泥磷制磷酸盐联产PH_3/THPC研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磷化工是云南省的重要支柱产业之一,其中黄磷是最主要的创汇产品。随着人类社会需求的增加,黄磷生产的重要原料磷矿资源短缺现象日益严重,已被我国国土资源部列为“2010年后不能满足中国经济发展需求的矿种之一”。电炉法制磷生产过程产生大量含CO废气、含磷废水、磷铁、磷渣及泥磷,其中的泥磷是元素磷、粉尘杂质和水在冷凝过程中形成的性质稳定、难于分离的混合物,属于危险固体废物,必须没于水中存放,若处置不当,还易引起二次污染,泥磷的处置问题已成为了我国黄磷行业可持续发展的瓶颈。现有泥磷处理处置的方法很多,包括电炉制磷系统自身回收法、直接和间接法提取黄磷法等,在一定程度上回收了泥磷中的磷,但存在磷回收率低、未解决PH3二次污染问题。本文以氢氧化钠提取泥磷中的磷,得到产品磷酸盐(次磷酸钠及亚磷酸钠),同时采取提浓或转化为阻燃剂四羟甲基氯化磷(THPC)的方法,回收尾气中的磷化氢(PH3)。
     泥磷制备磷酸盐实验研究了反应温度、水磷比、碱磷比对产品得率的影响,确定适宜的操作条件:温度85℃、碱磷比4:1、水磷比110:1,此条件下反应时间6h、产品收率62.59%;采用结晶+乙醇蒸馏-重结晶法分离次磷酸钠和亚磷酸钠,考察乙醇浓度、乙醇用量、溶液pH、溶解温度、结晶温度、重结晶温度等影响因素,确定分离次磷酸钠、亚磷酸钠分离最适宜的条件:乙醇与原料用量比为1:1、浓度90%、溶液pH7.65、溶解、结晶、重结晶的温度分别为45℃、65℃、70℃,得到产品次磷酸钠、亚磷酸钠的纯度分别为98.75%、99.18%。PH3提浓实验研究了改性吸附剂5A分子筛的吸附性能,筛选了适宜的吸附剂,分别考察浸渍液浓度、干燥温度及焙烧温度、吸附流速及温度等对PH3净化效率的影响,通过正交实验,确定最适宜的条件:浸渍液NaCl浓度、干燥温度及焙烧温度分别为0.3mol/L、110℃及400℃,载气流速20mL/min、常温吸附,并对吸附剂的再生方法和性能进行了研究,确定适宜的再生条件:载气流速40mL/min、解吸温度为60℃。PH3与盐酸、甲醛合成THPC实验进行了催化剂的筛选,考察了空速、温度、原料配比及催化剂用量等对PH3转化率的影响,通过正交实验确定最适宜的合成工艺条件:以CuCl为催化剂,控制空速150h-1,温度60。C,催化剂用量0.5g,甲醛和盐酸摩尔比4:1,PH3转化率达到95%,符合工业商品THPC的要求。
     在此基础上,对各过程的机理进行分析。适宜条件下泥磷制取磷酸盐的动力学实验,表明磷生成次磷酸钠为一级放热反应,反应速率常数的方程式为:k=122.85exp(-37341/RT);结合结晶理论对次磷酸钠和亚磷酸钠分离过程的机理进行分析,确定溶液过饱和度是结晶过程的推动力。根据吸附等温线计算PH3吸附过程的吸附热及吸附量,根据吸附穿透曲线计算各温度条件下的吸附速率,结合吸附剂表征扫描电镜(SEM)、光电子能谱(XPS)结果,推断此吸附过程为物理吸附。通过宏观动力学研究,认为在催化剂作用下,PH3合成THPC的反应为一级反应。
     本文从黄磷工业危险废物泥磷中回收磷元素制备高附加值的化工产品次磷酸钠、亚磷酸钠,同时对反应尾气中的高浓度PH3回收利用,制备纯度较高的PH3或THPC,尽可能的回收泥磷中的有用资源,达到减量化的目的,研究称为可为泥磷清洁、无害化的处理处置提供理论基础。
The phosphorous chemical industry is one of the major pillar industries of Yunnan province, which yellow phosphorous was the main export products as well as the key raw material of the chemical industry. With the increase of human consumption, the shortage of phosphate resources is worsening with the development and utilization of the phosphate. China's Ministry of Land and Resources has set phosphate as one of minerals that it cannot meet China's economic development demand after2010. A large quantity of waste gas containing a certain amount of CO, phosphorus wastewater, ferrophosphorus, phosphorus slag, phosphorus sludge produced during the production of phosphorus by electric furnace process, phosphorus sludge is a mixture of element phosphorus, dust and impurity, and water formed in condensing process, which has better stability and hard to separate. And it is a kind of dangerous solid wastes and must be stored in water, improper treatment can easily cause secondary pollution, so the treatment of phosphorus sludge become the bottleneck of the sustained development of phosphorous chemical industry. Many treatment methods have been developed, such as recovered by the system of electric furnace process, extraction of yellow phosphorus by direct and indirect methods, those methods could recovery phosphorous from phosphorus sludge to a certain extent, however, they led to a low recovery of phosphorous and secondary pollution from unprocessed PH3. In this thesis, phosphorous was extracted by sodium hydroxide from phosphorus sludge, and which was converted to phosphates (such as sodium hypophosphite, sodium phosphate), meanwhile, PH3in the off-gas was concentrated or it was converted to flame retardant tetrakis (hydroxyrnethyl) phosphonium chloride(THPC), then separation and purification was used to get the products with high addition value.
     Effects of reaction temperatures, alkali-phosphorus ratio and water-phosphorus ratio on the reaction were studied in the preparation of phosphate from phosphorus sludge, and the best reaction conditions were obtained, as following:reaction temperature at85℃, the ratio of alkali to phosphorus was4:1, the ratio of water to phosphorus was110:1. Under these conditions, the product yield of phosphates could reach62.59%within6h; a method of crystallization-ethanol distillation recrystallization was used to separate sodium hypophosphite from sodium phosphate, the influence laws of ethanol concentration, ethanol amount、pH value、solution temperature、crystallization temperature、recrystallization temperature on the purity of product were investigated. The results showed that optimal conditions were:the ratio of ethanol to material was1:1,ethanol concentration of90%, pH=7.65, the temperature of solution、crystallization、recrystallization were45℃,65℃,70℃respectively, under these conditions, the purity of sodium hypophosphite and sodium phosphate could reach98.75%,99.19%respectively. The absorption capacity and adsorption mechanism of5A molecular sieve for high concentration of PH3were investigated in PH3concentrating experiment. In order to get the suitable experimental conditions, the influence laws of impregnating solution concentration, drying temperature, calcinations temperature, gas flow rate and temperature on PH3absorption were investigated. The suitable adsorbent type and impregnating solution of active components were selected. The orthogonal experiment was used to verify the optimum experimental conditions. The results showed that optimal reaction conditions were:impregnating solution (NaCl) concentration of0.3mol.L-1、drying temperature of110℃、calcination temperature of300℃、gas flow rate of20mL.min-l and at normal temperature. The regeneration method and regeneration effect of adsorbents were researched, the most suitable regeneration method was obtained under the following conditions:gas flow rate of40mL.min-1and desorption temperature of60℃. PH3, hydrochloric acid, and formaldehyde were taken as materials to synthesis THPC, and the metal salt catalyst was selected during the process. Effects of space velocity, temperature, material ratio and dosage of catalyst on conversion efficiency of PH3were investigated. The orthogonal experiment was used to verify the optimum experimental conditions. The results showed that optimal reaction conditions were:CuCl acted as the optimal catalyst; space velocity of150h-1, reaction temperature of60℃, catalyst amount of0.5g, the molar ratio of formaldehyde to hydrochloric acid was4:1. Under these conditions, the conversion efficiency of PH3can reach95%, and the product could meet the industrial requirement.
     The mechanisms of these experimental were analyzed on above experiments. Under the suitable conditions, dynamic experiments and thermodynamic calculation were carried on at80℃,85℃and90℃. The results confirmed that the reaction was one stair exothermic reaction, and the reaction constant equation was calculated with the following equation:k=122.85exp (-37341/RT). The separation mechanism of sodium hypophosphite separated from sodium phosphate was analyzed depended on theory of crystal, and it showed that supersaturation degree was the impetus of crystallization process. The adsorption isotherm was used to calculate the adsorption heat of adsorption process, and the adsorption penetration curve was used to calculate the absorption rate of PH3under different temperatures. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the absorbent, combined with characterization results, which deduced that the adsorption process belonged to physical adsorption. In addition, the macroscopic dynamics of the synthesis of flame retardants THPC was researched, and the result showed that the reaction of synthetic flame retardants with catalyst was first-order reaction.
     In this paper, the utilization technology of phosphorus sludge was put forward, which reusing the phosphorus from phosphorus sludge to prepare high value-added chemical products such as sodium hypophosphite, sodium phosphate,high purity PH3or THPC, which can provide basic studies for phosphorus sludge disposal and harmless treatment.
引文
[1]http://www.ynetc.gov.cn/Item/4407.aspx
    [2]陈善继.中国黄磷生产现状与消费途径[J].化工进展,2002,21,(10):776-778.
    [3]王佩林,聂维林.国内外黄磷生产、消费及发展趋势[J].磷酸盐工业,2001,3:1-9.
    [4]柏中能,李耀基.云南省磷矿发展现状和展望[C].全国磷肥、硫酸行业第十四届年会论文集,2004,162-166
    [5]Anne M C. Phosphorus dendrimers from synthesis to applications[J]. Membrane Technology,2001, 135:9-14.
    [6]Reisch, M S. Phosphorus Producers Enjoying Good Year[J]. Chemical & Engineering News,1989, 67(29):13.
    [7]http://www.ndrc.gov.cn/xxfw/hyyw/t20080227_ 193970.htm
    [8]白天和.热法加工磷的化学及工艺学[M].昆明:云南科技出版社,2001:122-126.
    [9]云南磷肥工业公司内部资料,电炉法制磷工艺,1995.
    [10]陈善继.我国电炉制磷副产物综合利用概要[J].硫磷设计与粉体工程,2004(4):7-12.
    [11]NASR F A. Treatment and reuse of sewage sludge[J]. The Environmentalist,1997.17(2):109-113.
    [12]谢光炎,孙水裕,王孝武.黄磷工业污泥的处理技术探讨[J].环境污染治理技术与设备.2004,5(1):77-80.
    [13]顾志勤.制磷生产中的泥磷及其处理[J].磷酸盐工业,1989,(4):54-56.
    [14]卢柏廷.黄磷“三废”及其污染防治[C].2007中国国际磷化工发展高峰论坛优秀论文集99-109.
    [15]莎芭琳娜·B·Л,别洛·B-H.制磷生产中泥磷的形成及处理[J].磷酸盐工业,1989,(1).
    [16]夏成洋,黄德镛,林友,等.泥磷回收制磷危险性分析与防治[J].无机盐工业,2007,39(11):44-46.
    [17]冉隆文.精细磷化工技术[M].北京:化学工业出版社,2005.
    [18]熊家林,刘钊杰,贡长生.磷化工概论[M].北京:化学工业出版社,1994.
    [19]Zhao H, Peng J, Xiao R, et al. A simple, efficient and recyclable phosphine-free catalytic system for Suzuki-Miyaura reaction of aryl bromides[J]. Journal of Molecular Catalysis A:Chemical,2011, 337(1):56-60.
    [20]Arbuzova S N, Brandsma Lt. Reactions of alkali metal acetylides with red phosphorus. Mendeleev Communications[J],1998,10(2):66-68.
    [21]Steven M. Beck & Edward H. Cook ((PHOSPHOROUS RECOVERY FROM PHOSPHORUS-CONTAINING POND SLUDGE)). US4717558,1988-01-05.
    [22]Leo B.Post & Roy E.Paul ((RECOVERY OF PHOSPHORUS VALUEFROM PHOSPHORUS SLUDGE》.US3615218,1971-08-26.
    [23]Rydin E. Experimental studies simulating potential phosphorus release from municipal sewage sludge deposits[J]. Wal. Res,30(7):1695-1701.
    [24]宋发志.从泥磷回收黄磷[J].湖北化工,1996(3):36-38.
    [25]黄小凤,马仲明,宁平,等.泥磷的处理方法研究[J].中国工程科学,2005,7(11):91-93-104.
    [26]Bessarabov A M, Kvasyuk A V, Zaikov G E. Synthesis of flexible manufacturings for phosphoric industry waste utilisation based on the CALS-CONCEPT[J]. Journal of the Balkan Tribological Association,2009,15(4),599-610.
    [27]刘书勤,赵军.泥磷的综合应用[J].化工环保,1992,12,(2):83-89.
    [28]徐志高,池汝安,吴明,等.盐酸-次氯酸钙氧化法去除贫泥磷中的黄磷[J].化工环保,2012,32(2):119-122.
    [29]唐振尧,马镇华.一种从废泥磷中回收磷的好办法[J].化工设计通讯,1994,20(1):37-38.
    [30]吴明,徐志高,薛松,等.贫泥磷二步化学法氧化处理研究[J].无机盐工业,2012.44(1):28-30.
    [31]George J.Mergan《RECOVERY OF PHOSPHORUS FROM SLUDGE》.US4689121,1987-08-25.
    [33]Beck S M, Cook E H. Phosphorous recovery from phosphorus-containing pond sludge[P]. USP, 4717558,1988-01-05.
    [34]韩金涛,江映翔,罗芳.泥磷中温提取黄磷方法研究[J].资源与环境,2009,(11):91-92.
    [35]刘云根,江映翔,周平.泥磷中温真空提取黄磷的技术研究[J].云南化工,2005,32(2):12-14.
    [36]朱浩东,江映翔,何冬梅,等.中温蒸馏法处理泥磷提取黄磷的研究[J].应用化工,2007,36(2):197-198.
    [37]Dietmar Zobel《PROCESS FOR THE PREPARATION OF CONDESED PHOSPHATE》US3669662, 1972-1-13.
    [38]陶俊法.云南磷深加工现状与展望.2005年云南省青海省矿业可持续发展高层论坛论文集[C].2005,7:344-346.
    [39]Mimani T, Mayanna S M. Study of the role of sodium hypophosphite in electroless nickel bath solution. Proceedings of the Indian Academy of Sciences:Chemical Sciences,2003,109(3): 203-209.
    [40]Lee C Y, Huang T H. Liu S C. Diffusion barrier properties of electroless Ni for electroless Cu using Cu plating employing hypophosphite as a reducing agent[J]. Journal of Materials Science:Materials in Electronics,1998,9(5):337-346.
    [41]Dietmar Zobel《PROCESS FOR THE PRODUCING SODIUM PHOSPHITE FROM PHOPHORUS SLUDGES》.US1133015,1966-08-12.
    [42]Y·巴格诺夫.从含磷泥矿中获得次磷酸钠的方法:中国,CN101481102A[P].2009.7.15.
    [43]徐冬菇.高纯次磷酸钠的制备方法:中国,CN101555002A[P].2009.10.14.
    [44]韩晓丽,智建辉,王福生.高品位次磷酸钠的制备[J].无机盐工业,2005,37(3):35-37.
    [45]王福生,郭爱红,谢藏娥,等.一步法制备次磷酸钠的研究[J].天津化工,2003,17(3):4-6.
    [46]王书林,沈万涛.次磷酸钠生产工艺及反应器的优化[J].贵州化工,2007,32(3):9-10.
    [47]Gregory G.Arzomanidis 《PROCESS FOR PRODUCING HYPOPHOSPHOROUS ACID (H3PO2) AND NON-TRANSITION METAL HYPOPHOSPHITE》. US4374816,1983-02-22.
    [48]黄初平.泥磷生产饲料磷酸氢钙工艺[J].江西化工,1995,(1):27-28.
    [49]薛福连.双渣磷肥的制取[J].云南化工,2001.28(4):34-35.
    [50]马兴良.优质磷铜清洁化生产工艺的开发[D].昆明:昆明理工大学,2005.
    [51]高建培,田森林,宁平,等.由黄磷生产副产物磷泥制备磷铜实验研究[J].武汉理工大学学报,2008,30(6):41-43.
    [52]张俊昆.化学药剂法从泥磷泥中回收黄磷[J].磷肥与复肥,1995,4:43.
    [53]Takai S, Ploypradith P, Hamajima A. Hypophosphite Decomplexation of Acetylene biscobalthe- xacarbonyls to cis-Olefins[J]. Synlett,2002, (4):588-592
    [54]宋耀,次磷酸钠工业生产综述[J].天津:天津化工,1999,(5):11-15.
    [55]陈嘉甫.发展次磷酸钠的几个问题[J].无机盐工业,1996,(5):31-32.
    [56]马一平,王惠平.次磷酸钠的生产应用[J].江苏化工,1996,26,(3):41-42.
    [57]程建忠,次磷酸及相关磷化工产品的清洁生产研究[D].天津:南开大学,2001.
    [58]毕成良,韩长秀,王晓英.次磷酸钠工业生产副产物综合利用研究[J].天津化工,2005,37(3):35-37.
    [59]王惠平,唐忠松.次磷酸钠生产中“三废”的综合治理[J].化学世界,1999(3):159-162.
    [60]陈盛秒.次磷酸钠生产中尾气净化除尘器的设计[J].无机盐工业,2008,40(1):57-60.
    [61]任希廉.磷盐生产中资源的综合利用[J].甘肃化工,1997,(1):42-43.
    [62]Node M, Nishide K, Shigeta Y, et al. A raney nickel-sodium hypophosphite combination system for reductive desulfurization without racemization of optically activeecondaryalcohol[J]. Tetrahedron, 1997(38),12883-12894.
    [63]迟兰州,胡文成.化学镀铁镍液中次磷酸钠在线自动测试的研究[J].电子科技大学学报.1997,26(1):65.
    [64]张道礼,龚树萍,周东祥.化学镀镍溶液中次亚磷酸钠浓度测定方法的比较[J],材料保护,1999,32(5).
    [65]周荣庭.化学镀镍原理与工艺[J].北京:国防工业出版社,1975.
    [66]钱伯章,电子化学品的市场和前景[J].上海化_工,2004,(5):44-47.
    [67]Cullinan H T, Jr S, Ram K. Mass Transfer in a Ternary Liquid-Liquid System[J]. The Canadian Journal of Chemical Engineering,1976,54(3):156-159.
    [68]Cheng Y S, Yeung K L. Effects of electroless plating chemistry on the synthesis of palladium membranes[J]. Journal of Membrane Science,2001(182):195-203.
    [69]Hsu H F, Tsai C L, Lee C W, et al. Mechanism of immersion deposition of Ni-P films on Si(100)in an aqueous alkaline solution containing sodium hypophosphite[J]. Thin Solid Films,2009 (517), 4786-4791.
    [70]Nazari A, Montazer M, Rashidi A, et al. Nano TiO2 photo-catalyst and sodium acids under UV and high temperature[J]. Applied Catalysis A:General,2009 (371),10-16.
    [71]Arai S, Endo M, Hashizume S, et al. Nickel-coated carbon nanofibers prepared by electroless deposition[J]. Electrochemistry Communications,2004 (6),1029-1031.
    [72]Tovazhnyansky L, Kapustenko P, Ulyev L, et al. Process integration of sodium hypophosphite production[J]. Applied Thermal Engineering,2010,30(16):2306-2314.
    [73]王正德.一种次磷酸钠溶液的浓缩方法:中国,CN102058990A[P].2011.5.18.
    [74]姜海洋.五水硫酸铜冷却结晶过程研究[D].天津:天津大学,2007.
    [75]赵庆生.谈分离提纯[J].山西科技报,2003,(4):1.
    [76]黄定国.混合物的分离与提纯[J].中学理科:初中数理化,2003,(2):83-87.
    [77]Zhang S H, Yu S C, Zhou Y C, et al. A Model for Liquid-Liquid Extraction Column Performance-The Infuence of Drop Size Distribution on Extraction Efficiency[J]. The Canadian Journal of Chemical Engineering,1985,63(2):212-226.
    [78]化工百科全书(第10卷)[M].北京:化学工业出版社,1996.
    [79]Gluknovtsev M N, Bach R D. A initio study on the thermochemistry of diphosphite and diphosphite radical cation[J]. Chemical Physics Letters,1997(265):514-520.
    [80]Pimentel Andre S, Viana R B. A quantum chemical study for the multichannel reaction PH2+ PH2 [J]. Chemical Physics,2007(334):85-89.
    [81]曹阳,宋翼,孙冠英,等.磷化氢毒理学研究综述[J].郑州工程学院学报.2002,26(2):84-89.
    [82]王莹,顾祖维,张胜年.现代职业医学[M].北京:人民卫生出版社,1995.
    [83]任引津.张寿林,倪为民.实用急性中毒全书[M].北京:人民卫生出版社,2003.
    [84]单庆祝,刘凤霞,杨汝景,等.接触磷化氢对健康的影响[J].中国工业医学杂志,1998,11(4):236-237.
    [85]魏燕富,黄小凤,谭娟,等.PH3工业废气治理的研究进展[J].材料导报,2011,25(18):415-417,428.
    [86]Guo K M, Xie Z L, Ma L, et al. Special impregnated activated carbon and canister for removing AsH3 and PH3 in H2 stream[J]. New Carbon Materials.2001,16 (2):54.
    [87]钱学海.球墨铸铁切削加工中磷化氢气体生成的化学控制[J].国外机车车辆工艺,1990(5):16-21.
    [88]Herman T, Soden S. Efficiently handling effluent gases through chemical scrubbing[J]. AIP Conf.Pro.1988(166):99-108.
    [89]程建忠,张宝贵,张英喆.次磷酸钠生产过程中PH3尾气处理技术的研究[J].南开大学学报(自然科学版).2001,34(2):31.
    [90]Kyowa K K. Method for removing arsine and/or phosphine[P]. JP,1266836,989-10-24.
    [91]Wang X Q, Ning P. Shi Y, et al. Adsorption of low concentration phosphine in yellow phosphorus off-gas by impregnated activated carbon[J]. Journal of Hazardous Materials,2009,171 (1-3):588
    [92]Jurgen W. Absorbent mass for phosphine [P]. Internationale Ver affent lichung summer.2000-04-20. WO00/21644 A3.
    [93]郭坤敏.氢气流中净化磷化氢、砷化氢的浸渍活性炭[P].中国.1076173.1993-09-15.
    [94]The BOC Group plc. Gas stream purification apparatus[P]. EP:0611140,1994.08.01.
    [95]刘胜祥,刘凤荣,黄志,等.一种磷化氢气体处理装置:中国,CN201300033Y[P].2009.9.2.
    [96]Goncharova L V, Clowes S K, Fogg R R, et al. Phosphine adsorption and the production of phosphide phases on Cu(001)[J]. Surface Science,2002,515:553-566.
    [97]张永,宁平,徐浩东,等.改性活性炭吸附净化黄磷尾气中的PH3[J].环境工程学报,2007,1(5):74-78.
    [98]李军燕,宁平,瞿广飞Cu(Ⅱ)-Co(Ⅱ)液相催化氧化净化PH3研究[J].武汉理工大学学报,2007,29(10):63-65,69.
    [99]Elliont B. Balma F, Johnson F. Exhaust gas incineration and the combustion of arsine and phosphine [J]. Solid State Technology,1990,33(1):89-92.
    [100]任自华,葛茂中,郭亮.次磷酸钠生产过程中磷化氢尾气热能的回收利用[J].河北化工,2008,31(7):40-42.
    [101]刘胜祥.磷化氢气体回收装置:中国,CN200999201Y[P].2008.1.2.
    [102]沈淼.磷化氢熏蒸尾气的清除以及安全排放技术研究[D].合肥:中国科技大学,2010.
    [103]何永亮.次磷酸钠生产过程中磷化氢尾气的处理技术研究[D].天津:南开大学,2000.
    [104]江苏康祥集团公司.用生产次磷酸钠过程中的PH3制备四羟甲基氯化磷方法:江苏,CN200710133486.6[P].2008-03-19.
    [105]粱培玉,王福生,宋兵魁,等.磷化氢尾气催化分解为高纯磷的研究[J].天津化工,2004, 18(4):31-33.
    [106]梁培玉,韩长秀,林徐明,等.CoP非晶合金催化分解磷化氢制高纯磷的研究[J].南开大学学报(自然科学),2006,39(4):20-23.
    [107]林徐明,韩长秀,任吉利等.钻磷合金催化剂的制备及其催化分解磷化氢的研究[J].环境污染与防治,2007,29(2):104-107.
    [108]余伟发,李本高.一种副产物磷化氢的净化方法及副产物磷化氢的应用方法:中国,CN101638224A[P].2010.2.3.
    [109]韩长秀.催化磷化氢分解制备高纯磷的催化剂研究[D].天津:南开大学,2007.
    [110]王成俊,郭爱红,王福生,等.次磷酸钠工业生产过程中PH3尾气处理技术[J].天津化工,2003,17(5):37-38.
    [111]冯振华,朱康洋.用生产次磷酸钠过程中的磷化氢制备四羟甲基硫酸磷方法:中国,CN101143877A[P].2008.3.19.
    [112]王行泳.催化法制备阻燃剂氯化四羟甲基磷新工艺:湖北,CN88101082[P].1988-12-21.
    [113]曾庆友,曾明荣.阴离子交换树脂负载氯化锌催化合成诺卜醇[J].生物质化学工程,2006,40(3):6-8.
    [114]赵晓蕾,严莲荷,董岳刚.季磷盐化合物的合成研究.工业表面活性剂技术经济文集[C].2000.337-341
    [115]马朝玲.次磷酸钠生产中的尾气处理工艺[J].硫磷设计与粉体工程,2007(5):37-40.
    [116]Andrew W R, David I S, Gregory J D. Reproduction of phosphine resistant Rhyzopertha dominica (F.) following sublethal exposure to phosphine[J]. Journal of Stored Products Research,2012 (48): 106-110.
    [117]Yao F, Peng J, Hao W Y, et al. Diphosphino-Functionalized MCM-41-Immobilized Rhodium Complex:A Highly Efficient and Recyclable Catalyst for the Hydrophosphinylation of Terminal Alkynes[J]. Catalysis letters,2012,142(6):803-808.
    [118]田勇,薛丽梅.三氯化铝催化合成叔十二碳硫醇[J].化学与粘合,2003,(2):66-68.
    [119]庞文渌.磷化氢熏蒸的安全防护[J].粮食储藏,2002,(2):34-36.
    [120]丁百全,徐周,房鼎业.熏蒸杀虫余气PH3的吸收净化研究[J].环境污染治理技术与设备,2003,4(1):30-32.
    [121]于剑昆.磷化氢的制备与精制[J].无机盐工业,2007,39(3):11-14.
    [122]徐加艳,胡源,王清安等.阻燃材料工业中的绿色化学与技术[J].高分子材料科学与工程,2002,18(1):17-21.
    [123]史翎.阻燃剂的发展及在塑料中的应用[J].塑料,2002,31(3):11-15.
    [124]张洪昆.纺织品阻燃综述[J].印染助剂,2009,26(2):7-11,15.
    [125]Xiao-feng Huang, Xiao-ni Wang, Ping Ning, et al. Experimental Study on the Absorption of Phosphine Wastegas by Sodium Hypochlorite[C].2011 International Conference on Electric Technology and Civil Engineering,2011:2227-2230.
    [126]吴满昌,宁平,任丙南,等.黄磷尾气中总磷及磷化氢的测定[J].环境污染与防治,2004,(4):317-319.
    [127]高慧敏.泥磷制取次磷酸钠实验研究[D].昆明:昆明理工大学,2004.
    [128]N.N格林伍德,A.厄恩肖.元素化学中册[M].北京:高等教育出版社,1996.
    [129]通用化学产品分析方法手册编写组,通用化学产品分析方法手册[M].北京:化学工业出版 社,2000.
    [130]刘奕梅.王锐,董伟民.溴水氧化一磷铝蓝分光光度法测定水和废水中元素磷[J].城市环境与城市生态,2003,16(5):42-44.
    [131]瞿莜蔷,唐国平.磷钒钼黄比色法测定循环水中磷酸盐的探讨[J].大氮肥,2001,24(5):351-354.
    [132薛惠茹,孙景庄.碘量法快速测定化学镀镍液中的次磷酸钠[J].郑州轻工业学院学报,1994,9(3):37-40.
    [133]王小妮.泥磷回收产品次磷酸钠的提纯研究[D].昆明:昆明理工大学,2011.
    [134]王静康.化学工程手册[M].第二版.北京:化学工业出版社,1996.
    [135]Huang X F, Li L Y, Ning P, et al. Effect of Isopropyl Alcohol and Activated Carbon on Producing Sodium Hypophosphite by Phosphorous Sludge[C]. Energy and Environment Technology,2009. ICEET'09. International Conference,2009,282-285
    [136]郭锴,唐小恒,周绪美.化学反应工程.北京:化学工业出版社,2000.
    [137]王新平,王旭珍,王新葵.等.关于化学反应表观活化能和指前因子的教学讨论[J].大学化学,2011,26(3):35-37.
    [138]赵匡华.化学通史.北京:高等教育出版社,1990.
    [139]王克强.由反应机理推导反应动力学方程的基本方法[J].大学化学,1991,(2):54-551.
    [140]臧雅茹.化学反应动力学[M].天津:南开大学出版社.1995.
    [141]Yanfu Wei, Xiaofeng Huang, Wenqing Li. et al. Adsorption of phosphine in off-gas of phosphorus sludge utilization using 5 A molecular sieve. Fresenius Environmental Bulletin[J].2011, 20(12):3120-3125.
    [142]杨建利.晏志军,李栋墚.等.焙烧法水热合成5A沸石分子筛[J].工业催化.2007,15(10):64-66.
    [143]杨少华,崔英德,陈循军,等.ZSM-5沸石分子筛的合成和表面改性研究进展[J].精细石油化工进展.2003,4(4):48-50.
    [144]胡景泉.影响分子筛吸附效率的因素[J].一重技术,2007(1):70-71.
    [145]黄小凤.谭娟,宁平,等.改性5A分子筛吸附净化PH3的实验研究[J].西安建筑科技大学学报(自然科学版),2011,43(2):220-223.
    [146]周春何,卢晗锋,曾立等.沸石分子筛和活性炭吸附/脱附甲苯性能对比[J].环境污染与防治,2009,31(4):38-41.
    [147]谭娟.吸附法净化泥磷制取次磷酸钠尾气PH3的研究[D].昆明:昆明理工大学,2010.
    [148]王小妮,黄小凤,谭娟,等.氯化钠改性5A分子筛吸附剂的实验研究.材料导报[J],2011,17(25):444-447.
    [149]赵炳成,曹守仁.活性碳纤维动态吸附氨气效率的研究[J].中华劳动卫生职业病杂志,1997,15(6):376-377.
    [150]王亦彤.硅烷中主要杂质气体的分子筛提纯研究[D].浙江:浙江理工大学,2007.
    [151]徐浩东,蒋明.火焰光度气相色谱法测定磷化氢的研究[J].江西农业学报,2007,19(4):101-103.
    [152]国家环保总局编,空气和废气监测分析方法[M].北京:中国环境科学出版社,1990.
    [153]王学杰,骆春芳.分析化学[M].2000,28(9):1182.
    [154]易玉敏.磷化氢液相催化氧化催化剂的筛选及动力学研究[D].昆明:昆明理工大学,2008.
    [155]柯尔蜀夫M,贝尔学R著,梁树权译.容量分析(三)[M].北京:北京科技出版社,1963,298-300.
    [156]王斌,陈集,饶小桐.现代分析测试方法[M].北京:石油化工出版社,2008.
    [157]苗壮,刘竞艳,常璐,等.扫描电镜粉末样品的制备方法[J].钛工业进展,2008,25(4):31-34.
    [158]刘世宏,王当憨,潘承璜.X射线光电子能谱分析[M].北京:科学出版社,1988.
    [159]Ralph T. Yang著,马丽萍,宁平,田森林译,吸附剂原理与应用[M].北京:高等教育出版社,2010:148-168.
    [160]候朝鹏,夏国富,李明丰,聂红,李大东.F-T合成催化剂羰基硫中毒热力学分析[J].燃料化学学报,2012,40(1):68-74.
    [161]候朝鹏,夏国富,李明丰,聂红,李大东.F-T合成催化剂H2S中毒热力学和抗硫可行性预测[J].化工学报,2011,62(3):598-603.
    [162]夏国富,候朝鹏,李明丰,聂红,李大东.COS和H2S毒化F-T合成催化剂热力学分析[J].计算机与应用化学,2011,28(10):1275-1280.
    [163]Zhu H T, Zhang C Y, Yin Y S. Rapid synthesis of copper nanoparticles by sodium hypophosphite reduction in ethylene glycol under microwave irradiation[J]. Journal of Crystal Growth,2004, 270(3-4):722-728.
    [164]郭文宇.亚甲基兰比色法测定THPC的含量[J].皮革科学与工程,2004,14(4):17-19.
    [165]史楷岐,李亚,单志华,等THPC的分析测试方法[J].皮革科学与工程,2005,15(3):16-19.
    [166]ROsch H.现代阻燃剂体系及阻燃测试标准[J].印染,2007,33(23):38-40.
    [167]Jirasek A, Hilts M, Shaw, C, et al. Investigation of tetrakis hydroxymethyl phosphonium chloride as an antioxidant for use in x-ray computed tomography polyacrylamide gel dosimetry[J]. Physics in medicine and biology,2006,51(7):1891-1906.
    [168]李霞.X射线衍射原理及在材料分析中的应用[J].物理通报,2008,(9):58-59.
    [169]Roine A. Outokumpu HSC dhemistry for windows:chemical reaction ande equilibrium software with extensive thermochemical data base[DB]. Finland:Outokumpu Research Oy,1997.
    [170]Bale C W, Chartrand P, Degterov S A, Eriksson G, Hack K, Mahfoud R B, Melancon J, Pelton A D, Petersen S. FactSage Thermochemical Software and Databases[J]. Calphad,2002,26(2):189-228.
    [171]Bale C W, Belisle E, Chartrand P, Degterov S A, Eriksson G, Hack K, Jung I H, Kang Y B, Melancon J, Pelton A D, Robelin C, Petersen S. FactSage Thermochemical Software and Databases-Recent Developments[J]. Calphad,2009,33(2):295-311.
    [172]J.A.迪安.兰氏化学手册[M].北京:科学出版社,1991.
    [173]Lawless J J, Searle H T. Kinetics of the reaction between phosphine and hypochlorite in alkaline solution[J]. J Am Chem Soc,1962,94:4200-4205.
    [174]张克从,张乐潓.晶体生长科学与技术(上)[M].北京:科学出版社,1997.
    [175]丁绪淮,谈遒.工业结晶[M].北京:化学工业出版社,1985,139-141.
    [176]陆杰.反应结晶(沉淀)研究[D].天津:天津大学,1998.
    [177]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005.
    [178]Moulder J F, Stickle W F, Sobol P E. Handbook of X-ray photoelectron spectroscopy [M]. Montreal:Perkin-Elmer Corporation Publisher (XPS化学状态数据库),1992.
    [179]Kaushik V K, Vijayalakshmi R P, Choudary N V, et al. XPS studies on cation exchanged zeolite A[J]. Microporous and Mesoporous Materials,2002(51):139-144.
    [180]杨韵娜,刘源发,徐家业.1-甲基-3,5-二苯基吡唑啉在氯化铜催化下的氧化脱氢反应(Ⅱ)-计量反应与氧分子的作用阶段[J].高等学校化学学报,1985,6(9):840-842.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700