抗氧化蛋白SsPrxQ在向日葵中的表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆境中盐碱胁迫是影响农作物生长、发育和产量的主要因素之一,近几年,随着分子生物学的迅速发展,转基因技术已逐渐成为耐盐碱领域研究的焦点。本研究通过农杆菌介导法将抗氧化蛋白基因(SsPrxQ)转入油葵中,以获得高耐盐碱的抗性植株。其中,目的基因SsPrxQ来源于耐盐碱植物碱蓬,并将其连入高效植物表达载体pBI121中,构建了植物表达载体pBI121-SsPrxQ,通过电击法将重组载体质粒导入农杆菌C58中,并进行油葵的侵染转化。转化受体是油料作物油葵,向日葵在再生体系与转基因方面已有相关报道,本研究在原有体系的基础上,进一步优化了向日葵的胚轴分化体系以及农杆菌遗传转化条件,获得胚轴分化培养基为MS+6-BA0.5mg/L+GA30.1mg/L,胚轴分化率达55%;生根培养基为MS+NAA0.6mg/L +6g/L agr,生根率达50%;最优的遗传转化条件为AS浓度100μmol/L,菌液浓度为OD600值0.6,预培养16小时,浸染10分钟,共培养3天,共培养温度24℃,Cef浓度250mg/L,Kan浓度40mg/L。通过Kan的逐步筛选最终得到5株抗性苗,用CTAB法提取转基因向日葵基因组DNA做PCR检测,检测出3株是阳性的,初步表明SsPrxQ基因已成功导入向日葵细胞中。同时提取转基因向日葵的总RNA做RT-PCR检测,结果显示3株均扩增出特异性目的片段,证明SsPrxQ基因已成功整合到转基因向日葵的基因组中,并实现转录。
In adverse circumstances, alkalic salt coerces is one of the major stresses effecting the crop plants growth, development and yield, the rapid advance in molecular biology promotes gene technology to become the focus in the field of salt-tolerant plants. In this study, to develop a salt-tolerant oil sunflower, a antioxidant protein gene SsPrxQ from Suaeda salsa. is transferred into oil sunflower, using an Agrobacterium-mediated method. Firstly,the functional gene is cloned and inserted into the plant vector pBI121, and a high efficient expression vector pBI121- SsPrxQ is obtained, and then transferred into Agrobacterium tumefaciens C58, and then oil sunflower was transformed by Agrobacterium tumefaciens infection. The acceptor system is oil crops sunflower. Its regeneration system and related gene transformation have appeared in some literature. This research optimizes the hypocotyl elongation and Agrobacterium transformation system on the base of previous results. The optimal hypocotyl elongation medium is MS+6-BA0.5mg/L+GA30.1mg/L, with the hypocotyl elongation rate of callus 55%; root regeneration medium is MS+NAA0.6mg/L +6g/L agr, with regenerating rate of root 50%. The best Agrobacterium transformation condition is AS concentration: 100μmol/L, A.tumefaciens concentration: OD600=0.6, pre-culture time 16 hours, inoculated time: 10min, co-culture time: 3 days, co-culture temperature: 24℃.concentration of Cef: 250mg/L,concentration of Kan: 40mg/L. 5 strains are gotten through the choice of Kan. We extracted genomic DNA by CTAB method from the leaves of transgenic sunflower plant for PCR analysis, result showed three strains were positive and it preliminarily showed that the SsPrxQ gene had been introduced into sunflower cells. And then we extracted genomic RNA from the leaves of transgenic sunflower plant for RT-PCR analysis and acquired a DNA fragment of correct size. It was confirmed that the SsPrxQ gene had integrated into the genome of the transgenic sunflower plants and realized transcription.
引文
[1]范云六,我国农作物生物技术的成就与展望,院士论坛,2006(6):11~15
    [2]Vaeck M. Transgenic plants protected from insect attack [J] .Nature, 1987, 328 :33-37 .
    [3]郭三堆,崔洪志,倪万潮等,中国农业科学, 1999,32(3) 1~7.
    [4]曹孟良,转基因植物的研究及其产业化进展[J];湖南农业科学;2000(4):6-8
    [5]Hilder V.A,Gatehouse A.M.R,Sheerman S.E.et al. Anovel mechanism of insect resistance engineered into tobacco[J] .Nature, 1987, 330 :160-163 .
    [6]路志芳,张坤朋,植物抗虫基因工程的研究进展,上海蔬菜,2006(5):75~77
    [7]Eggenberger, A.L., Stark, D.M., and Beachy, R.N. The nucleotide sequence of a soybean mosaic virus coat protein coding region and its expression in soybean,1989 ,330 :160-163 .
    [8]Gubba A, Gonsalves C, Stevens MR, et al. Combining transgenic and natural resistance to obtain broad resistance to tospovirus infection in tomato ( Lycopersicon esculentum mill). Mol1 Breeding, 2002, 9 (1): 13 ~ 23
    [9]Tumber N E et al. Expression of alfalfa mosaic virus coat protein gene confers cross-protection in transgenic tobacco and Tomato plants [ J ] .EMBO J. 1987(6):1181-1188
    [10]Datta K,Koukolikova-Nicola Z,Baisakh N,et al.Agrobcteriunvm ediated engineering for sheath blighe resistance of ildian rice cultivars from different ecosystems.[J] Theor Appl Genet,2000,100:832~839
    [11]吴元华,世界烟草动态,1999(4):2~8
    [12]蓝海燕,陈正华,生物技术通报,1998,4:18~23
    [13]Otsuka C Disease-resistant transformed tobacco plant and its construction by genetic transformation 1993(4)
    [14]王景雪,孙毅,崔贵梅,胡晶晶,花粉介导法获得玉米转基因植株,2001 43(3)
    [15]De Block M,Debrouwer D,Tenning P.Transformation of Brassica napus and Brassica oleracca using Agrobacterium tumefaciens and expression of the bar and neogenes in the transgenic plant[J].Plant Physiol,1989,91:694~701
    [16]GORDON- KAMMWJ , SPENCER TM,MANGANOML ,et al. Transformation of maize cells and regeneration of fertile transgenic plants[J ]. Plant Cell ,1990 ,2 :603- 618.
    [17]刁现民,农作物抗除草剂基因工程研究进展,河北农业科学,2001,2:70~74
    [18]Christou P , Ford T L , Kofrom M. Production of transgenic rice from agronomically important indica and japonica varieties via electric discharge particle acceleration of exogenous DNA into immature zygotic embryos. Bio Technology , 1991 , 9 : 957~962
    [19]THMOASHOWM F. Role of cold-responsive genes in plant freezing tolerance[J ]. Plant Physiol , 1998 , 118 :1 - 8.
    [20]WARREN G J , THORLBY G J , KNIGHT M R. The molecular biological approach to understanding freezing-tolerance in the model plant , Arabidopsis thaliana[J] .Environmental Stressors and Gene Responses , 2000, 1 :245- 258.
    [21]KODAMA H. Genetic enhancement of cold tolerance byexpression of a gene for chloroplast w-3 fatty aciddesaturase in transgenic tobacco[J].Plant physiol ,1994 ,105 : 601 - 608.
    [22]ISHIZAKI - NISHIZAWA O. Low - temperature resistance of higher plants is significantly enhanced by a cyanobacterial desaturase[J] . Nat Biotech , 1996 , 14 :1 003 - 1 009.
    [23]KIMBERLY D K, MITCHELL A , DAVID H , et al.Accumulation of type 1 fish antifreeze protein in transgenictobacco is cold - specific[J] . Plant Mol Biol , 1993 ,23 :377- 385.
    [24]STOCHINGER E J , GILMOUR S J , THOMASHOW M F.Arabidopsis thaliana CBF1 encodes an AP2 domain -containing transcriptional activator that binds to the C -repeat/ DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit [J]. Proc Natl Acad Sci USA , 1997 ,94 :1 035-1 040.
    [25]HEISHTH , LEE J T, YANG P T, et al. Heterology expression of the arabidopsis C - Repeat/ Dehydration response element binding factor I gene confers elevated tolerance to chilling and oxidative stresses in transgenictomato[J] . Plant Phsiol ,2002 ,129 :1 086 - 1 094.
    [26]SAIJOY, HATAS , KYOZUKAJ , et al. Over–expression of a single Ca2+- dependent protein kinase confers both cold and salt/ drought tolerance on rice plants[J] . Plant J ,2000 ,25 :319 - 327.
    [27]Champoux M.C., Wang G., Sarkarung S., Mackill D.J., O'Toole J.C., Huang N., and McCouch S.R., 1995, Locating genes associated with root morphology and drought avoidance in rice via linkage to RFLP markers, Theor. Appl. Genet., 90: 969-981
    [28]Ray J.D., Yu L., McCouch S.R., Champoux M.C., Wang G.,and Nguyen H., 1996,Mapping quantitative trait loci associated with root penetration ability in rice ( L.), Theor. Appl. Genet., 92: 627-636
    [29]Price A.H., and Tomas A.D., 1997, Genetic dissection of root growth in rice ( L.)Ⅱ. Mapping quantitative trait loci using molecular markers, Theor. Appl. Genet., 95: 143-152
    [30]Yadav R., Courtois B., Huang N., and McLaren G., 1997, Mapping genes controlling root morphology and root distribution in a double-haploid population of rice, Theor. Appl. Genet., 94: 619-632
    [31]卢向阳,彭丽莎,早稻旱育秧形态,组织结构和生理特性[J].作物学报,1997,23(3):360-369,.
    [32]孙骏威,杨勇,蒋德安,水分亏缺下水稻的光化学和抗氧化应答,2004(3)
    [33]曹慧,王孝威,曹琴,杜俊杰,王中英,水分胁迫下新红星苹果超氧物自由基累积和膜脂过氧化作用[期刊论文] -园艺学报2001(4)
    [34]利容千,王建波,植物逆境细胞及生理学[M]武汉:武汉大学出版社, 20021
    [35]Kishor PBK, Hong Z, Mian GH. Overexpression of△’- pyrroline-5 - carboxylate synthetase increase prolince production and confersosmotolerance in transgenic plants [J] . Plant Physiol ,1995 ,108 :1387~1394
    [36]Zhang H.X., and Blumwald E., 2001, Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit, Nat.Biotechnol., 19: 765-768
    [37]王慧中,黄大年,鲁瑞芳等,转mtlD/gutD双价基因水稻的耐盐性.科学通报,2000,45(7):724-728.
    [38]阎秀峰,孙国荣1星星草生理生态学研究[M].北京:科学出版社, 20001
    [39]梁正伟,水稻品种耐盐碱特性及其生理研究[D].长春:吉林农业大学, 19911
    [40]朱志华,胡荣海,宋景芝等盐胁迫对不同小麦品种种子萌发的影响[J].作物品种资源,1996, (4): 25 - 291
    [41]马翠兰,刘星辉,杜志坚,盐胁迫对柚、福橘种子萌发和幼苗生长的影响[J].福建农林大学学报(自然科学版),2003, 32 (3) : 320 - 3241
    [42]卢静军,李强,多立安,盐胁迫对金牌美达丽和猎狗种子萌发的研究[J].植物研究, 2002 , 22 (3) : 328 - 3321
    [43]谢得意,王惠萍,王付欣等,盐胁迫对棉花种子萌发及幼苗生长的影响[J].中国棉花,2000 , 27 (9) : 12 - 131
    [44]柯玉琴,潘延国,NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响[J].植物生理学报,1999, 25(3):229– 2331
    [45]郑文菊,王勋陵,沈禹颖,几种盐地生植物同化器官的超微结构研究[J].电子显微学报,1999 , 5 (18) : 507 - 5121
    [46]William Hamilton E , A Scott Heckathorn Mitochondrial Adaptations to NaCl [J ] .Plant Physiology , 2001 (126) : 1266 - 12741
    [47]陆静梅,李建东,三种双子叶耐盐碱植物根的解剖研究[J].东北师大学报(自然科学版),1994 , (3) : 96 - 991
    [48]王勋陵,王静,植物形态结构与环境[M].兰州:兰州大学出版社,19891
    [49]白宝璋,徐克章,史芝文等,植物生理学[M].北京:中国农业科技出版社,19961
    [50]唐学玺,贾敬芬,郑国昌,小麦耐盐细胞系对盐胁迫的伤害性反应[J].植物学报,1999,41(7):757-760.
    [51]王学征,韩文灏,于广建,盐分胁迫对番茄幼苗生理生化指标影响的研究[J].北方园艺,2004(3):48-49.
    [52]Suleyman I Allakhverdiev1 Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in synechococcus SP[J] .Plant physiology , 2000 , (123) : 1047 - 10561
    [53]王仁雷,华春,罗庆云等,盐胁迫下水稻叶绿体中Na+、Cl-积累导致叶片净光合速率下降[J].植物生理与分子生物学学报,2002 , 28 (5) : 385 - 3901
    [54]姜卫兵,高光林,戴美松等,盐胁迫对不同砧穗组合犁幼树光合日变化的影响[J].园艺学报,2003 , 30 (6) :653 - 6571
    [55]刘长发,张泽宇,雷衍之,盐度、光照和营养盐对孔石莼(Vlva pertusa)光合作用的影响[J].生态学报,2001 , 21(5) : 795 - 7981
    [56]张川红,沈应柏,尹伟伦等,盐胁迫对几种苗木生长及光合作用的影响[J].林业科学, 2002 , 38 (2) : 27 - 311
    [57]WANG Hong - Wei , Su Ji– Hu Difference in response of photosynthesis to Bisulfite Between Two Wheat [ J ] .Journal of plant physiology and Molecular Biology , 2003 , 29 (1) : 27 - 321
    [58]惠红霞,许兴,李前荣,外源甜菜碱对盐胁迫下枸杞光合功能的改善[J].西北植物学报,2003,23(12):2137-2422.
    [59]张士功,高吉寅,宋景芝,外源甜菜碱对盐胁迫下小麦幼苗体内几种与抗逆能力有关物质含量以及钾钠吸收和运输的影响[J].植物生理学通讯,2000,36(1):23-26.
    [60]刘凤荣,陈火英,刘杨等,盐胁迫下不同基因型番茄可溶性物质含量的变化[J].植物生理与分子生物学学报,2004,30(1):99-104.
    [61]汪良驹,刘友良,无花果耐盐机理的研究Ⅰ-盐逆境下脯氨酸和可溶性蛋白的积累[J].南京农业大学学报,1989,12(4):124-125.
    [62]惠红霞,许兴,李守明,盐胁迫抑制光合作用的可能机理[J].生态学杂志,2004,23(1):5-9.
    [63]周希琴,吉前华,盐胁迫下木麻黄幼苗抗氧化酶活性的变化及Ca2+对它的调控[J].植物生理学通讯,2004,40(2):184-186.
    [64] Lazof D B, Bernstein N The NaCl induced inhibition of shoot growth: the casefor distributed nutrition with special consideration of calcium [ J ] .Adv Bot Res, 1999,29:
    [65]Gaxiola R A, Rao R, Sherman A, et al The Arabidop sisthaliana proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast [ J ] .Proc Natl AcadSci, 1999, 96: 1480 - 14851
    [66]Gaxiola R A, L i J, Undurraga S, et al Drought and salt tolerant plants result from overexp ression of the AVP1 H+-pump [J] .Proc Natl Acad Sci, 2001, 98: 11444 -114491
    [67]Ap seM P, Aharon G S, SneddenW A, et al Salt tolerance conferred by overexp ression of a vacuolar Na+/H+ antiport in Arabidop sis [ J ] .Science, 1999, 285: 1256- 12581
    [68]Serrano R, Mulet J M, Rios G, et al A glimpse of the mechanisms of ion homeostasis during salt stress [ J ] .J Exp Bot, 1999, 50: 1023 - 10361
    [69]Lemieux B, AharoniA, SchenaM Overview of DNA chip technology [ J ].Mol Breed, 1998, 4: 277 - 2891
    [70]高继平,林鸿宣,水稻耐盐机理研究的重要进展—耐盐数量性状基因SKC1的研究[J].生命科学,2005, 17 (6) : 563 - 5651
    [71]GeislerM, Frange N, Gomes E, et al The ACA4 gene of Arabidop sis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast [ J ].Plant Physiol, 2000, 124: 1814 - 18271
    [72]Liu J , Zhu J K A calcium sensor homolog required for plant salt tolerance [ J ] .Science, 1998, 280: 1943 -19451113 - 1891
    [73]Nanjo T, Kobayashi M, Yoshiba Y, et al Antisense suppression of proline degradation imp roves tolerance to freezing and salinity in Arabidopsis thaliana [ J ] .FEBS Lett, 1999, 461: 205 - 2101
    [74]NuccioM L, Rhodes D, McNeil S D, et al Metabolic engineering of plants for osmotic stress resistance [ J ].CurrOp in Plant Biol, 1999, 2: 128 - 1341
    [75]Bohnert H J , Nelson D E, Jensen RG A daptations to environmental stresses [ J ] .Plant Cell, 1995, 7: 1099- 11111
    [76]Kiyosue T, Yoshiba Y, Yamaguchi Shinozaki K, et al A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is up regulated by proline but downregulated by dehydration in Arabidopsis [ J ] .Plant Cell, 1996, 8: 1323 - 13351
    [77]Reymond P, Weber H, Damond M, et al Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis [ J ] ..Plant Cell, 2000,12: 707 - 7191
    [78]Burdon R H, O’Kane D, Fadzillah N, et al Oxidative stress and responses in Arabidopsis thaliana and Oryza sativa subjected to chilling and salinity stress [ J ] .Biochem Soc Trans, 1996, 24: 469 - 4721
    [79]Shen B, Jensen R G, Bohnert H1 Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts [ J ] .Plant Physiol, 1997,113: 1177 - 11831
    [80]CHEN Yao, ZHENG Hailei, XIAO Qiang, et al1 Effects of Salinity on Oxidative and Antioxidative System of Spartina alterni flora [ J ] .Journal of Xiamen Unversity(Natural Science) , 2005, 44 (4) : 576 - 5791
    [81]Bohnert H J, Ayoubi P, Borchert C, et al A genomics approach towards salt stress tolerance [ J ] .Plant Physiol Biochem, 2001, 39: 295 - 3111
    [82]Bowler C, Slooten L,Vandenbranden S, et al.Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants [J]. Eur Mol Biol Organ J, 1991, 10:1723- 1732.
    [83]Shikanai T , Takeda T , et al . Inhibition of ascorbate peroxidase under oxidative stress in tobacco having bacterial catalase in chloroplasts. FEBS Lett ,1998 , 428 : 47 - 51.
    [84]全先庆,高文,盐生植物活性氧的酶促清除机制,安徽农业科学,2003,31(2):320 - 322
    [85]Baier M, Dietz KJ . The plant 2-Cys peroxiredoxin BAS1 is a nuclear encoded chloroplast protein. Its expressional regulation , phylogenetic origin ,and implications for its specific physiological function in plants. Plant J , 1997 , 12 : 179 - 90.
    [86]Baier M,Dietz KJ . Protective function of chloroplast 2-Cys peroxiredoxin in photosynthesis : evidence fromtransgenic Arabidopsis thaliana. Plant Physiol , 1999 ,119 : 1407 - 14.
    [87]Lee KO , et al . Rice-Cys peroxiredoxin over - expressed in transgenic tobacco does not maintain dormancy but enhances antioxidant activity. FEBSLett , 2000 , 486 : 103 - 6.
    [88]Mowla , S. J . A. Thomson , J .M. Farrant and S. G. Mundree . XvPer1 , a novel antioxidant enzyme from the resurrection plant Xerophyta viscosa Baker. Planta ,2002 , 215 : 716 - 726.
    [89]Camilla Haslekas. et al . Seed 1-Cysteine Peroxiredoxin Antioxidants are not involved in Dormancy , But Contribute to Inhibition of Germination during Stress. Plant Physiology , 2003 , 133 : 1148 - 1157.
    [90]Kong W, Shiota S , Shi YX, Nakayama H , Nakayama K. A novel peroxiredoxin of the plant Sedum lineare is a homologue of Escherichia coli bacterioferritin co- migratory protein (Bcp) . Biochem . J , 2000 , 351 :107 - 14.
    [91]Horling F , Lamkemeyer P , K¨onig J , Finkemeier I , Kandlbinder A , et al . Divergent light - , ascorbate- and oxidative stress - dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis thaliana. Plant Physiol , 2002 , 131 :317 - 25.
    [92]Motohashi K, Kondoh A , Stumpp MT , Hisabori T. Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc. Natl . Acad. Sci ,USA ,2001 , 98 : 11224 - 29.
    [93]张慧,盐地碱蓬SsPrxQ基因和拟南芥AtPrxQ基因的进一步功能研究,2006(8)
    [94]Rouhier N , et al . Poplar peroxiredoxin Q. A thioredoxin linked chloroplast antioxidant functional in pathogen defense. Plant Physiology , 2004 , 134 :1027 - 1038.
    [95]Xiao - Li Guo ,Yang - Rong Cao. Molecular cloning and characterization of a stress-induced peroxiredoxin Q gene in halophyte Suaeda salsa. Plant Science ,2004 ,167 :969 - 975.
    [96]汪家灼,我国植物油料及油用向日葵发展近况,内古农业科技,2006( 6) : 11~14
    [97]王鹏冬,杨新元,贾爱红等,我国油用型向日葵研究发展概述,杂粮作物,2005 ,25 (4) :241~245
    [98]王德兴,崔良基,我国当前发展油用向日葵生产的潜力,杂粮作物,2004 ,24 (5):294~297
    [99] T. C. Aитонова等,ДокладыВАСХИЛ. 1991 , (4) :9~13
    [100]卫志明,许智宏,向日葵组织培养和植株再生[J],植物生理学通讯,1983 , (5) :42
    [101]刘宝,顾德锋,邬信康等,向日葵( Helianthus annus)自交系的组织培养和芽的分化[J],吉林农业大学学报,1991 ,1 (2) :6~10
    [102]刘公社,李映红,向日葵组织培养技术[J] .植物学通报,1986 , (3) :33~35
    [103]А.Я.Лущкареко等,ВЕСТНИКС.Х.НАУКИ. 1991 , (6) :78~84
    [104]В.И.Янчик等,Физиοлоγнябиохимиякулвт.Растений. 1989 , (4) :351~357
    [105]C. Pugliesi等,国外农学—油料作物,1992 , (3) :17~19
    [106]GRECOB,et al. Callus induction and shoot regeneration in sunflower ( Helianthus annuus L.) [J ] .Sci . L et t ,1984 ,36:73 - 77.
    [107]BKERMC,MUNOA2FERNANDEZN,CARTERCD.Improvedshoot evelopment and rooting from mature cotyledons of sunflower [J ] . Plant Cel l , Tissue and Organ Culture ,1999 ,58 :39 - 49.
    [108]XU P ZH(徐培洲) ,WU XJ (吴先军) ,HU B M(胡保民) ,et al . A shoot regeneration system f rom cotyledon of Heliant hus annuus L. [J ] .Chinese Journal of Oi l Crop Science (中国油料作物学报) ,2004 ,26 (4) :16 - 19 (in Chinese) .
    [109] MAX X(马雪霞),LAN H Y(蓝海燕),SONG R(宋荣) . Tissue culture and shoot regeneration of sunflower ( Helianthus annuus L. )[J] . Xinjiang AgriculturalScience (新疆农业科学) ,2002 ,39 (1) :23 - 24 (in Chinese) .
    [110]PUNIA M S ,BOHOROVA N E. Callus development and plant regeneration f rom different explants of six wild species of sunflower ( Heliant hus annuus L. ) [J ] . Plant Sci . ,1992 ,87 :79 - 83.
    [111]MOLINIER J , THOMAS C ,BRIGNOU M ,HAHNE G. Transient expression of it gene enhances regeneration and t ransformation rates of sunflower shoot apices ( Heliant hus annuus L. ) [J ] . Plant Cel l Rep . ,2002 ,21 :251 - 256.
    [112]WEBERS ,FRIEDT W,LANDES N , et al . Improved Agrobacterium mediated t ransformation of sunflower ( Helianthus annuus L.) :assessment of macerating enzymes and sonication[J ] . Plant Cel l Rep . ,2003 ,21 (5) :475 - 482.
    [113]KNITTEL N ,VERONIQUE G, HAHNE G, et al . Transformation of sunflower ( Helianthus annuus L. ) : a reliable protocol [ J ] . Plant Cell Rep . ,1994 ,14 :81 - 86.
    [114]MALONE S J ,SCELONGE C J ,BURRUS M ,et al . Stable transformation of sunflower using Agrobacterium and split embryonic axis explants[J] . Plant Sci . ,1994 ,103 :199 - 207.
    [115]BURRUS M ,MOLINIERJ ,HIMBERC,et al. Agrobacterium mediated t ransformation of sunflower ( Helianthus annuus L. ) shoot apices :transformation patterns[J ] .Mol . B reeding ,1996 ,2 :329 - 338.
    [116]SAN KARA K R ,ROHINI V K. A grobacteriummediated transformation of sunflower (Helianthus annuus L.):a simple protocol [J].Annnal of Botany ,1999,83 :347 - 354.
    [117]HEB(贺宾),GAOY(高燕),XIANG L J (向理军),et al . Tissue culture of development stages around shoot tip and high frequencyshoot regeneration of Helianthus annuus L. [J ] . Xinj iang A gricultural Science (新疆农业科学) ,2004 ,41 (2) :86 - 88 (in Chinese) .
    [118]BINDING H ,et al . Comparative studies of the dicotyledoneae class[J] . Zeitschri f t für Pf lanzenphysiologie ,1981 ,101 :119 - 130.
    [119]BOHOROVA N E ,COCKING E C ,POWER J B. Isolation culture and callus regeneration of protoplasts of wild and cultivitated Helianthus species[J ] . Plant Cell Rop . ,1986 ,5 :256 - 258.
    [120]LENEE P ,CHUPEAU Y. Isolation and culture of sunflower protoplasts ( Helianthus annuus L. ) :factors influencing the viability of cell colonies derived from protoplast s[J ] . Plant Sci . ,1986 ,43 :69 - 75.
    [121]BURRUS M ,CHANABEC C ,ALIBERT G. Regeneration of fertile plants from protoplasts of sunflower ( Helianthus annuus L. ) [J] .Plant Cell Rep . ,1991 ,10:161 - 166.
    [122]FISCHER C ,KLETHI P ,HAHNEG. Protoplasts from cotyledon and hypocotyl of sunflower( Helianthus annuus L): shoot regeneration and seed production[J] . PlantCell Rep . ,1992 ,11 :632 - 636.
    [123]SAMAJJ,OKOLOTA,BOLAKM , GLEBAYU , Increase of callus and embryoid production f rom hypocotyl production of sunflower( Helianthus annuus L) by culture in microdrops[J ] .Bio. Plantarum ,1993 ,36 :183 - 190.
    [124]ROESTS ,GISSEN J W. Regeneration from protoplasts: a supplementary literature review[J ] .Acta Bot . Need ,1993 ,42 :1 - 23.
    [125]刘公社,李映红,向日葵组织培养技术[J].植物学通报,1986 (3) : 33—35.
    [126]卫志明,许智宏,向日葵组织培养和植株再生[J].植物生理学通讯,1983 (5) :42—45.
    [127]宋英凯,张天星,向日葵未成熟胚培养中不定芽的发生[J].华北农学报,19938 (2) :112—115.
    [128]刘宝,顾德锋,向日葵( Helianthus annuus L.)自交系的组织培养和芽的分化[J],吉林农业大学学报,1991 ,13 (1) :6—10.
    [129]向理军,雷中华等,油葵茎尖周缘分生区培养及高频率芽再生,新疆农业科学, 2004 ,41 (2) :86~88
    [130]徐培洲,吴先军等,油葵子叶外植体不定芽再生体系的建立,中国油料作物学报,2004 ,2 (2) :6~10
    [131]刘杰,莫结胜,向日葵分子生物学研究进展,植物学通报,2001 , 18 (1) :31~39
    [132]Anne L M. Denis T. Veronque T , el al. Transformed callius obtaines by direct gene transfer into sunflower protoplasts. Plant cell Reports,1989,8: 97~100
    [133]Reiner H .Monique B,Roberte B, el al. Transient gene expression in sunflower( Helianthus annuus L. ) following microprojectile bombardment. Plant Science,1995,105:95~109
    [134]Murai N.Phascolin gene from bean is expressed after transfer via tumor-inducing plasmid vectors. Science,1983,222:476~482
    [135]Matzke M A. Transcription of a zem gene introduced into sunflower using a Ti plasmid vector. EMBO J,1984,4: 1525~1531
    [136]Goldsbrough P B. Gelvin S B, Larkins B A. Exprseeion of maize genes in transformed sunflower cells.Mol Gen Genct,1986,202:374~381
    [137]Everett N P, Robinson K E P. Mascarenhas D. Genetic engineering of sunflower( Helianthus annuus L. ). Bio/technology,1987,15(11): 1201~1204

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700