transactions onInstrumentation and Measurement,1998,47(1):322-326
    [107]Pintelon R, Schoukens J. Measurement of frequency response functionsusing periodic excitations, corrupted by correlated input/output errors[J].IEEE Transactions on Instrumentation and Measurement.2001,50(6):1753-1760.
    [108]Pintelon R, Rolain Y, MoerW V. Probability density function for frequencyresponse function measurements using periodic signals [J]. IEEETransactions on Instrumentation and Measurement,2003,52(1):61-68.
    [109]王彬星,郑四发,郝鹏.运行工况下车内噪声的能量传递路径分析[J].噪声与振动控制,2010,10(5):71-74.
    [110]A. N Thite, DJ. Thompson. The quantification of structure-bonetransmission paths by inverse methods.Part l:Improved singular valuerejection methods[J].Journal of Sound and Vibration.2003(264):4ll-431.
    [111] A.N.Thite,D.J.Thompson.The quantification of structure-bornetransmission paths by inverse methods.Part2:Use of regularizationtechniques[J]. Journal of Sound and Vibration,2003(264):433-451.
    [1l2] K.Shin,J.K.Hammond,P.R.White.Iterative svd method for noisereduction of low.dimensional chaotic time series[J].Mechanical Systemsand Signal Processing,1999,13(1):l15-124.
    [113] Jollife I Principal component analysis[M]. New York::SpringerVerlag.1986,1-64.
    [114] Partridge M and Calvo R A. Fast dimensionality reduction and simplePCA[J].Intelfigent Data Analysis,1998,2(3):72-81.
    [115] Hyoung Gil Choi,Anand N.Thite,David J.Thompson.Comparison ofmethods for parameter selection in tikhonov regularization with applicationto inverse force determination[J].Journal of Sound and Vibration,2007(304):894-9l7.
    [116]日本自动汽车技术会.汽车工程手册1基础理论篇[M].北京:北京理工大学出版社,67-82.
    [117]日本自动汽车技术会.汽车工程手册1整车试验评价篇[M].北京:北京理工大学出版社,35-38.
    [118] R.Sottek,B. Müller-Held M. Binaural Transfer Path Analysis andSynthesis (BTPA/BTPS) using Substructuring Techniques Based on FiniteElement Analysis (FEA) and Measurements [C].SAE, May15-17,2007
    [119]吴光强,盛云,方园.基于声学灵敏度的汽车噪声声-固耦合有限元分析[J].机械工程学报,2009(03),222:
    [120]郭磊.车用动力总成结构振动噪声的虚拟预测与分析技术研究[D].杭州:浙江大学机械工程学院,45-48.
    [121]石亦平,周玉蓉.ABAQUS有限元分析实例详解[M].北京:机械工业出版社,279-294.
    [123] Takayuki Koizumi, Nobutaka Tsujiuchi,Yukio Nakamura. A MeasuresPlanning Method by Analysis of Contribution of the Vibration TransferPath[C].SAE,2009.
    [124]崔岸,王登峰,陈海潮,荣安琪.基于模态灵敏度分析的商用车驾驶室结构优化[J].汽车工程,2010(6),Vo. l32;178-194.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700