基于纳米功能材料的乳品安全和品质快速检测方法与仪器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳品,含有丰富的蛋白质、脂肪、乳糖、矿物质以及人体所需的各种维生素和氨基酸,被誉为“最为接近人类理想膳食的食物”。人均乳品消费量是衡量一个国家人民生活水平的主要指标之一,乳品产业已成为世界各国发展现代农业的重要组成部分。自改革开放以来,我国乳品产业呈现快速发展之势,现已成为世界上乳业生产增长最快的国家之一。然而其产品安全状况却不容乐观,尤其是近几年,国内乳品行业频繁爆发质量安全事件,使得乳品的安全问题日益严重。除了安全问题,乳品的品质也存在许多问题,如质量不过关、掺假、虚报营养成分等。乳品的安全与品质需要检测方法的评价。传统的乳品检测方法存在着较多不足,如操作复杂、检测对象有限、仪器昂贵等。
     电化学传感技术由于其所需仪器简单、检测成本低、易于实现现场和在线检测等优点,在生物医学、环境监测、农产品和医药等领域具有广泛的应用前景。如何利用电化学传感技术快速、灵敏、准确检测农产品的有害有毒物质,是当前农产品安全领域中既新颖又极具吸引力的热门研究课题之一。但是传统电化学传感器存在着灵敏度低,响应速度慢以及稳定性差等缺点。近年来,纳米功能材料的出现为解决这些问题提供了新的思路。将纳米功能材料应用到电化学传感器件中,由于其独特的性质可提高传感器件的响应性能,已成为当前研究的热点。
     本文将纳米技术与电化学传感技术相结合,探索用于乳品安全和品质的快速检测方法。以乳品中常见的有毒有害物质过氧化氢和重金属离子及营养成分抗坏血酸和钙离子作为研究对象,构建了基于纳米功能材料的新型电化学传感器件实现对上述几种对象的快速、灵敏、准确、方便检测。并在此基础上,搭建了基于纳米功能材料的便携式乳品快速检测仪。
     主要研究内容、结果和结论如下:
     (1)基于氧化铜纳米颗粒的电化学传感技术用于乳品中过氧化氢残留的快速检测
     建立了一种基于纳米功能材料的过氧化氢快速检测方法。首先利用化学水相沉淀法制备了氧化铜纳米颗粒,然后将其用于修饰电化学传感器件。为了获得较好的稳定性和抗干扰能力,采用了碳离子液体电极作为基底工作电极,同时为了提高传感器件的重复可用性,本文首次采用了本体修饰法将氧化铜纳米颗粒掺杂在基底工作电极中。实验中,利用电流-时间曲线法测得的响应电流与溶液中过氧化氢浓度之间的线性正比关系,来检测过氧化氢含量。在最优检测条件下,该新型传感器件的分析性能如下:线性响应范围为1.0×10-6~2.5×10-3mol/L,线性回归方程为I(μA)=-0.0667+11.3333C(mM),线性相关系数为0.9990,灵敏度为392.99μA mM-1cm-2,检测下限为0.5×10-6mol/L。同时,该传感器件还具有较高的选择性、一致性、重现性和稳定性。灭菌乳和酸乳中过氧化氢的分析与检测:定性分析采用本文中所研究的新型电化学传感技术与酶催化方法联用,单个乳品样品的定性分析时间约为2min;定量检测采用标准加入法,单个乳品样品的定量检测时间约为20min,分析结果与国标方法(GB23499-2009)相一致,两者之间误差小于5.0%。结果表明,基于氧化铜纳米功能材料的新型电化学传感技术可以实现乳品中过氧化氢残留的快速定性识别和定量检测。
     (2)基于氧化铋纳米颗粒的电化学传感技术用于乳品中重金属离子的快速检测
     建立了一种基于纳米功能材料的重金属离子快速检测方法。本文首次制备了基于氧化铋纳米颗粒的电化学传感器件。该传感器件利用碳离子液体电极为基底工作电极,通过本体修饰法将氧化铋纳米颗粒掺杂在基底工作电极中。该电极可以在电极表面钝化或受到损伤时,通过简单的打磨处理后,即可继续使用,且重现性高。实验中,采用方波阳极溶出伏安法同时检测铅离子和镉离子。研究了实验参数对分析结果的影响,得出了重金属铅离子和镉离子检测的最佳参数:电极中氧化铋纳米颗粒的掺杂量为2%、醋酸缓冲液的pH值为4.5,沉积时间为180s,沉积电位为-1.2V。在最优条件下,该新型传感器件的分析性能如下:铅离子的线性响应范围为1.0~100.0μg/L,线性回归方程为I(μA)=-0.0083+0.3346C(μg/L),线性相关系数为0.9924,灵敏度为5.23μA(μg/L)-1cm-2,检测下限为0.21μg/L;镉离子的线性响应范围为1.0~100.0μg/L,线性回归方程为I(μA)=-0.0211+0.4037C(μg/L),线性相关系数为0.9927,灵敏度为5.92μA(μg/L)-1cm-2,检测下限为0.1μg/L。干扰实验表明当溶液中常见金属离子浓度200倍于铅离子和镉离子时,两种重金属离子的响应电流变化小于5%。同时该传感器件还具有较好的一致性、重现性和稳定性。全脂奶粉和婴幼儿奶粉中铅离子与镉离子的检测:利用方波阳极溶出伏安法中铅离子和镉离子的溶出峰电位对乳品样品进行定性分析,单个乳品样品的定性分析时间约为5min;定量检测采用标准加入法,单个乳品样品的定量检测时间约为30min,分析结果与国标方法(GB5009.12-2010和GB/T5009.15-2003)相一致。样品中铅离子加标平均回收率为100.8%,镉离子加标平均回收率为100.5%。结果表明,基于氧化铋纳米功能材料的新型电化学传感技术可以实现乳品中痕量重金属铅离子和镉离子的快速定性识别和定量检测。
     (3)基于单壁碳纳米管的电化学传感技术用于乳品中抗坏血酸的快速检测
     建立了一种基于纳米功能材料的抗坏血酸快速检测方法。本文首次制备了基于单壁碳纳米管和离子液体的电化学传感器件。该新型传感器件对抗坏血酸的氧化表现出较高的电催化活性,能在零电位处催化抗坏血酸的氧化。实验中发现利用差分脉冲伏安法检测抗坏血酸时,其氧化峰的电流值与抗坏血酸的浓度成线性正比关系。在最优条件下,该传感器件的分析性能如下:线性响应范围为3.0×10-6~4.2×10-3mol/L,线性回归方程为I(μA)=0.1603+20.1214C(mM),线性相关系数为0.9990,灵敏度为301.92μA mM-1cm-2,检测下限为1.0×10-6mol/L。同时该传感器件还具有较好的选择性、一致性、重现性和稳定性。采用标准加入法对婴幼儿奶粉和果奶中抗坏血酸的含量进行定量检测,分析结果与AOAC推荐的2,6-Dichloroindophenol商定法相一致,两者之间误差小于4.0%,单个样品的定量检测时间为20min。样品中抗坏血酸加标平均回收率为101.1%。结果表明,基于碳纳米管的新型电化学传感技术可以实现乳品中抗坏血酸的快速定量检测。
     (4)基于石墨烯纳米材料的电化学传感技术用于乳品中矿物质元素钙的快速检测
     建立了一种基于纳米功能材料的钙离子快速检测方法。本文首次制备了基于石墨烯纳米材料为固态接触层的固态接触型钙离子选择性电极。研究发现采用石墨烯纳米材料作为固态接触型离子选择性电极的固态接触层时,可以显著改进离子选择性电极的稳定性并缩短响应时间。该新型传感器件的分析性能如下:整个线性范围内响应时间(t95%)小于8s,线性响应范围为10-5.8~10-1.8mol/L,线性相关系数为0.9993,响应斜率为29.2mV/decade (±0.3mV/decade),检测下限为10-6mol/L;对五种金属离子(Mg2+、K+、Na+、Li+、NH4+)的选择性系数分别为-4.6,-2.2,-2.8,-2.5,-3.6。水层测试表明石墨烯层与钙离子敏感膜之间无水膜形成。同时研究了溶液中的溶解氧、二氧化碳、氧化还原物质等对传感器件的影响,结果表明上述干扰物质均不会对传感器件的检测带来影响。另外,该传感器件还表现出较高的电位稳定性,持续监测钙离子24h其电位偏移值约为13.7μV/h;较好的电位重现性,连续多次交替测量不同浓度的钙离子溶液时,其电位误差小于1.2%;室温保存三个月后其分析性能无明显变化。在检测灭菌乳和高钙奶中钙离子时,采用了两种方法即一点标定法和标准加入法,两者检测结果基本一致。同时与国标方法(GB5413.21-2010)相比,误差均在5.0%以内。样品中钙离子加标平均回收率为100.6%。结果表明,基于石墨烯纳米功能材料为固态接触层的新型固态接触型钙离子选择性电极可以实现乳品中矿物质元素钙的快速定量检测。
     (5)搭建基于纳米功能材料的便携式乳品快速检测仪
     探索了搭建基于纳米功能材料的便携式乳品快速检测仪的可行性。采用丝网印刷工艺研制了四种低成本、灵敏度高、一致性好的可抛弃传感器件,分别是基于电化学还原石墨烯纳米材料修饰的过氧化氢传感器件,基于氧化铋纳米颗粒掺杂的重金属离子传感器件,基于化学还原石墨烯纳米材料掺杂的抗坏血酸传感器件及基于电化学还原石墨烯纳米材料和钙离子选择性膜修饰的钙离子传感器件。研制的小型化检测仪可以实现十种电化学分析技术且能完成三种电极体系的电化学分析与检测。便携式乳品快速检测仪由可抛弃传感器件和小型化检测仪组成。该分析仪可以实现多通道同时检测多种分析物或分析多个样品,同时具有体积小便于携带,测量结果准确,精度高,检测速度快,可连续检测等特点。研究结果表明,基于纳米功能材料的便携式乳品快速检测仪可以实现乳品中有毒有害物质和营养成分的快速检测。
Dairy products have been known as the ideal diet food for human due to their rich proteins, fat, lactose, minerals, vitamins and amino acids, etc. The per capita consumption of dairy is one of the key indexes of people's living standards and the dairy industry has become an important part of the development of modern agriculture in the world. The development of dairy industry in China has followed a rapid increasing trend since the year1978. At present, China has become one of the countries with the fastest growth rate in dairy industry in the world. However, the quality of the dairy product is disappointing. The frequent outbreaks of safety incidents in the domestic dairy industry have intensified the dairy safety problems in recent years. In addition to the safety problems, there are also many problems about the quality of dairy products, like the poor quality, counterfeiting, false information about nutrients, and so on. The evaluation of the dairy safety and quality requires the detection methods. The traditional detection methods for the dairy products have some disadvantages including complex operating, limited detection objects, expensive and bulky instrument, and so on.
     The electrochemical sensing technique has been widely used in the field of biomedicine, environmental monitoring, food and medicine due to the simple equipment, low cost, easy to realize on-site and capable of online testing. The study on electrochemical sensing technique for rapid, sensitive, and accurate detection of toxic and harmful substances in agricultural products is one of the novel and highly attractive research topics in the field of agricultural safety. However, the traditional electrochemical sensors have some drawbacks including low sensitivity, slow response and poor stability. In recent years, the emergence of nanofunctional materials provides a new approach to solve these problems. The research on using nanofunctional materials to improve the performance of the electrochemical sensors has been attracted extensive attention.
     In this study, a novel and rapid detection method based on the combination of nanotechnology and electrochemical sensing technique for the safety and quality of dairy products was explored. The main detection objects are divided into two types, including toxic and harzerdous substances (hydrogen peroxide and heavy metal ions) and nutritional components (ascorbic acid and calcium ion). Several electrochemical sensors based on nanofunctional materials were constructed to detect the above species with high sensitivity and accuracy. Furthermore, a portable dairy rapid analyser based on nanofunctional material was constructed.
     Main research contents, results and conclusions are as follows:
     (1) Electrochemical sensing technique using copper oxide nanoparticle for the rapid detection of hydrogen peroxide residues in dairy products
     A novel and rapid method using nanofunctional material for the detection of hydrogen peroxide was established. The copper oxide nanoparticle was synthesized using the chemical aqueous phase precipitation method and was further employed to modify the electrochemical sensor. In this study, in order to improve the stability and anti-interference ability, carbon ionic liquid electrode was employed as the substrate working electrode. Furthermore, we firstly incorporated the copper oxide nanoparticle into the substrate electrode in order to make the developed sensor be renewable. Results showed that there is a linear relationship between the response current obtained from the amperometric i-t curve and the concentration of hydrogen peroxide. Under the optimal detection conditions, the analytical performance of the electrochemical sensor are as follows:the linear response range is1.0×10-6-2.5×10-3mol/L, the linear regression equation is I(μA)=-0.0667+11.3333C (mM) with the linear correlation coefficient of0.9990, the sensitivity is392.99μA mM-1cm-2and the detection limit is0.5×10-6mol/L. Meanwhile, the developed sensor exhibited good selectivity, consistency, reproducibility and stability. Analysis and detection of hydrogen peroxide residues in sterilized milk and yoghurt:using the developed electrochemical analysis method with the enzymatic method for qualitative analysis and the assay time is about2min per milk sample; using standard addition method for quantitative detection and the detection time is about20min per milk sample. Results are consistent with the national standard method (GB23499-2009). The error between these two methods is less than5.0%. These results demonstrate that the novel electrochemical sensing technique using copper oxide nanofunctional material could be used for rapid qualitative analysis and quantitative detection of hydrogen peroxide residues in dairy products.
     (2) Electrochemical sensing technique using bismuth oxide nanoparticle for the rapid detection of trace heavy metal ions in dairy products
     A novel and rapid method using nanofunctional material for the detection of heavy metal ions was established. In this study, we firstly reported an electrochemical sensor based on bismuth oxide nanoparticle. The carbon ionic liquid electrode was used as the substrate electrode and the nanoparticle was doped in the electrode body using the bulk modification method. The electrode can be reused with high repeatability by a simple grinding treatment when the electrode surface is passivated or damaged. In this study, the determination of lead ion and cadmium ion was perfomed using the square-wave anodic stripping voltammetry. The optimal parameters for the detection of lead ion and cadmium ion are obtained as followed:the amount of bismuth oxide nanoparticle in the electrode body is2%, the pH of acetate buffer solution is4.5, deposition time is180s, and deposition potential is-1.2V. Under these optimal conditions, the analytical performance of the electrochemical sensor are as follows:the linear response range for lead ions is1.0~100.0μg/L, the linear regression equation is I(μA)=-0.0211+0.4037C (μg/L) with the linear correlation coefficient of0.9924, the sensitivity is5.92μA (μg/L)-1cm-2and the detection limit is0.21μg/L; the linear response range for cadmium ion is1.0~100.0μg/L, the linear regression equation is I(uA)=-0.0211+0.4037C (μg/L) with the linear correlation coefficient of0.9927, the sensitivity is5.92μA (μg/L)-1cm-2and the detection limit is0.15μg/L. Interference experiments showed that the other metal ions in the solution (concentration200times) exhibit no influence on the detection of lead ion and cadmium ion. Meanwhile, the electrochemical sensor exhibited good consistency, reproducibility and stability. Analysis and detection of lead ion and cadmium ion in whole milk powder and infant formula:using the peak potential of lead ion and cadmium ion obtained by square-wave anodic stripping voltammetry to qualitative analysis and the assay time is about5min per milk sample; quantitative detection using standard addition method and the detection time is about30min per milk sample, the results are consistent with the results obtained by the national strandard methods (GB5009.12-2010and GB/T5009.15-2003). Revovery test showed that the average recoveries are100.8%for lead ion and100.5%for cadmium ion. The above results indicate that the quick qualitative identification and quantitative determination of trace concentration of lead ion and cadmium ion in the dairy could be achieved in the developed electrochemical sensing technique based on bismuth oxide nanofunctional material.
     (3) Electrochemical sensing technique using single-walled carbon nanotube for the rapid detection of ascorbic acid in dairy products
     A novel and rapid method using nanofunctional material for the detection of ascorbic acid was established. In this study, we firstly reported a novel electrochemical sensor consisted of single-walled carbon nanotube and ionic liquid. This sensor showed a high electrocatalytic activity for the oxidation of ascorbic acid which could be used to detect ascorbic acid at the potential of0V. A linear relationship between the oxidation peak current obtained by the differential pulse voltammetry and ascorbic acid concentration could be founded. The analytical performance of the electrochemical sensor are as follows: the linear response range is3.0×10-6~4.2×10-3mol/L, the linear regression equation is I(uA)=0.1603+20.1214C (mM) with the linear correlation coefficient of0.9990, the sensitivity is301.92μA mM-1cm-2and the detection limit is1.0×10-6mol/L. Meanwhile, the developed sensor displayed good selectivity, consistency, reproducibility and stability. Standard addition method was employed for quantitative detection of ascorbic acid in infant formula and fruit milk. Sample test time is about15min per milk sample. The results are consistent with the results obtained by2,6-Dichloroindophenol as recommended by AOAC. These results suggest that the novel electrochemical sensing technique based on carbon nanotube could be used for rapid quantitative detection of ascorbic acid in dairy products.
     (4) Electrochemical sensing technique using grapheme nanofunctional material for the rapid detection of mineral element calcium ion in dairy products
     A novel and rapid method using nanofunctional material for the detection of calcium ion was explored. In this study, we firstly fabricated a solid-contact calcium ion-selective electrode using graphene nanomaterial as the solid-contact layer. Results showed that the graphene-based solid-contact layer in ion-selective electrode could remarkably improve the stability and shorten the response time. The analytical performance of the developed sensor are as follows:the response time (t95%) is less than8s in the whole linear range, the linear response range is10-58~10-1.8mol/L with the linear correlation coefficient of0.9993, the response slope is29.2mV/decade (±0.3mV/decade) and the detection limit is10-6mol/L. The selectivity coefficients are-4.6,-2.2,-2.8,-2.5, and-3.6for Mg2+, K+, Na+, Li+, and NH4+, respectively. Water layer test showed that no water film is formed between the graphene layer and the sensing membrane. The experiments about the interference from oxygen, carbon dioxide, and redox species demonstrated that the developed sensor is no sensitive to these species. The potential drift is about13.7μV/h in the24h continuous monitoring, indicating the excellent potential stability of the developed sensor. The potential error is less than1.2%when using the sensor to successively measure the solutions containing different concentrations of calcium ion. The storage stability of the sensor is three months. Two detection methods including one point calibration procedure and standard addition method were employed to determine calcium ion in sterilized milk and yogurt. Results obtained by these two methods are consistent. Furthermore, compared to the results obtained by the national standard method (GB5413.21-2010), the errors are less than5.0%. Recovery test showed that an average recovery is100.6%for eight additions. The above results demonstrate that the novel solid-contact calcium ion-selective electrode using graphene nanofunctional material as the solid-contact layer could be used to detect calcium ion in dairy products.
     (5) Construction of portable dairy rapid analyser based on nanofunctional materials
     The feasibility of the construction of portable dairy rapid analyser based on nanofunctional materials was investigated. Four types of disposable electrochemical sensors with low cost, high sensitivity and good consistency were developed using screen-printing technique, including hydrogen peroxide sensor using electrochemically reduced graphene nanomaterial, heavy metal ions sensor using bismuth oxide nanoparticle, ascorbic acid sensor using chemically reduced graphene nanomaterial, and calcium ion sensor using electrochemically reduced graphene nanomaterial and calcium ion-selective membrane. Ten types of electrochemical analytical techniques and three types of electrode system could be achieved on the developed miniaturizied analyser. The protable dairy rapid analyser was constructed by the disposable sensors and the miniaturizied analyser. This analyzer can achieve multi-channel simulataneous detection of various analytes or analysis of several samples. Futhermore, it is protable and possesses high accuracy, high precision, fast speed and continuous detection. Results show that the developed portable analyser could be used for the rapid detection of the toxic-harzerdous substances and nutritional components in dairy.
引文
1. 励建荣.我国乳品工业的现状与发展前景.中国乳品工业.2004,32(9):49-52.
    2. 于海涛,张甦.乳与乳制品质量安全问题探析.黑龙江八一农垦大学学报.2011,23(4):53-56.
    3. 王品钰,昝林森,姜向阳.我国乳与乳制品的安全问题与对策.中国奶牛.2006,4:47-50.
    4. 涂宏斌.牛乳中微生物的污染来源及防治办法.中华医学与健康.2007,4(5):48.
    5. 吴亮.微生物污染源的寻找与防治.中国乳品工业.1992,20(5):230-232,234.
    6. 房玉国.乳中的致病微生物污染.中国乳品工业.2002,30(6):46.
    7. 庞广昌,陈庆森,胡志和.乳品安全性和乳品检测技术.北京:科学出版社,2005.
    8. 何玉成.中国乳品产业发展研究.北京:科学出版社,2010.
    9. 张延明,薛富.乳品分析与检验.北京:科学出版社,2010.
    10.生庆海,张爱霞,马蕊.乳与乳制品感官品评.北京:中国轻工业出版社,2009.
    11.郭本恒.乳品化学.北京:中国轻工业出版社,2001.
    12.张和平,张佳程.乳品工艺学.北京:中国轻工业出版社,2007.
    13.姜雪元,张树坤,张源淑.乳脂肪及其影响因素.中国畜牧兽医.2011,38(7):23-26.
    14.林勉,刘通讯.乳脂肪中的生理活性物质.中国乳品工业.1999,27(3):25-28.
    15.李俊艳.乳脂肪中共轭亚油酸的生理活性研究.河北畜牧兽医.2003,19(1):25-26.
    16.赵新淮,于国萍,张永忠,等.乳品化学.北京:科学出版社,2007.
    17.秦宜德,邹思湘.乳蛋白的主要组分及其研究现状.2003,20(2):5-7.
    18.高志芳,钱方,陈莉,等.酪蛋白糖巨肽的生理功能及发展前景.食品研究与开发.2007,28(3):183-185.
    19.蒲玲玲,郭长江.乳清蛋白的组成及其主要保健功能.中国食物与营养.2011,17(6):68-70.
    20.薛效贤,薛芹.乳品加工技术及工艺配方.北京:科学技术文献出版社,2004.
    21.李春.乳品分析与检验.北京:化学工业出版社,2008.
    22.生庆海,张志国.乳粉分析与检测技术.北京:中国轻工业出版社,2010.
    23.王林,王晶,周景洋.食品安全快速检测技术手册.北京:化学工业出版社,2008.
    24.赵杰文,孙永海.现代食品检测技术.北京:中国轻工业出版社,2008.
    25.刘雪岩.食品快速检测技术在食品安全中的应用研究.中国化工贸易.2011,3(8):74-75.
    26.周焕英,高志贤,孙思明,等.食品安全现场快速检测技术研究进展及应用.分析测试学报.2008,27(7):788-794.
    27.高星,赵慧芬,曹燕淑.牛乳快速检测技术的发展与应用.中国奶牛.2007,2:36-38.
    28.张进,薛刚.牛乳中蛋白质的快速测定.食品研究与开发.2006,27(4):128.
    29.罗晓红,刘俊红.牛乳脂肪快速检测方法的探讨.新疆畜牧业.2006,1:32.
    30.王少武,姜岸琳,李文献.生鲜牛乳中抗生素残留的快速检测方法研究.中国标准化.2007,9:28-29.
    31.王彦娟,靳烨,云战友.牛乳中有机磷农药的快速测定.乳业科学与技术.2007,29(5):262-266,270.
    32.张鑫,顾欣,陈美莲,等.近红外光谱技术在乳品行业的研究现状及应用前景.2010,6:12-13.
    33.唐玉莲.近红外光谱在乳制品成分快速检测方面的应用研究.乳业科学与技术.2009,32(4):190-194.
    34.吴敏,张月天,曾凡骏,等.牛乳中亚硝酸盐快速检测试纸的研制.食品科技.2008,33(4):207-210.
    35.吴敏,张杰,曾里,等.牛乳中淀粉掺假快速检测试纸的研制.乳业科学与技术.2008,1:18-20.
    36.刘文.酶联免疫分析在乳品检测中的应用.食品工业.1997,1:33-34.
    37.宋海琼,庞广昌.乳糖生物传感器在乳品安全检测中的研究进展.中国乳品工业.2010,2:38-40.44.
    38.李岩,李宏基,杨国宇,等.SPR生物传感器在乳品工业中的应用.中国乳品工业.2007,35(7):37-39.
    39. A. J. Bard, L. R. Faulkner. Electrochemical Methods Fundamentals and Applications. New York: Wiley,1980; 2nd ed.,2001.
    40.鞠熀先.电分析化学与生物传感技术.北京:科学出版社,2006.
    41.贾铮,戴长松,陈玲.电化学测量方法.北京:化学工业出版社,2006.
    42.张祖训,汗尔康.电化学原理和方法.北京:科学出版社,2000.
    43.陈国华,王光信.电化学方法应用.北京:化学工业出版社,2003.
    44.刘玉海,杨润苗.电化学分析仪器使用与维护.北京:化学工业出版社,2011.
    45. I. Svancara, K. Vytras, K. Kalcher, et al. Carbon Paste Electrodes in Facts, Numbers, and Notes:A Review on the Occasion of the 50-Years Jubilee of Carbon Paste in Electrochemistry and Electroanalysis. Electroanalysis 2009,21(1):7-28.
    46. I. Svancara, A. Walcarius, K. Kalcher, et al. Carbon paste electrodes in the new millennium. Cent. Eur. J. Chem.2009,7(4):598-656.
    47. I. Svancara, K. Vytras, J. Barek, et al. Carbon paste electrodes in modern electroanalysis. Crit. Rev. Anal. Chem.2001,31(4):311-345.
    48. R. N. Adams. Carbon Paste Electrodes. Anal. Chem.1958,30(9):1576.
    49. J. Zima, I. Svancara, J. Barek, et al. Recent advances in electroanalysis of organic compounds at carbon paste electrodes. Crit. Rev. Anal. Chem.2009,39(3):204-227.
    50. H. Liu, P. He, Z. Li, et al. An ionic liquid-type carbon paste electrode and its polyoxometalate-modified properties. Electrochem. Commun.2005,7(12):1357-1363.
    51. J. F. Ping, J. Wu, S. P. Ru, et al. Triphenylamine as a conductive solid material for fabricating carbon electrodes. Microchim. Acta 2011,172(1-2):241-245.
    52. H. Maleki, A. Safavi, F. Tajabadi. High-performance carbon composite electrode based on an ionic liquid as a binder. Anal. Chem.2006,78(11):3820-3826.
    53. M. M. Musameh, R. T. Kachoosangi, L. Xiao, et al. Ionic liquid-carbon composite glucose biosensor. Biosens. Bioelectron.2008,24(1):87-92.
    54. G. Shul, J. Sirieix-Plenet, L. Gaillon. Ion transfer at carbon paste electrode based on ionic liquid. Electrochem. Commun.2006,8(7):1111-1114.
    55. P. Sun, D. W. Armstrong. Ionic liquids in analytical chemistry. Anal. Chim. Acta 2010,661(1): 1-16.
    56. M. Opallo, A. Lesniewski. A review on electrodes modified with ionic liquids. J. Electroanal. Chem.2011,656(1-2):2-16.
    57. D. Wei, A. Ivaska. Applications of ionic liquids in electrochemical sensors. Anal. Chim. Acta 2008, 607(2):126-135.
    58. M. J. A. Shiddiky, A. A. J. Torriero. Application of ionic liquids in electrochemical sensing systems. Biosens. Bioelectron.2011,26(5):1775-1787.
    59.张志焜,崔作林.纳米技术与纳米材料.北京:国防工业出版社,2000.
    60.李玲,向航.功能材料与纳米技术.北京:化学工业出版社,2002.
    61.杨文胜,高明远,白玉白,等.纳米材料与生物技术.北京:化学工业出版社,2005.
    62.姜岩峰.硅基纳米电子学.北京:化学工业出版社,2011.
    63.霍兹,赵辉.纳米材料电化学.北京:科学出版社,2006.
    64.刘锦淮,黄行九.纳米敏感材料与传感技术.北京:科学出版社,2011.
    65.扎热木·萨迪克,都颖,徐静娟,等.纳米材料在电化学生物传感器中的应用.分析科学学报.2009,25(2):217-222.
    66. C. R. Raj, B. K. Jena. Efficient electrocatalytic oxidation of NADH at gold nanoparticles self-assembled on three-dimensional sol-gel network. Chem. Commun.2005,15:2005-2007.
    67. J. J. Feng, A. Q. Li, A. J. Wang, et al. Electrodeposition of monodispersed platinum nanoparticles on a glassy carbon electrode for sensing methanol. Microchim. Acta 2011,173(3-4):383-389.
    68. P. Yanez-Sedeno, J. Riu, J. M. Pingarron, et al. Electrochemical sensing based on carbon nanotubes. Trends Anal. Chem.2010,29(9):939-953.
    69. M. Musameh, J. Wang, A. Merkoci, et al. Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem. Commun.2002,4(10): 743-746.
    70. C. E. Banks, R. G. Compton. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection:an edge plane pyrolytic graphite electrode study. Analyst 2005,130(9):1232-1239.
    71. J. A. Hansen, J. Wang, A. N. Kawde, et al. Quantum-Dot/Aptamer-Based Ultrasensitive Multi-Analyte Electrochemical Biosensor. J. Am. Chem. Soc.2006,128(7):2228-2229.
    72. H. Yang, J. Ji, Y. Liu, et al. An aptamer-based biosensor for sensitive thrombin detection. Electrochem. Commun.2009,11(1):38-40.
    73. J. W. Zhu, D. Li, H. Q. Chen, et al. Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method. Mater. Lett.2004,58(26):3324-3327.
    74. D. Li, M. B. Muller, S. Gilje, et al. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol.2008,3:101-105.
    75. W. S. Hummers, R. E. Offeman. Preparation of Graphitic Oxide. J. Am. Chem. Soc.1958,80(6): 1339.
    76. J. F. Ping, Y. X. Wang, K. Fan, et al. Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. Biosens. Bioelectron.2011,28(1):204-209.
    77. M. Zhou, Y. L. Wang, Y. M. Zhai, et al. Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films. Chem. Eur. J.2009,15(25):6116-6120.
    78. J. F. Ping, S. P. Ru, K. Fan, et al. Electrocatalytic Oxidation of Glucose at a Copper Oxide Modified Carbon Ionic Liquid Electrode. Sens. Lett.2011,9(2):736-740.
    79.林倩,张菊,王晓芳,等.食品级过氧化氢的应用及其净化技术.食品科学.2006,27(10):626-629.
    80.石晶,王金美,孟一娟,等.食品级过氧化氢及其在食品工业中的应用.中国食品添加剂.2009,4:62-64,45.
    81.张平均.食品级过氧化氢的消毒特性及其在食品行业中的应用.中国乳品工业.2005,33(7):47-50.
    82.黄玉贤,曹继伟.牛奶中过氧化氢含量测定方法研究报告.黑龙江畜牧科技.1997,2:11-13,23.
    83.乌江雨,彭红霞,赵莹.检测牛乳中掺入的过氧化氢.内蒙古农业科技.2003,B12:249.
    84.张之伦,张耀亭,白世基,等.灭菌乳中污染过氧化氢所致食物中毒的证实.中华流行病学杂志.2004,25(9):765.
    85.张明月,张之伦,姜淑,等.灭菌乳中添加H2O2对大鼠胃肠道病理观察.毒理学杂志.2007,21(1):55-56.
    86.张耀亭,王燕萍,白世墓.灭菌乳(鲜奶)中过氧化氢的检测方法研究.中国公共卫生.2004,20(7):872.
    87.古映莹,李丹.高锰酸钾法、碘量法和铈量法测定过氧化氢的比较.理化检验-化学分册.2007,43(9):788-789,791.
    88.庄会荣,胡顺香,陈鸿琪.靛红褪色光度法测定过氧化氢.理化检验-化学分册.2000,36(1):37,41.
    89.白林山,卢晓琼.分光光度法测定降水中微量过氧化氢.环境污染与防止.1997,19(3):40-42.
    90.胡俊明,石文鹏,林少彬.高效液相色谱法测定化妆品中过氧化氢的方法研究.中国卫生检验杂志.2003,13(5):593-596.
    91.白红艳,宋利.过氧化氢电流型传感器检测方法的研究进展.广西轻工业.2011,4:86-87.
    92. W. Chen, S. Cai, Q. Q. Ren, et al. Recent advances in electrochemical sensing for hydrogen peroxide:a review. Analyst 2012,137(1):49-58.
    93. J. F. Ping, J. Wu, X. Luo, et al. The use of the platinum electrode coated with ultrathin poly (allylamine hydrochloride)/Nafion films for selective detection of hydrogen peroxide. Ionics 2011, 17(5):443-449.
    94. T. Hoshi, H. Saiki, S. Kuwazawa, et al. Polyelectrolyte multilayer film-coated electrodes for amperometric determination of hydrogen peroxide in the presence of ascorbic acid, uric acid and acetaminophen. Anal. Sci.2000,16(10):1009-1010.
    95. T. Hoshi, H. Saiki, S. Kuwazawa, et al. Selective permeation of hydrogen peroxide through polyelectrolyte multilayer films and its use for amperometric biosensors. Anal. Chem.2001, 73(21):5310-5315.
    96. G. F. Zhang, P. K. Dasgupta. Determination of gaseous hydrogen peroxide at parts per trillion levels a Nafion membrane scrubber and a single-line flow-injection system. Anal. Chim. Acta 1992,260(1):57-64.
    97. H. Y. Liu, T. L. Ying, K. Sun, et al. A reagentless biosensor highly sensitive to hydrogen peroxide based on new methylene blue N dispersed in Nafion(R) gel as the electron shuttle. J. Electroanal. Chem.1996,417(1-2):59-64.
    98. B. Q. Wang, S. J. Dong. Sol-gel-derived amperometric biosensor for hydrogen peroxide based on methylene green incorporated in Nafion film. Talanta 2000,51(3):565-572.
    99. W. B. Lu, Y. L. Luo, G. H. Chang, et al. Layer-by-layer self-assembly of multilayer films of polyelectrolyte/Ag nanoparticles for enzymeless hydrogen peroxide detection. Thin Solid Films 2011,520(1):554-557.
    100. P. A. Fiorito, C. M. A. Brett, S. I. C. de Torresi. Polypyrrole/copper hexacyanoferrate hybrid as redox mediator for glucose biosensors. Talanta 2006,69(2):403-408.
    101. S. Milardovic, I. Kruhak, D. Ivekovic, et al. Glucose determination in blood samples using flow injection analysis and an amperometric biosensor based on glucose oxidase immobilized on hexacyanoferrate modified nickel electrode. Anal. Chim. Acta 1997,350(1-2):91-96.
    102. A. Eftekhari. Electrocatalysis and amperometric detection of hydrogen peroxide at an aluminum microelectrode modified with cobalt hexacyanoferrate film. Microchim. Acta 2003,141(1-2): 15-21.
    103. M. S. Liu, T. F. Tseng, W. C. Shih. Chromium(III) hexacyanoferrate(II)-based chemical sensor for the cathodic determination of hydrogen peroxide. Analyst 1998,123(1):159-163.
    104. M. S. Liu, B. I. Jan. Determination of hydrogen peroxide by utilizing a cobalt(II)hexacyanoferrate-modified glassy carbon electrode as a chemical sensor. Electroanalysis 1997,9(4):340-344.
    105. P. A. Fiorito, S.I. C. de Torresi. Hybrid nickel hexacyanoferrate/polypyrrole composite as mediator for hydrogen peroxide detection and its application in oxidase-based biosensors. J. Electroanal. Chem.2005,581(1):31-37.
    106. A. A. Karyakin, E. E. Karyakina, L. Gorton. Amperometric biosensor for glutamate using Prussian Blue-based "artificial peroxldase" as a transducer for hydrogen peroxide. Anal. Chem.2000,72(7): 1720-1723.
    107. I. L. de Mattos, L. Gorton, T. Ruzgas, et al. Sensor for hydrogen peroxide based on Prussian Blue modified electrode:Improvement of the operational stability. Anal. Sci.2000,16(8):795-798.
    108. F. Ricci, A. Amine, C. S. Tuta, et al. Prussian Blue and enzyme bulk-modified screen-printed electrodes for hydrogen peroxide and glucose determination with improved storage and operational stability. Anal. Chim. Acta 2003,485(1):111-120.
    109. J. F. Ping, X. L. Mao, K. Fan, et al. A Prussian blue-based amperometric sensor for the determination of hydrogen peroxide residues in milk. Ionics 2010,16(6):523-527.
    110. J. F. Ping, J. Wu, K. Fan, et al. An amperometric sensor based on Prussian blue and poly(o-phenylenediamine) modified glassy carbon electrode for the determination of hydrogen peroxide in beverages, Food Chem.2011,126(4):2005-2009.
    111. S. A. Miscoria, G. D. Barrera, G. A. Rivas. Glucose biosensors based on the immobilization of glucose oxidase and polytyramine on rodhinized glassy carbon and screen printed electrodes. Sens. Actuators, B 2006,115(1):205-211.
    112. M. Ali, M. N. Tahir, Z. Siwy, et al. Hydrogen Peroxide Sensing with Horseradish Peroxidase-Modified Polymer Single Conical Nanochannels. Anal. Chem.2011,83(5): 1673-1680.
    113. S. Akgol, E. Dinckaya. A novel biosensor for specific determination of hydrogen peroxide: catalase enzyme electrode based on dissolved oxygen probe. Talanta 1999,48(2):363-367.
    114. K. de Wael, Q. Bashir, S. V. Vlierberghe, et al. Electrochemical determination of hydrogen peroxide with cytochrome c peroxidase and horse heart cytochrome c entrapped in a gelatin hydrogel. Bioelectrochemistry 2012,83:15-18.
    115. L. Gao, Q. M. Gao. Hemoglobin niobate composite based biosensor for efficient determination of hydrogen peroxide in a broad pH range. Biosens. Bioelectron.2007,22(7):1454-1460.
    116. J. Wan, J. L. Bi, P. Du. Biosensor based on the biocatalysis of microperoxidase-11 in nanocomposite material of multiwalled carbon nanotubes/room temperature ionic liquid for amperometric determination of hydrogen peroxide. Anal. Biochem.2009,386(2):256-261.
    117. A. Safavi, F. Farjami. Hydrogen peroxide biosensor based on a myoglobin/hydrophilic room temperature ionic liquid film. Anal. Biochem.2010,402(1):20-25.
    118. Y. J. Lu, M. Meyyappan, J. Li. Trace Detection of Hydrogen Peroxide Vapor Using a Carbon-Nanotube-Based Chemical Sensor. Small 2011,7(12):1714-1718.
    119. J. J. Yin, X. Qi, L. W. Yang, et al. A hydrogen peroxide electrochemical sensor based on silver nanoparticles decorated silicon nanowire arrays. Electrochim. Acta 2011,56:3884-3889.
    120. Y. L. Li, J. Zhang, H. Zhua, et al. Gold nanoparticles mediate the assembly of manganese dioxide nanoparticles for H2O2 amperometric sensing. Electrochim. Acta 2010,55:5123-5128.
    121. G. Albert, L. Ian, C. Carlo, et al. Palladium nanostructures from galvanic displacement as hydrogen peroxide sensor. Sens. Actuators, B 2010,147(2):681-686.
    122. S. A. Kumar, P. H. Lo, S. M. Chen. Electrochemical Analysis of H2O2 and Nitrite Using Copper Nanoparticles/Poly(o-phenylenediamine) Film Modified Glassy Carbon Electrode. J. Electrochem. Soc.2009,156(7):E118-E123.
    123. Y. Liu, D. W. Wang, L. Xu, et al. A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing. Biosens. Bioelectron.2011,26(11): 4585-4590.
    124. L. H. Zhang, Y. M. Zhai, N. Gao, et al. Sensing H2O2 with layer-by-layer assembled Fe3O4-PDDA nanocomposite film. Electrochem. Commun.2008,10(10):1524-1526.
    125. W. Z. Jia, M. Guo, Z. Zheng, et al. Electrocatalytic oxidation and reduction of H2O2 on vertically aligned Co3O4 nanowalls electrode:Toward H2O2 detection. J. Electroanal. Chem.625(1):27-32.
    126. Q. Rui, K. Komori, Y. Tian, et al. Electrochemical biosensor for the detection of H2O2 from living cancer cells based on ZnO nanosheets. Anal. Chim. Acta 2010,670(1-2):57-62.
    127. L. M. Li, Z. F. Du, S. Liu, et al. A novel nonenzymatic hydrogen peroxide sensor based on MnO2/graphene oxide nanocomposite. Talanta 2010,82(5):1637-1641.
    128. X. H. Niu, H. L. Zhao, C. Chen. Platinum nanoparticle-decorated carbon nanotube clusters on screen-printed gold nanofilm electrode for enhanced electrocatalytic reduction of hydrogen peroxide. Electrochim. Acta 2012,65:97-103.
    129. W. Zhao, H. C. Wang, X. Qin, et al. A novel nonenzymatic hydrogen peroxide sensor based on multi-wall carbon nanotube/silver nanoparticle nanohybrids modified gold electrode. Talanta 2009, 80(2):1029-1033.
    130. J. M. You, Y. N. Jeong, M. S. Ahmed, et al. Reductive determination of hydrogen peroxide with MWCNTs-Pd nanoparticles on a modified glassy carbon electrode. Biosens. Bioelectron.2011, 26(5):2287-2291.
    131. L. Zhang, F. Yuan, X. Zhang, et al. Facile synthesis of flower like copper oxide and their application to hydrogen peroxide and nitrite sensing. Chem. Cent. J.2011,5:75.
    132. W. Z. Jia, M. Guo, Z. Zheng, et al. Vertically Aligned CuO Nanowires Based Electrode for Amperometric Detection of Hydrogen Peroxide. Electroanalysis 2008,20(19):2153-2157.
    133. C. Batchelor-McAuley, Y. Du, G. G. Wildgoose, et al. The use of copper(II) oxide nanorod bundles for the non-enzymatic voltammetric sensing of carbohydrates and hydrogen peroxide. Sens. Actuators, B 2008,135(1):230-235.
    134. X. M. Miao, R. Yuan, Y. Q. Chai, et al. Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode. J. Electroanal. Chem. 612(2):157-163.
    135. M. J. Song, S. W. Hwang, D. Whang. Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection. Talanta 2010,80(5):1648-1652.
    136. A. X. Gu, G. F. Wang, X. J. Zhang, et al. Synthesis of CuO nanoflower and its application as a H2O2 sensor. Bull. Mater. Sci.2010,33(1):17-20.
    137. W. Z. Le, Y. Q. Liu. Preparation of nano-copper oxide modified glassy carbon electrode by a novel film plating/potential cycling method and its characterization. Sens. Actuators, B 2009,141(1): 147-153.
    138. H. Razmi, H. Nasiri. Trace Level Determination of Hydrogen Peroxide at a Carbon Ceramic Electrode Modified with Copper Oxide Nanostructures. Electroanalysis 2011,23(7):1691-1698.
    139. J. F. Ping, S. P. Ru, K. Fan, et al. Copper oxide nanoparticles and ionic liquid modified carbon electrode for the non-enzymatic electrochemical sensing of hydrogen peroxide. Microchim. Acta 171(1-2):117-123.
    140. J. Y. Li, S. L. Xiong, J. Pan, et al. Hydrothermal Synthesis and Electrochemical Properties of Urchin-Like Core-Shell Copper Oxide Nanostructures. J. Phys. Chem. C 2010,114(21): 9645-9650.
    141.张东杰.重金属危害与食品安全.北京:人民卫生出版社,2011.
    142.洪家祥,严毅梅.重金属的积累导致奶牛场生产力的下降.中国动物保健.2009,5:119.
    143.倪坤,唐久来.铅对发育中的神经系统的影响.安徽医学.2011,32(5):695-697.
    144.魏筱红,魏泽义.镉的毒性及其危害.公共卫生与预防医学.2007,18(4):44-46.
    145.骆新峥.食品中常见的重金属污染及检测技术研究进展.质量技术监督研究.2010,6:39-43,49.
    146.余若祯,王红梅,方征,等.重金属离子快速检测技术研究与应用进展.环境工程技术学报.2011,1(5):438-442.
    147.何金兰,方蕾.电热原子吸收法直接测定牛奶样中痕量的铅和镉.广东微量元素科学.1995,2(9):67-69.
    148.谢俊平,卢新.酶抑制法快速检测食品中重金属研究进展.食品研究与开发.2010,31(8):220-224.
    149.李兴涛,李霞,赵艺欣.免疫测定法检测重金属技术的进展.生物技术通讯.2009,20(2):299-302.
    150.孔涛,李小兵,刘国文,等.重金属离子单克隆抗体及免疫检测研究进展.中国畜牧兽医.2009,9:67-70.
    151.车晓青,郭明.重金属残留的酶联免疫吸附检测技术研究进展.福建分析测试.2009,18(4):61-66.
    152. J. F. Ping, J. Wu, Y. B. Ying, et al. Development of a Novel Carbon Composite Electrode for Trace Determination of Heavy Metals in Milk. Trans. ASABE 2011,54(5):1829-1835.
    153. J. F. Ping, J. Wu, Y. B. Ying, et al. Evaluation of Trace Heavy Metal Levels in Soil Samples Using an Ionic Liquid Modified Carbon Paste Electrode. J. Agric. Food Chem.2011,59(9):4418-4423.
    154. A. Economou. Bismuth-film electrodes:recent developments and potentialities for electroanalysis. Trends Anal. Chem.2005,24(4):334-340.
    155. A. Economou, P. R. Fielden. Mercury film electrodes:developments, trends and potentialities for electroanalysis. Analyst.2003,128(3):205-12.
    156. S. Sebkova, T. Navratil, M. Kopanica. Silver composite electrode for voltammetric determination of halogenides. Anal. Lett.2004,37(4):603-628.
    157. B. Yosypchuk, I. Sestakova. Working electrodes from amalgam paste for electrochemical measurements. Electroanalysis 2008,20(4):426-433.
    158. A. Economou, P. R. Fielden. Applications, potentialities and limitations of adsorptive stripping analysis on mercury film electrodes. Trends Anal. Chem.1997,16(5):286-293.
    159. R. J. Mascarenhas, A. K. Satpati, S. Yellappa, et al. Wax-impregnated carbon paste electrode modified with mercuric oxalate for the simultaneous determination of heavy metal ions in medicinal plants and ayurvedic tablets. Anal. Sci.2006,22(6):871-875.
    160. T. Lee, K. C. Chung, J. Park. Anodic Stripping Voltammetric Characteristics of Carbon Composite Electrodes with Mercuric Precursors. Electroanalysis 2002,14(12):833-838.
    161. R. Metelka, K. Vytfas, A. Bobrowski. Effect of the modification of mercuric oxide on the properties of mercury films at HgO-modified carbon paste electrodes. J. Solid State Electrochem. 2000,4(6):348-352.
    162. K. Seo, S. Kim, J. Park. Modified Composite Electrode Containing HgO as Built-in Mercury Precursor for Anodic Stripping Analysis of Trace Metals. Anal. Chem.1998,70(14):2936-2940.
    163. J. M. Zhuang, L. Zhang, W. J. Lu, et al. Determination of Trace Copper in Water Samples by Anodic Stripping Voltammetry at Gold Microelectrode. Int. J. Electrochem. Sci.2011,6: 4690-4699.
    164. E. Bernalte, C. M. Sanchez, E. P. Gil. Determination of mercury in ambient water samples by anodic stripping voltammetry on screen-printed gold electrodes. Anal. Chim. Acta 2011,689(1): 60-64.
    165. J.M. Pinilla, L. Hernhdez, A.J. Conesa. Determination of mercury by open circuit adsorption stripping voltammetry on a platinum disk electrode. Anal. Chim. Acta 1996,319(1):25-30.
    166. Kh. Brainina, G. Henze, N. Stojko, et al. Thick-film graphite electrodes in stripping voltammetry. Fresenius J. Anal. Chem.1999,364(4):285-295.
    167. M. Lu, K. E. Toghill, R. G. Compton. Simultaneous Detection of Trace Cadmium(II) and Lead(II) Using an Unmodified Edge Plane Pyrolytic Graphite Electrode. Electroanalysis 2011,23(5): 1089-1094.
    168. S. Carregalo, A. Merkoci, S. Alegret. Application of Graphite-Epoxy Composite Electrodes in Differential Pulse Anodic Stripping Voltammetry of Heavy Metals. Microchim. Acta 2004,147(4): 245-251.
    169. J. Wang, J. Lu, S. B. Hocevar, et al. Bismuth-Coated Carbon Electrodes for Anodic Stripping Voltammetry. Anal. Chem.2000,72(14):3218-3222.
    170. I. Svancaral, C. Prior, S. B. Hocevar, et al. A Decade with Bismuth-Based Electrodes in Electroanalysis. Electroanalysis 2010,22(13):1405-1420.
    171. J. Wang. Stripping Analysis at Bismuth Electrodes:A Review. Electroanalysis 2005,17(15-16): 1341-1346.
    172. O. Zaouak, L. Authier, C. Cugnet, et al. Bismuth-Coated Screen-Printed Microband Electrodes for On-Field Labile Cadmium Determination. Electroanalysis 2009,21(6):689-695.
    173. A. Krolicka, R. Pauliukaite, I. Svancara, et al. Bismuth-film-plated carbon paste electrodes. Electrochem. Commun.2002,4(2):193-196.
    174. S. B. Hocevar, J. Wang, R. P. Deo, et al. Potentiometric Stripping Analysis at Bismuth-Film Electrode. Electroanalysis 2002,14(2):112-115.
    175. I. Svancara, L. Baldrianova, E. Tesarova, et al. Recent Advances in Anodic Stripping Voltammetry with Bismuth-Modified Carbon Paste Electrodes. Electroanalysis 2006,18(2):177-185.
    176. J. F. Ping, J. Wu, Y. B. Ying. Determination of trace heavy metals in milk using an ionic liquid and bismuth oxide nanoparticles modified carbon paste electrode. Chin. Sci. Bull.2012, 57(15):1781-1787.
    177. G. H. Hwang, W. K. Han, J. S. Park, et al. An electrochemical sensor based on the reduction of screen-printed bismuth oxide for the determination of trace lead and cadmium. Sens. Actuators, B 2008,135(1):309-316.
    178. R. O. Kadara, I. E. Tothill. Development of disposable bulk-modified screen-printed electrode based on bismuth oxide for stripping chronopotentiometric analysis of lead (Ⅱ) and cadmium (Ⅱ) in soil and water samples. Anal. Chim. Acta 2008,623(1):76-81.
    179. J. Wang, R. P. Deo, S. Thongngamdee, et al. Effect of Surface-Active Compounds on the Stripping Voltammetric Response of Bismuth Film Electrodes. Electroanalysis 2001,13(14):1153-1156.
    180. J. Li, S. Guo, Y. Zhai, et al. High-sensitivity determination of lead and cadmium based on the Nafion-graphene composite film. Anal. Chim. Acta 2009,649(2):196-201.
    181.刘冉,许莹,杨梅,等.一种化学发光新体系测定抗坏血酸的抗氧化性.鞍山师范学院学报.2004,6(6):58-59.
    182.罗光荣.维生素C的保健作用.健康生活.2008,6:12-13.
    183.陆基宗.过量使用维生素C的危害.现代养生.2006,2:55.
    184.布都会,高莉,徐向莉,等.碘量法测定维生素C的改良.干旱地区农业研究.2004,22(1):195-198.
    185.陈秀云,李湘鸣.两种维生素C测定方法的比较.现代预防医学.2004,31(3):448-449.
    186.孔杰,李青,祁林.食品中抗坏血酸测定方法探讨.中国卫生检验杂志.2001,11(5):601.
    187.程湘东,杨玉珍.一种分析抗坏血酸的灵敏方法.食品科学.1989,3:44-45.
    188.张立佩,胡博,王建华.量子点荧光探针检测抗坏血酸.高等学校化学学报.2011,32(3):688-693.
    189.袁长梅.抗坏血酸常用测定方法探讨.生命科学仪器.2009,8:58-60.
    190.杨芳芳.抗坏血酸的测定方法综述.甘肃科技纵横.2005,34(6):208-209.
    191.雷惠芳,王辛,张炜.奶粉中抗坏血酸含量测定方法研究.中国公共卫生.2003,19(7):875.
    192.何琳琳.抗坏血酸测定方法及存在的问题探讨.西南科技大学学报.2005,20(1):69-71.
    193. A. Malinauskas, R. Garjonyte, R. Mazeikiene, et al. Electrochemical response of ascorbic acid at conducting and electrogenerated polymer modified electrodes for electroanalytical applications:a review. Talanta 2004,64(1):121-129.
    194. M. C. Yebra-Biurrun. Flow injection determination methods of ascorbic acid. Talanta 2000,52(3): 367-383.
    195. S. Y. Qiu, S. Gao, L. D. Xie, et al. An ultra-sensitive electrochemical sensor for ascorbic acid based on click chemistry. Analyst 2011,136(19):3962-3966.
    196. X. G. Kong, W. Y. Shi, J. W. Zhao, et al. Layer-by-layer assembly of electroactive dye/inorganic matrix film and its application as sensor for ascorbic acid. Talanta 2011,85(1):493-498.
    197. T. H. Tsai, T. W. Chen, S. M. Chen. Selective Electroanalysis of Ascorbic Acid Using a Nickel Hexacyanoferrate and Poly(3,4-ethylenedioxythiophene) Hybrid Film Modified Electrode. Electroanalysis 2010,22(14):1655-1662.
    198. A. Safavi, N. Maleki, O. Moradlou, et al. Simultaneous determination of dopamine, ascorbic acid, and uric acid using carbon ionic liquid electrode. Anal. Biochem.2006,359(2):224-229.
    199. Y. H. Tang, K. X. Pan, X. J. Wang, et al. Electrochemical synthesis of polyaniline in surface-attached poly(acrylic acid) network, and its application to the electrocatalytic oxidation of ascorbic acid. Microchim. Acta 2010,168(3-4):231-237.
    200. J. S. Wang, J. X. Wang, Z. Wang, et al. Electrocatalytic oxidation of ascorbic acid at polypyrrole nanowire modified electrode. Synth. Met.2006,156(7-8):610-613.
    201. R. Zhang, G. D. Jin, D. Chen, et al. Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly(acid chrome blue K) modified glassy carbon electrode. Sens. Actuators, B 2009,138(1):174-181.
    202. P. Kalimuthu, S. A. John. Simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine using a nanostructured polymer film modified electrode. Talanta 2010,80(5):1686-1691.
    203. A. M. Yu, H. L. Zhang, H. Y. Chen. Fabrication of a polyglycine chemically modified electrode and its electrocatalytic oxidation to ascorbic acid. Electroanalysis 1997,9(10):788-790.
    204. P. C. Nien, P. Y. Chen, K. C. Ho. On the amperometric detection and electrocatalytic analysis of ascorbic acid and dopamine using a poly(acriflavine)-modified electrode. Sens. Actuators, B 2009, 140(1):58-64.
    205. A. A. Ensafi, M. Taei, T. Khayamian, et al. Highly selective determination of ascorbic acid, dopamine, and uric acid by differential pulse voltammetry using poly(sulfonazo Ⅲ) modified glassy carbon electrode. Sens. Actuators, B 2010,147(1):213-221.
    206. P. Kalimuthu, S. A. Electropolymerized film of functionalized thiadiazole on glassy carbon electrode for the simultaneous determination of ascorbic acid, dopamine and uric acid. Bioelectrochemistry 2009,77(1):13-18.
    207. S. A. Kumar, P. H. Lo, S. M. Chen. Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71. Biosens. Bioelectron.2008, 24(4):518-523.
    208. R. J. Bakhsh, K. Abolfazl, O. Reza, et al. Simultaneous voltammetric determination of ascorbic acid and dopamine at the surface of electrodes modified with self-assembled gold nanoparticle films. J. Solid State Electrochem.2010,14(7):1171-1176.
    209. N. F. Atta, F. M. EI-Kady. Novel poly(3-methylthiophene)/Pd, Pt nanoparticle sensor:Synthesis, characterization and its application to the simultaneous analysis of dopamine and ascorbic acid in biological fluids. Sens. Actuators, B 2010,145(1):299-310.
    210. A. Safavi, N. Maleki, F. Tajabadi, et al. High electrocatalytic effect of palladium nanoparticle arrays electrodeposited on carbon ionic liquid electrode. Electrochem. Commun.2007,9(8): 1963-1968.
    211. D. Wen, S. J. Guo, S. J. Dong, et al. Ultrathin Pd nanowire as a highly active electrode material for sensitive and selective detection of ascorbic acid. Biosens. Bioelectron.2010,26(3):1056-1061.
    212. J. F. Ping, J. Wu, Y. X. Wang, et al. Simultaneous determination of ascorbic acid, dopamine and uric acid using high-performance screen-printed graphene electrode. Biosens. Bioelectron.2012, 34(1):70-76.
    213. P. K. Gareth, O. Arlene, M. Niall, et al. Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. J. Mater. Chem.2010,20(36):7864-7869.
    214. R. J. Cui, X. Y. Wang, G. H. Zhang, et al. Simultaneous determination of dopamine, ascorbic acid, and uric acid using helical carbon nanotubes modified electrode. Sens. Actuators, B 2012,161(1): 1139-1143.
    215. Z. H. Wang, J. Liu, Q. L. Liang, et al. Carbon nanotube-modified electrodes for the simultaneous determination of dopamine and ascorbic acid. Analyst 2002,127(5):653-658.
    216. J. S. Huang, Y. Liu, H. Q. Hou, et al. Simultaneous electrochemical determination of dopamine, uric acid and ascorbic acid using palladium nanoparticle-loaded carbon nanofibers modified electrode. Biosens. Bioelectron.2008,24(4):632-637.
    217. C. L. Sun, H. H. Lee, J. M. Yang, et al. The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens. Bioelectron.2011,26(8):3450-3455.
    218. D. Ragupathy, A. I. Gopalan, K. P. Lee. Electrocatalytic oxidation and determination of ascorbic acid in the presence of dopamine at multiwalled carbon nanotube-silica network-gold nanoparticles based nanohybrid modified electrode. Sens. Actuators, B 2010,143(2):696-703.
    219. W. R. Yang, K. R. Ratinac, S. P. Ringer, et al. Carbon Nanomaterials in Biosensors:Should You Use Nanotubes or Graphene? Angew. Chem. Int. Ed.2010,49(12):2114-2138.
    220.1. Dumitrescu, P. R. Unwin, J. V. Macpherson. Electrochemistry at carbon nanotubes:perspective and issues. Chem. Commun.2009,45:6886-6901.
    221. S. H. Huang, H. H. Liao, D. H. Chen. Simultaneous determination of norepinephrine, uric acid, and ascorbic acid at a screen printed carbon electrode modified with polyacrylic acid-coated multi-wall carbon nanotubes. Biosens. Bioelectron.2010,25(10):2351-2355.
    222. G. Li, S. L. Yang, L. B. Qu, et al. Simultaneous voltammetric determination of ascorbic acid and uric acid using a Nafion/multi-wall carbon nanotubes composite film-modified electrode. J. Solid State Electrochem.2011,15(1):161-166.
    223. B. Habibi, M. Jahanbakhshi, M. H. Pournaghi-Azar. Differential pulse voltammetric simultaneous determination of acetaminophen and ascorbic acid using single-walled carbon nanotube-modified carbon-ceramic electrode. Anal. Biochem.2011,411(2):167-175.
    224. M. Motahary, S. M. Ghoreishi, M. Behpour, et al. Electrochemical determination of ascorbic acid at the surface of a graphite electrode modified with multi-walled carbon nanotubes/tetradecyltrimethylammonium bromide. J. Appl. Electrochem.2010,40(4):841-847.
    225. E. R. Sartori, O. Fatibello. Simultaneous Voltammetric Determination of Ascorbic Acid and Sulfite in Beverages Employing a Glassy Carbon Electrode Modified with Carbon Nanotubes within a Poly(Allylamine Hydrochloride) Film. Electroanalysis 2012,24(3):627-634.
    226. C. E. Banks, R. G. Compton. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection:an edge plane pyrolytic graphite electrode study. Analyst 2005,130(9):1232-1239.
    227. C. E. Banks, T. J. Davies, G. G. Wildgoose, et al. Electrocatalysis at graphite and carbon nanotube modified electrodes:edge-plane sites and tube ends are the reactive sites. Chem. Commun.2005,7: 829-841.
    228. R. T. Kachoosangi, M. M. Musameh, I. Abu-Yousef, et al. Carbon Nanotube-Ionic Liquid Composite Sensors and Biosensors. Anal. Chem.2009,81(1):435-442.
    229.詹现璞.乳制品加工技术.北京:中国轻工业出版社,2011.
    230.姜智慧,邵敬伟.钙的生理作用与钙的代谢异常.中国实用乡村医生杂志.2005,12(4):2-3.
    231.郭本恒.液态奶.北京:化学工业出版社,2003.
    232.丁素君,尹丽.奶粉中钙含量测定方法的比较.中国当代医药.2010,17(10):170-171.
    233.加建斌.高锰酸钾滴定法测定补钙制品中的钙含量.安徽农业科学.2007,35(23):7076-7077.
    234.李玉珍,吕宝华,荆志杰.EDTA络合滴定法测定不同品质牛奶中钙含量.山西大同大学学报-自然科学版.2011,27(1):42-44.
    235.曾剑超,马力,郑睿行.火焰原子吸收光谱法测定乳及其制品中钙铁锌.生命科学仪器.2008,6(1):42-43.
    236.邱棋伟,张海霞.原子吸收光谱法测定婴幼儿配方食品和乳粉中钙、铁、锌.医学动物防制. 2008,24(5):339-340.
    237.张丹,李君华.微波消解-原子发射光谱法测定奶粉中的钙、镁和钠.天津化工.2011,25(2):49-51.
    238.俞汝勤.离子选择性电极分析法.北京:人民教育出版社,1980.
    239.王素芳.离子选择性电极在环境监测分析中的应用.北京:中国环境科学出版社,1988.
    240.陈执中,邱在峰.离子选择性电极分析法在药物分析上的应用.北京:人民卫生出版社,1985.
    241.李春芳,陈陟岗,周葆初.离子选择性膜电极在有机分析上的应用.黑龙江:哈尔滨医科大学,1987.
    242. R. De Marco, G. Clarke, B. Pejcic. Ion-Selective Electrode Potentiometry in Environmental Analysis. Electroanalysis 2007,19(19-20):1987-2001.
    243. J. Bobacka, A. Ivaska, A. Lewenstam. Potentiometric Ion Sensors. Chem. Rev.2008,108(2): 329-351.
    244. E. Bakker, E. Pretsch. Potentiometric sensors for trace-level analysis. Trends Anal. Chem.2005, 24(3):199-207.
    245. A. Mimendia, J. M. Gutierrez, L. Leija, et al. A review of the use of the potentiometric electronic tongue in the monitoring of environmental systems. Environ. Modell. Softw.2010,25(9): 1023-1030.
    246. M. M. G. Antonisse, D. N. Reinhoudt. Potentiometric anion selective sensors. Electroanalysis 1999,11(14):1035-1048.
    247.谢声洛.离子选择性电极分析技术.北京:化学工业出版社,1985.
    248. E. Bakker, E. Pretsch, P. Buhlmann. Selectivity of potentiometric ion sensors. Anal. Chem.2000, 72(6):1127-1133.
    249. E. Bakker, P. Buhlmann, E. Pretsch. Polymer membrane ion-selective electrodes-What are the limits. Electroanalysis 1999,11(13):915-933.
    250. R. Q. Yu, Z. R. Zhang, G. L. Shen. Potentiometric sensors:aspects of the recent development. Sens. Actuators, B 2000,65(1-3):150-153.
    251. A. Bratov, N. Abramova, A. Ipatov. Recent trends in potentiometric sensor arrays-A review. Anal. Chim.Acta 2010,678(2):149-159.
    252. E. Pretsch. The new wave of ion-selective electrodes. Trends Anal. Chem.2007,26(1):46-51.
    253. J. Bobacka. Conducting Polymer-Based Solid-State Ion-Selective Electrodes. Electroanalysis 2006, 18(1):7-18.
    254. J. Bobacka, A. Ivaska, A. Lewenstam. Potentiometric ion sensors based on conducting polymers. Electroanalysis 2003,15(5-6):366-374.
    255. R. W. Cattrall, H. Freiser. Coated Wire Ion Selective Electrodes. Anal. Chem.1971,43(13): 1905-1906.
    256. J. Bobacka. Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers. Anal. Chem.1999,71(21):4932-4937.
    257. C. Lai, M. A. Fierke, A. Stein, et al. Ion-selective electrodes with three-dimensionally ordered macroporous carbon as the solid contact. Anal. Chem.2007,79(12):4621-4626.
    258. M. Fibbioli, W. E. Morf, M. Badertscher, et al. Potential Drifts of Solid-Contacted Ion-Selective Electrodes Due to Zero-Current Ion Fluxes Through the Sensor Membrane. Electroanalysis 2000, 12(16):1286-1292.
    259. M. Fibbioli, K. Bandyopadhyay, S. G. Liu, et al. Redox-active self-assembled monolayers as novel solid contacts for ion-selective electrodes. Chem. Commun.2000,5:339-340.
    260. A. Kisiel, M. Mazur, S. Kusnieruk, et al. Polypyrrole microcapsules as a transducer for ion-selective electrodes. Electrochem. Commun.2010,12(11):1568-1571.
    261. A. Michalska. Optimizing the analytical performance and construction of ion-selective electrodes with conducting polymer-based ion-to-electron transducers. Anal. Bioanal. Chem.2006,384(2): 391-406.
    262. P. C. Si, Q. J. Chi, Z. S. Li, et al. Functional Polythiophene Nanoparticles:Size-Controlled Electropolymerization and Ion Selective Response. J. Am. Chem. Soc.2007,129(13):3888-3896.
    263. J. Sutter, A. Radu, S. Peper, et al. Solid-contact polymeric membrane electrodes with detection limits in the subnanomolar range. Anal. Chim. Acta 2004,523(1):53-59.
    264. J. F. Ping, Y. X. Wang, Y. B. Ying, et al. Application of Electrochemically Reduced Graphene Oxide on Screen-Printed Ion-Selective Electrode. Anal. Chem.2012,84(7):3473-3479.
    265. J. Ampurdanes, G. A. Crespo, A. Maroto, et al. Determination of choline and derivatives with a solid-contact ion-selective electrode based on octaamide cavitand and carbon nanotubes. Biosens. Bioelectron.2009,25(2):344-349.
    266. G. A. Zelada-Guillen, J. Riu, A. Diizgun, et al. Immediate Detection of Living Bacteria at Ultralow Concentrations Using a Carbon Nanotube Based Potentiometric Aptasensor. Angew. Chem. Int. Ed. 2009,48(40):7334-7337.
    267. E. Jaworska, M. Wojcik, A. Kisiel, et al. Gold nanoparticles solid contact for ion-selective electrodes of highly stable potential readings. Talanta 2011,85(4):1986-1989.
    268. Z. Mousavi, A. Teter, A. Lewenstam, et al. Comparison of Multi-walled Carbon Nanotubes and Poly(3-octylthiophene) as Ion-to-Electron Transducers in All-Solid-State Potassium Ion-Selective Electrodes. Electroanalysis 2011,23(6):1352-1358.
    269. E. J. Parra, G. A. Crespo, J. Riu, et al. Ion-selective electrodes using multi-walled carbon nanotubes as ion-to-electron transducers for the detection of perchlorate. Analyst 2009,134(9): 1905-1910.
    270. G. A. Crespo, D. Gugsa, S. Macho, et al. Solid-contact pH-selective electrode using multi-walled carbon nanotubes. Anal. Bioanal. Chem.2009,395(7):2371-2376.
    271. M. Fouskaki, N. Chaniotakis. Fullerene-based electrochemical buffer layer for ion-selective electrodes. Analyst 2008,133(8):1072-1075.
    272. G. A. Crespo, S. Macho, F. X. Rius. Ion-Selective Electrodes Using Carbon Nanotubes as Ion-to-Electron Transducers. Anal. Chem.2008,80(4):1316-1322.
    273. R. Hernandez, J. Riu, F. X. Rius. Determination of calcium ion in sap using carbon nanotube-based ion-selective electrodes. Analyst 2010,135(8):1979-1985.
    274. J. F. Ping, Y. X. Wang, J. Wu, et al. Development of an all-solid-state potassium ion-selective electrode using graphene as the solid-contact transducer. Electrochem. Commun.2011,13(12): 1529-1532.
    275. J. W. Zhu, X. Li, Y. Qin, et al. Single-piece solid-contact ion-selective electrodes with polymer-carbon nanotube composites. Sens. Actuators, B 2010,148(1):166-172.
    276. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Electric field effect in atomically thin carbon films. Science 2004,306(5696):666-669.
    277. A. Hashimoto, K. Suenaga, A. Gloter, et al. Direct evidence for atomic defects in graphene layers. Nature 2004,430(7002):870-873.
    278. S. Stankovich, D. A. Dikin, H. B. D. Geoffrey, et al. Graphene-based composite materials. Nature 2006,442(7100):282-286.
    279. K. S. Novoselov, A. K. Geim, S. V. Morozov, et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005,438(7065):197-200.
    280. Z. Q. Wei, D. B. Wang, S. Kim, et al. Nanoscale Tunable Reduction of Graphene Oxide for Graphene Electronics. Science 2010,328(5984):1373-1376.
    281. S. Garaj, W. Hubbard, A. Reina, et al. Graphene as a subnanometre trans-electrode membrane. Nature 2010,467(7312):190-U73.
    282. J. R. Miller, R. A. Outlaw, B. C. Holloway. Graphene Double-Layer Capacitor with ac Line-Filtering Performance. Science 2010,329(5999):1637-1639.
    283. A. K. Geim. Graphene:Status and Prospects. Science 2009,324(5934):1530-1534.
    284. M. J. Allen, V. C. Tung, R. B. Kaner. Honeycomb Carbon:A Review of Graphene. Chem. Rev. 2010,110(1):132-145.
    285. M. Pumera. Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev.2010, 39(11):4146-4157.
    286. S. J. Guo, S. J. Dong. Graphene nanosheet:synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chem. Soc. Rev.2011,40(5):2644-2672.
    287. Y. X. Liu, X. C. Dong, P. Chen. Biological and chemical sensors based on graphene materials. Chem. Soc. Rev.2012,41(6):2283-2307.
    288. Y. Wang, Z. Q. Shi, Y. Huang, et al. Supercapacitor Devices Based on Graphene Materials. J. Phys. Chem. C 2009,113(30):13103-13107.
    289. X. H. Cao, Y. M. Shi, W. H. Shi, et al.Preparation of Novel 3D Graphene Networks for Supercapacitor Applications. Small 2011,7(22):3163-3168.
    290. C. G. Liu, Z. N. Yu, D. Neff, et al. Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Lett.2010,10(12):4863-4868.
    291. G. A. Crespo, S. Macho, J. Bobacka, et al. Transduction Mechanism of Carbon Nanotubes in Solid-Contact Ion-Selective Electrodes. Anal. Chem.2009,81(2):676-681.
    292. Y. X. Wang, Z. Z. Ye, Y. B. Ying. New Trends in Impedimetric Biosensors for the Detection of Foodborne Pathogenic Bacteria. Sensors 2012,12(3):3449-3471.
    293.谢增鸿.食品安全分析与检测技术.北京:化学工业出版社,2010.
    294.丁辉.食品安全分析测试进展.北京:中国劳动社会保障出版社,2009.
    295. K. C. Honeychurch, J. P. Hart. Screen-printed electrochemical sensors for monitoring metal pollutants. Trends Anal. Chem.22(7):456-469.
    296. M. A. Alonso-Lomillo, O. Dominguez-Renedo, M. J. Arcos-Martinez. Screen-printed biosensors in microbiology; a review. Talanta 2010,82(5):1629-1636.
    297. O. Dominguez-Renedo, M. A. Alonso-Lomillo, M. J. Arcos-Martinez. Recent developments in the field of screen-printed electrodes and their related applications. Talanta 2007,73(2):202-219.
    298. J. P. Metters, R. O. Kadara, C. E. Banks. New directions in screen printed electroanalytical sensors: an overview of recent developments. Analyst 2011,136(6):1067-1076.
    299. J. F. Ping, S. P. Ru, X. Luo, et al. Direct electrochemistry of double strand DNA on ionic liquid modified screen-printed graphite electrode. Electrochim. Acta 2011,56(11):4154-4158.
    300. J. F. Ping, J. Wu, Y. B. Ying. Development of an ionic liquid modified screen-printed carbon electrode and its sensing in determination of dopamine. Electrochem. Commun.2010,12(12): 1738-1741.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700