模糊滑模控制在伺服系统中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代化工业的不断发展,伺服系统在许多领域的应用日益广泛,对其性能要求也越来越高。系统不但要具有快的动态响应和高的动、静态精度,而且要对参数的变化和扰动具有不敏感性。因此,高性能伺服控制技术的研究和产品开发将具有很大潜力。
     滑模控制对系统模型不精确和外部扰动具有较强的鲁棒性,因此获得了广泛应用。但滑模控制的非连续切换带来的高频抖振现象却成为限制其应用的主要障碍。模糊控制作为利用专家知识和经验的有效方法,特别适用于复杂、非线性、时变的系统,但大多数模糊控制系统缺少保证系统性能的分析方法。将模糊控制与滑模控制相结合可实现模糊滑模控制。在这种混合控制中,滑模控制用来克服模型不精确和扰动的影响,而模糊控制用来消除抖振。
     本文研究的是以永磁同步电动机为执行元件的交流伺服系统,主旨为设计与发展利用模糊滑模控制方法进行永磁同步电动机的矢量控制。文章首先对永磁同步电动机的数学模型和矢量控制策略进行了分析,指出了传统控制的不足之处。然后在此基础上提出了滑模控制方案,并应用一种简单的自适应法则来估测系统不确定量的边界值,从而完成了滑模控制器的方案设计。最后通过自适应模糊控制来估测系统不确定量的边界值,模糊控制器参数由自适应算法在线调节,从而使得系统不仅具有抗干扰性而且实现了控制参数的优化调节,实现具有完全自适应能力的高性能交流伺服系统。
High performance AC servo drive system, widely used in various areas, is demanded with the development of modern industrialization. The system should not only have the fast dynamic response and transient and steady precision, but also don't have sensitivity to the variation of parameters and disturbance. Therefore, high performance AC servo drive controller system and its products must have great potential.Sliding mode control (SMC) has for long been known for its robust in accounting for modeling imprecision and bounded disturbances.However, in SMC, the high frequency chattering phenomenon become a severe problem in practice. Fuzzy logic control (FLC) has excelled in dealing with systems that are complex, non-linear, or time-varying as it convert the linguistic control strategy of human experience or experts' knowledge into an automatic control strategy. However, the major drawback of FLC is the lack of design techniques. Merging of the FLC with SMC can form a Fuzzy Sliding Mode Controller. In this hybrid control system, the strength of the sliding mode control lies in its ability to account for modeling imprecision and external disturbances while the FLC provides better damping and reduced chattering.This paper studies an AC servo system with the Permanent Magnet Synchronous Motor (PMSM) as the executive component and focus on the design and development of fuzzy sliding mode vector control system. First, by analyzing the mathematical models of the PMSM and the vector control strategy, we find out the disadvantages of the conventional methods. Then, an adaptive sliding mode control is proposed. An adaptive algorithm is utilized to estimate the bound of uncertainty. At last, an adaptive fuzzy sliding mode control is proposed. The fuzzy inference mechanism is utilized to estimate the bound of uncertainty. And the parameters of fuzzy inference mechanism are on-line tuned through an adaptive algorithm. Therefore the control system can achieve not only robust but also optimized parameters. So a high performance AC servo drive system is achieved which has full adaptive capability.
引文
[1] 田宏奇,滑模控制理论及应用,武汉:武汉出版社,1995
    [2] 张崇巍,李汉强.运动控制系统.武汉:武汉理工大学出版社,2002.1,pp.139
    [3] 李永东.交流电机数字控制系统.北京:机械工业出版社,2004.4
    [4] 孙毅勇,冯国楠,孙亮.自适应滑模跟踪控制交流伺服系统.电气传动,1998(3)
    [5] 焦晓红,万一鸣,王洪瑞,直流伺服系统变结构趋近律变结构控制器设计.电气传动.2001,4:34—39
    [6] R. D. Lorenz and D. B. Lawson, "A Simplified Approach to Continuous On-Line Tuning of Field-Oriented Induction Machine Drives", IEEE Trans. On Industry application, Vol/26, Issue/3, May-June 1990.
    [7] MOERSCHELL, J., "Digital Sliding Mode Torque Control for Induction Servo Drives". IFAC. Motion Control of Intelligent Automation Conf. Perugia. Proc., (1992), pp. 277-282.
    [8] Wong.L.K, Leung.F.H.F, "Combination of sliding mode controller and PI controller using fuzzy logic controller", Proc. Of IEEE Int. Conf. on fuzzy systems, 1998,1:296-301
    [9] LaoJiChang, Kuo YaHui, "Decoupled fuzzy sliding mode control", IEEE Transactions on fuzzy systems, 1998, 693):426-435
    [10] Kim.Y.T, Akbarzaheh.T.M.R, "A adaptive fuzzy sliding mode control of a direct drive motor", Proc. Of IEEE Int. conf. On systems, Man and Cybernetics, 1997,2:1668-673
    [11] Wai.R.J, Lin.F.J, "Fuzzy neural networks sliding mode position controller for induction servo motor drive", IEEE Proc, Electronics Power Application, 1999,146(3):297-308
    [12] K. Erbatur, O. Kaynak, A. Sabanovic and I.Rudas, "Fuzzy Adaptive Sliding Mode Control of a Direct Drive Robot", Robotics and Autonomous Systems, v.19, 2(1996) 215-227.
    [13] Efe, M. O., and O. Kaynak, "Stabilizing and Robustifying the Learning Mechanisms of Artificial Neural Networks in Control Engineering Applications", Int. Journal of Intelligent Systems, 2000.
    [14] R. G. Berstecher, R. Palm, and H. D.Unbenhauen, "An adaptive fuzzy sliding-mode controller", IEEE Trans. on Industrial Electronics, vol. 48, no. 1, pp. 18-31, February 2001.
    [15] 王立新,模糊系统与模糊控制教程,北京:清华大学出版社,2003
    [16] 姚琼荟.变结构控制系统.重庆:重庆大学出版社,1997
    [17] 王丰尧,模糊变结构控制,北京:机械工业出版社,1998
    [18] 李士勇,模糊控制、神经控制和智能控制论,哈尔滨:哈尔滨工业大学出版社,1996
    [19] 诸静 等,模糊控制原理及应用,机械工业出版社,1998
    [20] 傅春,谢剑英,模糊滑模控制研究综述,信息与控制,2001,30(5):434—439
    [21] 李少远,席裕庚,模糊滑动模态控制系统的性质分析,控制理论与应用,2000,17(1):14—18
    [22] 王灏,毛宗源,周其节,模糊变结构控制器的研究,控制理论与应用,1999,16(4):550-557
    [23] 吴捷,钱来,杨金明,感应电动机锁相及模糊滑动控制,控制理论与应用,2000,17(2):198—203
    [24] 陈志梅,张井岗,曾建潮,一种新的模糊滑模控制方法,太原重型机械学院学报,1998,19(3):224—229
    [25] 张天平,冯纯伯,基于模糊逻辑的连续滑模控制,控制与决策,1995,10(6):503—507
    [26] Spyros G. Tzafestas and Gerosimos G. Rigatos, "Design and stability analysis of a new Sliding mode Fuzzy logic Controller of reduced Complexity", Machine Intelligence & Robotic Control, Vol.1 N.1, 1999.
    [27] Li Zhen and Longya XU, "On-Line Fuzzy Tuning of Indirect Field-Oriented Induction Machine Drives", IEEE Trans. on Power Electronics, Vol.13 No.1,1998.
    [28] R. Palm, "Robust control by fuzzy sliding mode", Automatica, vol. 30, no. 9, pp. 429-1437, 1994.
    [29] S.-W. Kim and J.-J. Lee, "Design of a fuzzy, controller with fuzzy sliding surface", Fuzzy Sets and Systems, vol. 71, no. 3, pp. 359-367, May 1995.
    [30] Y. S. Lu and J. S. Chen, "A self-organizing fuzzy sliding-mode controller design for a class of nonlinear servo systems", IEEE Trans. On Industrial Electronics, vol. 41, no. 5, pp. 492-502, October 1994.
    [31] Hasan Zidan, Shuichi Fujii, Tsuyoshi Hanamoto, Teruo Tsuji. A Simple Sensor-less Vector Control System for Variable Speed Induction Motor Drives
    [32] Q. P. Ha, "Robust sliding mode controller with fuzzy tuning", Electron. Lett., vol. 32, no. 17, pp. 1626-1628, 1996.
    [33] Slotine, J. J., and Sastry, S. S., 1983, "Tracking control of non-linear systems using sliding surfaces with applications to robot manipulators". International Journal of Control, 38, 465-492.
    [34] Yao, B., S. P. Chan, and D. Wang, "Variable structure adaptive motion and force control of robot manipulators". Automatica, 30, 1473-1477. 1994
    [35] C.S.Ting, T.H.Li, and F.C.Kung, "An approach to systematic design of fuzzy control system", Fuzzy sets and ystems, vol.77,pp. 151-166,1996.
    [36] C. Lascu, I. Boldea, and F. Blaabjerg, "A modified direct torque control for induction motor sensorless drive," IEEE Trans. Ind. Electron., vol. 36, pp. 122-130, Feb. 2000.
    [37] J. R. G. Sehofield, "Variable speed drives using induction motors and direct torque control," in IEE Colloq. Vector Control Revisited, 1998, pp. 5/1-5/7.
    [38] Y. Zhang, C. Jin, and V. Utkin, "Sensorless sliding-mode control of induction motors," IEEE Trans. Ind. Electron., vol. 47, pp. 1286-1297,Dec. 2000.
    [39] T. M. Wolbank and B. Haidvogl, "Evaluation of the influence of design and operation of standard induction motors on sensorless control schemes utilising saliencies in the transient electrical behavior," in Proc.IEEE PESC'00, 2000, pp. 903-908.
    [40] B. K. Yoo and W. C. Ham, (2000). "Adaptive Control of Robot Manipulator Using Fuzzy Compensator"., IEEE Trans. Fuzzy Syst., Vol. 8,pp. 186-199.
    [41] W. J. Wang, H. R. Lin, "Fuzzy Control Design for the Trajectory Tracking in Phase Plane", IEEE Transactions on Systems, Man and Cybernetics, Part A, Vol.28, pp.710-719, 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700