大功率调制气流声源的数值模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
调制气流声源是一种经典的频谱可控的大功率强声源,一直以来人们对其内部流场和流动致声过程缺乏细致深入的分析。本文建立了调制气流声源的数值仿真模型,搭建了声源内部流场和近距离声场的实验测试系统。对一种射流式调制气流声源在不同工况和结构参数下的换能过程和声场特性进行了较为系统的研究。本文首次完成了声源装置中超声速射流调制的设计和实现,通过对激励调制信号的特殊设计,获得了较为显著的声压级增益。本文考虑了若干不同形式的声源内气动系统设计,对相关的瞬态流场进行了仿真分析,从中探讨了喉道形状对声能转换过程的影响。
     本论文的主要研究内容和结论如下:
     对调制气流声源内部瞬态流场和近距离声场的数值仿真模型进行了研究。为克服传统一维准稳态理论预测声源性能的局限性,基于瞬态雷诺时均方程耦合FW-H声类比的混合气动声学方法,建立了可应用于具体声源装置的气流声源仿真模型。声源内部流场仿真结果与实测结果的比较说明,将混合气动声学方法应用于气流声源性能预测和换能过程研究在理论和实现上是可行的。
     基于粒子图像测速(PIV)、单点测压和强声场测试方法,建立了调制气流声源流动致声实验系统,获取了不同气室压力、几何结构参数和激励信号等条件下的声源内部速度场、压力场和近距离声场数据。研究了声源装置可调参数对内部流场和外部声场特性的影响。稳态流场实测结果证实了内流场具有流动分离、管口回流和剪切分层等特性。声源频率响应测量结果表明,内气动系统的高速流动对调制部件的振动过程有影响。声源内压力扰动量级随气室压力和激励信号强度的增加而增加,静压频谱结果中能量集中在基频和高次谐波。不同声源参数下,近距离声场结果在量级和频谱特性等方面的变化与扰动压力的变化保持一致。
     基于所建立的声源仿真模型,进一步研究了气室压力、喉道入口宽度、调制频率和气体工作介质等参数对声源性能和声能转换过程的影响。模拟结果表明,喉道内压力扰动量级随气室压力的增加而逐渐趋于饱和,改变喉道入口宽度对真实的调制面积比和声学区域静压值的变化影响不大,不同调制频率对应的声源内部静压值分布及其变化过程具有显著差异。对于高频调制,声源内部存在明显的非线性波形失真和附加衰减作用,在剪切层中可见旋涡的产生和对流过程。
     超声速调制有望从原理上突破声压级输出随气室压力的增加而趋于饱和的限制。本文通过实验测试和模拟分析两种途径,研究了超声速射流受限调制的换能过程和增益特性。声场实测结果表明,当气室压力和激励信号强度较高时,超声速调制能够在低频和频率响应峰值附近等调制度较高的频段产生更高的声压级输出。500Hz超声速调制实验中1米处RMS声压级大于150dB,比相同条件下的声速调制结果高8dB左右。为解释声压级增益的频率相关性,模拟分析了设计马赫数3、频率500Hz的超声速调制换能过程。模拟结果验证了超声速调制的增益效果,但发现调制过程中喷管内未完全形成超声速流动,原因是超声速流动形成的速度低于喷口面积变化的速度。为实现对真实超声速射流的调制,提出了延时调制的概念。模拟结果验证了采用所设计的延时调制信号能够较大幅度提高超声速调制的入口流量和压力扰动量级。
     为研究声源内气动系统具体设计对换能过程的影响,考虑了多种喉道型线形状。在相同工况条件下,比较了内部瞬态流场的演化过程。不同设计获得的平均流动和声能转换过程存在显著差异。喉道设计的更改影响了压力扰动的形成和压力波形的频谱特性。其中,高速主流与压力扰动之间的相互作用、喉道出口两侧的阻抗匹配情况被认为是重要的影响因素。此外,为降低部分喉道设计对应的结果中压力波形的严重失真和压力扰动的空间不均匀性,本文提出了一种外喷式内气动系统设计。模拟结果验证了外喷式设计的作用效果。
Air-Modulated Speaker (AMS) is one of the most popular high power and high intensity acoustic sources due to its high sound pressure level (SPL) output and wide frequency responses. Most of the previous works on AMS are concerned with its sound field. However, it is well understood that acoustic characteristics of AMS are closely related to the unsteady flow and energy conversion process inside the source, which are essential to the research of sound generation mechanism and optimal design of the AMS device. In this paper, a numerical simulation model of AMS was developed and an experimental system was established for recording the internal unsteady flow and near field sound pressure. In order to understand the flow and sound characteristics, numerical simulations and experimental tests of the flow and sound fields were carried out for various working conditions. For the first time, supersonic flow modulated speaker (SFMS) was designed and implemented. Considerable SPL gain of SFMS was obtained after introducing a special time-delay modulation function. Meanwhile, the role of vocal tract playing in the sound generation was studied by the comparison of unsteady flow simulation results in different vocal tract designs.
     The main works are summarized as follows:
     The numerical model of AMS was established for the internal transient flow and near field nonlinear acoustic field. Without the quasi-steady hypothesis on derivation of model equations, a model of the internal flow was developed by utilizing a finite volume compressible CFD solver and dynamic mesh technique. The intensive sound field was calculated based on a hybrid method with Reynolds Averaged Navier-Stokes (RANS) and FW-H analogy. As a result, the model of AMS can be applied to handle complex geometric structure of the actual device for various working conditions. Agreements in steady flows were obtained between simulation results and flow field measurements. The hybrid method was proved to be feasible for performance prediction of AMS and better understanding the sound generation mechanism.
     To understand the energy conversion process, several experimental methods in fluid dynamics were used. The steady velocity field of a two dimensional AMS model was captured by the particle image velocimetry (PIV) technique. Both flow field static pressure and near field sound pressure were recorded by a flow-induced sound monitoring system.
     Experimental results of the internal flow and acoustic field near the source were obtained for various chamber pressures, geometric parameters or driving signals. Velocity field of the PIV results reveals that there are two dominant characteristics in the steady flow. One is the pressure recovery process with flow separation on the outer wall, and the other is the shear layer with vortex formation between main flow and reversed flow. According to the sound pressure data, frequency responses of the source are related with the chamber pressure. It is implied that the voice coil oscillation is coupled with the high speed jet flow. Variation of the static pressure in vocal tract increases with the increment of the chamber pressure and the driving signal amplitude. The fundamental and second harmonic frequency components in the disturbing pressure were obvious in the source generation zone during a monochromatic modulation. Spectral composition of the internal static pressure is coincident with that of the near field sound signal under the same working conditions.
     Based on the numerical model, the performance and energy conversion process of AMS were compared for different chamber pressures, vocal tract inlet sizes, modulation frequencies and gas types. Simulation results under various working conditions have demonstrated that SPL output becomes saturated at high chamber pressure conditions, which is consistent with the quasi-steady theory result. When the size of vocal tract inlet is changed, disturbing pressure in the acoustic zone and the true modulation area ratio are almost the same. Variations of the static pressure in the transient flow are closely related to the modulation frequency. In a low frequency modulation, amplitude of negative disturbing pressure decreases along the main flow direction. In the case of high frequency modulation, a positive pressure zone was formed. The classical nonlinear effects were also found in this case, such as waveform distortion, shock wave and additional attenuations. When the modulation frequency increased, vortex flow was also enhanced in the shear layer.
     Numerical and experimental studies were carried out for the SFMS. It was considered as a feasible way to overcome sound saturation at high chamber pressure conditions. Experimental results have shown that, compared with the sonic flow case, SPL output gain of the SFMS is obtained only when the following two requirements are fulfilled. Firstly, a high chamber pressure and a high amplitude driving signal are required. Secondly, a specified frequency band is needed to obtain large displacement for voice coil oscillation, such as a frequency band around the peak value in the frequency response curve. Experimental results show that, SPL gain for SFMS at the position of 1 meter from the source was 8dB at chamber pressure 0.6MPa, driving current 10A and modulation frequency 500Hz. In order to explain the frequency dependence of SPL gain, numerical simulations employing a mach-3 nozzle were carried out for a fixed modulation frequency 500Hz and different chamber pressures. SPL gain of the SFMS is also confirmed by the simulation results. However, they have demonstrated that supersonic jet is not established near the nozzle exit even for chamber pressure 1.2MPa. This is because that time needed for supersonic flow development inside the nozzle is similar to the modulation period. In order to realize the true supersonic flow modulation, a time-delay modulation function was designed to replace the original sine function. Simulation results of the time-delay modulation have validated that the flow speed near the nozzle exit has been greatly added to supersonic. Both of the mass flow rate and SPL output remarkably increase in the time-delay case.
     The function of vocal tract on the energy conversion in AMS was studied by the comparison of unsteady flow simulation results for different vocal tract designs under the same working condition. There are considerable differences in the average flow and sound generation mechanism among results for different designs. Development of flow disturbance and spectral composition of the transient pressure are also influenced by the vocal tract contour. It is pointed out that two factors related with the contour design affect the energy conversion process. One is the impedance mismatch on the vocal tract exit; the other is the interaction between high speed main flow and disturbance propagation. They are also responsible for the internal transient flow changes. In order to reduce the wave distortion of the flow disturbance inside the vocal tract, a novel external jet design was proposed. The advantage of this new design was validated by the simulation of the energy conversion process in AMS.
引文
[1]沈.强噪声学[M].北京:科学出版社. 1996: 1-139
    [2] C. M. Shieh. Parallel numerical simulations of subsonic turbulent, flow-induced noise from two- and three-dimensional cavities using computational aeroacoustics[D]. PhD thesis, The Pennsylvania State University, 2000
    [3] G. Raman, M. Hailye, and E. J. Rice. The flip flop nozzle extended to supersonic flows[J]. AIAA-92-2724-CP, 1992
    [4] Z. Y. Zhang. Experimental study of sound generation by confined jets with application to human phonation[D]. PhD thesis, Purdue University, 2002
    [5] B. R. Kucinschi. An analysis of the flow through a driven mechanical model of the vocal folds[D]. PhD thesis, The University of Toledo, 2004
    [6] J. S. Suh. Large eddy simulation of confined turbulent flows for aeroacoustics with application to phonation[D]. PhD thesis, Purdue University, 2006
    [7] F. G. Pla. An experimental and theretical study of high-intensity, high-efficiency sirens[D]. PhD thesis, The Pennsylvania State University, 1987
    [8] C. Sherry, J. Jauchem, et al. An assessment of the effects of four acoustic energy devices on animal behavior[R]. AFEL-HE-BR-TR-2000-0153, 2000
    [9] V. Stepanov. Biological effects of low frequency acoustic oscillations and their hygienic regulation[R]. NSN 7540-01-280-5500, 2004
    [10]林书玉.超声换能器的原理及设计[M].北京:科学出版社. 2004: 67-72
    [11] A. G. Glendinning, P. A. Nelson, and S. J. Elliott. Experiments on a compressed air loudspeaker[J]. Journal of Sound and Vibration, 1990, 138(3): 479-491
    [12] R. G. Berndt. Actuation for rotating stall control of high speed axial compressors[D]. Master of Science thesis, Massachusetts Institute of Technolody, 1995
    [13] D. Mattern, A Karl Owen. A voice voil actuated air valve for use in compressor forced response testing[R]. SPIE, 1995: 215-223
    [14]席葆树.阻挡射流扬声器[P].专利号92102274.3. 1992
    [15]席葆树.一种用于语音广播的高频气流扬声器[P].专利号200710064137.3. 2007
    [16]吴建新,白春华等.低频强声气动发声器中阀门的设计计算及研制[J].应用声学, 2006(25):19-23
    [17]白春华,吴建新等.气动阀门发声器特性分析[J].北京理工大学学报, 2006(26): 677-680
    [18] W. A. Meyer. Theoretical analysis of the performance of an air-modulated speaker[J]. J.Acoustic.Soc.Am., 1969, 45(4): 957-965
    [19]马大猷.调制气流声源的原理[J].物理学报, 1974, 23(1): 17-25
    [20] W. K. Blake. Mechanics of Flow-induced sound and vibration[M]. Orlando:Academic Press, 1986: 130-218
    [21] M. J. Lighthill. On sound generated aerodynamically–I.General theory[J]. Proc.Roy. Soc., 1952, 211: 564-587
    [22] H. G. Davies and J. E. F. Williams. Aerodynamic sound generation in pipe[J]. J.Fluid Mech. 1968, 32(4): 765-778
    [23] C. H. Shadle. The acoustics of fricative consonants[R]. MIT, Cambridge, RLE Technical Report, 1986
    [24] K. N. Stevens. Acoustic phonetics[M]. Cambrige, Massachusetts: The MIT Press, 1998
    [25] V. H. Harper. Respiratory tract acoustical modeling and measurements[D]. Ph.D. Thesis, Purdue University, West Lafayette, 2000
    [26] F. C. Johansen. Flow through pipe orifices at low Reynolds numbers[J]. Pro. Roy. Soc., 1929, Ser. A 216: 231-245
    [27] G. S. Beavers, and T. A. Wilson. Vortex growth in jets[J]. J.Fluid Mech., 1970, 44: 97-112
    [28] Z. Zhang, L. Mongeau, S. H. Frankel, et al. Sound generation by steady flow through glottis-shaped orifices[J]. J.Acoustic.Soc.Am., 2004, 116: 1720-1728
    [29] J. Weidemann. Analysis of the relations between acoustic and aerodynamic parameters for a series of dimensionally similar centrifugal fan rotors[J]. NASA Technical Translation, 1971, TT F-13, 798
    [30] M. Bartenwerfer, R. Agnon and T. Gikadi. An experimental investigation on noise production and noise propagation in centrifugal fans[R]. DFVLR Report, DLR-FB, 76-14, 1976
    [31] L. Mongeau, D. E. Thompson and D. K. Mclaughlin. A method for characterizing aerodynamic sound sources in turbomachines[J]. Journal of Sound and Vibration, 1995, 181(3): 369-389
    [32] F. Alipour, R. C. Scherer. Pulsatile airflow during phonation: An excised larynx model[J]. J.Acoustic.Soc.Am., 1995, 97: 1241-1248
    [33] L. Mongeau, N. Franchek, and C. H. Coker, et al. Characteristics of a pulsating jet through a small modulated orifice, with application to voice production[J]. J. Acoustic. Soc. Am., 1997; 102: 1121-1133
    [34] Z. Zhang, L. Mongeau, S. H. Frankel. Experimental verification of the quasi-steady approximation for aerodynamics sound generation by pulsating jets in tubes[J]. J.Acoustic.Soc.Am., 2002, 112: 1652-1663
    [35] S. M. Richard. Aeroacoustic approach to phonation[J]. J. Acoustic. Soc. Am., 1988, 83(2): 696-704
    [36] A. Barney, C. H. Shadle and P. O. A. L. Davies. Fluid flow in a dynamic mechanical model of the vocal folds and tract. I.measurements and theory[J]. J. Acoustic. Soc. Am., 1999, 105: 444-455
    [37] C. H. Shadle, A. Barney, and P. O. A. L. Davies. Fluid flow in a dynamic mechanical model of the vocal folds and tract. II.implications for speech production stydies[J]. J. Acoustic. Soc. Am., 1999, 105: 456-466
    [38] C. J. Moore. The role of shear-layer instability waves in jet exhaust noise[J]. J.Fluid Mech., 1977, 80(part 2): 321-367
    [39] C. H. Shadle, S. J. Elliott and P. A. Nelson. Visualization of the air flowing through a dynamic model of the vocal folds[R]. ISVR Technical Report, 1987
    [40] G. C. J. Hofmans. Vortex sound in confined flows[D]. Ph.D. Thesis, Universiteis-drukkerij, Ben Mobach, TUE, 1998
    [41] J. Dabiri, B. Kucinschi and A. Afjeh, et al. Smoke flow visualization for the flow through a symmetrical and an oblique glottis with and without the presence of the false vocal folds[R]. Research report, Optical flow diagnostics laboratory, University of Toledo, 2001
    [42] M. Iguchi, H. Yamazaki, and E. Yamada, et al. Velocity and turbulence intensity in a pulsating jet through a sudden expansion[J]. Trans. of the Jap. Soc. Mech. Eng., 1990, 56: 1659-1664
    [43] B. Erath. An experimental investigation of velocity fields in diverging glottal models of the human vocal tract[D]. Master’s thesis, School of Mechanical Engineering. Purdue University, 2005
    [44] M. Triep, C. Brücker, W. Schr?der. High-speed PIV measurements of the flow downstream of a dynamic mechanical model of the human vocal folds[J]. Experiments in Fluids, 2005, 39: 232-245
    [45] W. Zhao, S. H. Frankel, and L. Mongeau. Computational aeroacoustic of an axisymmetric jet in a variable area duct[J]. AIAA-01-2788, 2001
    [46] W. Zhao, S. H. Frankel, and L. Mongeau. Numerical simulation of sound from confined pulsating axisymmetric jets[J]. AIAA Journal, 2001, 39: 1869-1874
    [47] C. Guo and R. C. Scherer. Finite element simulation of glottal flow and pressure[J]. J.Acoustic.Soc.Am., 1993, 94: 688-700
    [48] S. Slimon, D. Davis, and S. Levinson, et al. Low Mach number flow through a constricted stylized vocal tract[J]. AIAA-96-1734, 1996
    [49] F. Alipour and R. C. Scherer. Pulsatile airflow during phonation: an excised larynx model[J]. J.Acoustic.Soc.Am., 1995, 97: 1241-1248
    [50] W. Zhao, C. Zhang and S. H. Frankel, et al. Computational aeroacoustics of phonation, part I: Numerical methods, acoustic analogy validation and effects of glottal geometry[J]. J.Acoustic.Soc.Am., 2002, 112: 2134-2146
    [51] C. Zhang, W. Zhao and S. H. Frankel, et al. Computational aeroacoustics of phonation, part II: effects of subglottal pressure, glottal oscillation frequency and ventricular folds[J]. J.Acoustic.Soc.Am., 2002, 112: 2147-2154
    [52] J. C. Webster, R. G. Klumpp. Evaluation of a modulated air-flowloudspeaker[J]. J. Acoustic. Soc. Am., 1959, 31(6): 795-799
    [53] D. J. Sinder. Speech synthesis using an aeroacoustic fricative model[D]. New Brunswick Rutgers, The State University of New Jersey, 1999
    [54] C. J. Chapman and A. G. Glendinning. A theoretical analysis of a compressed air loudspeaker[J]. Journal of Sound and Vibration, 1990, 138(3): 493-499
    [55]戚伯钧.一种高声强声源的研制[J].仪器仪表学报, 1983(1):66~71
    [56]孙洪生等.调制气流声源和远程广播中语言可懂度的实验研究[J].声学学报, 1984(1):39~46
    [57]张扩基,马德录.便携式轻小气流扬声器[J].声学学报, 1990(2):100~105
    [58]孙洪生.远程语言广播系统设计原理[J].声学学报, 1984(9):180~188
    [59]张扩基等.大功率宽频带声源系统的设计和声功率测量[J].应用声学, 1992(3):14~21
    [60]张扩基等.两千和一万声瓦电动调制气流声源[J].声学学报, 1982(2):122~124
    [1] W. A. Meyer. Theoretical analysis of the performance of an air-modulated speaker[J]. J.Acoustic.Soc.Am., 1969, 45(4): 957-965
    [2]马大猷.调制气流声源的原理[J].物理学报, 1974, 23(1): 17-25
    [3]沈.强噪声学[M].北京:科学出版社. 1996: 1-139
    [4]孙晓峰,周盛.气动声学[M].北京:国防工业出版社. 1994: 1-29
    [5] M. J. Lighthill. On sound generated aerodynamically–I.General theory[J]. Proc.Roy. Soc., 1952, 211: 564-587
    [6] N. Curle. The influence of solid boundaries on aerodynamic sound[J]. Proc Roy. London Soc. 1955, 231A: 505-514
    [7] H. G. Davies and J. E. F. Williams. Aerodynamic sound generation in pipe[J]. J.Fluid Mech. 1968, 32(4): 765-778
    [8] C. K. W. Tam. Computational aeroacoustics: an overview[C]. Invited paper. NATO/AVT symposium, 2001
    [9] C. Wagner, T. Hüttl and P. Sagaut. Large-eddy simulation for acoustics. Cambridge University Press[M], 2007, 1-166
    [10] A. Ayar, R. Ambs and B. Schillemeit, et al. Prediction of flow-induced noise in automotive HVAC systems using a combined CFD/CA approach[C]. Detroit, Michigan: SAE Technical Paper Series, 2005
    [11] R. Sandboge, S. Caro and K. B. Washburn, et al. Validation of a CAA formulation based on Lighthill’s analogy using AcuSolve and Actran/LA on an idealized automotive HVAC blower and on an axial fan[C]. Cambridge MA, USA: 12th AIAA/CEAS Aeroacoustics Conference, 2006
    [12] F. Magagnato, E. Sorgüven, M. Gabi. Far field noise prediction by large eddy simulation and Ffowcs-williams Hawkings analogy[C]. Hilton Head, Sough Carolina: 9th AIAA/CEAS Aeroacoustics Conference and Exhibit, 2003
    [13] M. S. K. Tang. Numerical simulation of flow-induced noise by means of the hybrid method with LES and aeroacoustic analogy[D]. PhD thesis, Fachbereich Maschinentechnik der Universit?t Siegen, 2004
    [14] S. Caro, P. Ploumhans and X. Gallez. Implementation of Lighthill’s acoustic analogy in a finite/infinite elements framework[C]. Manchester, UK: 10th AIAA/CEAS Aeroacoustics Conference and Exhibit, 2004
    [15] S. Caro, P. Ploumhans and V. Morgenthaler, et al. Identification of the appropriate parameters for accurate CAA[C]. Monterey CA, USA: 11th AIAA/CEAS Aeroacoustics Conference, 2005
    [16] S. Caro, F. Brotz and A. Read, et al. Aeroacoustic simulation of the noise radiated by an helmholtz resonator placed in a duct[C]. Monterey CA, USA: 11th AIAA/CEAS Aeroacoustics Conference, 2005
    [17] K. S. Brentner and F. Farassat. An analytical comparation of the acoustic analogy and kirchhoff formulation for moving surfaces[J]. AIAA Journal, 1998, 36(8): 1379-1386
    [1]席葆树.阻挡射流扬声器[P].专利号92102274.3. 1992
    [2]席葆树.一种用于语音广播的高频气流扬声器[P].专利号200710064137.3. 2007
    [3] FLUENT Inc. FLUENT 6.3 user’s guide[M]. 2006
    [4] A. Fine. Computational aeroacoustics of aerofoil wake interaction[D]. Master’s thesis, School of Engineering, Cranfield College of Aeronautics, 2007
    [5]王福军.计算流体动力学分析——CFD软件原理与应用[M].北京:清华大学出版社, 2004: 1-143
    [6] R. C. Scherer, K. J. D. Witt, B. R. Kucinschi. The effect of exit radii on intraglottal pressure distributions in the convergent glottis[J]. J.Acoustic.Soc.Am., 2001, 110: 2267-2269
    [7] S. Li, R. C. Scherer and M. Wan, et al. The effect of glottal angel on intraglottal pressure[J]. J.Acoustic.Soc.Am., 2006, 119: 539-548
    [8] S. Li, R. C. Scherer. Numerical study of the effects of inferior and superior vocal fold surface angle on vocal fold pressure distrubutions[J]. J.Acoustic.Soc.Am., 2006, 119: 3003-3010
    [9]陈志敏等.风能涡轮引信电机吹风装置的轴对称收缩段设计研究[J].机械科学与技术. 2001, 20: 397-398
    [10]张连河,范洁川.三元收缩段优化设计研究[J].空气动力学学报. 2003, 21: 417-423
    [11]焦予秦.基于Navier-Stokes数值计算的风洞收缩段设计[J].流体力学实验与测量. 2003, 17: 1-6
    [12]刘卫红.轴对称收缩段设计研究[J].空气动力学学报. 1998, 16: 250-254
    [13] W. K. Blake. Mechanics of Flow-induced sound and vibration[M]. Orlando: Academic Press, 1986: 130-218
    [14] P. Spalart and S. Allmaras. A one-equation turbulence model for aerodynamic flows[R]. American Institute of Aeronautics and Astronautics, Technical Report AIAA-92-0439, 1992
    [15] B. E. Launder and D. B. Spalding. Lectures in mathematical models of turbulence[M]. London: Academic Press, 1972
    [16] V. Yakhot, S. A. Orzag. Renormalization group analysis of turbulence: basic theory[J]. J. Scient. Comput., 1986, 1: 3-11
    [17] D. C. Wilcox. Turbulence modeling for CFD[M]. California: DCW Industries, Inc., 1998
    [18] F. R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605
    [19] B. E. Launder and D. B. Spalding. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 3: 269-289
    [20] S. E. Kim and D. Choudhury. A near-wall treatment using wall functions sensitized to pressure gradient[C]. In ASME FED Vol. 217, Separated and Complex Flows. ASME, 1995
    [21]内部资料. Fluent动网格技术培训讲义[M].上海:飞昂软件技术有限公司, 2006
    [22] J. D. Edwards. Design of a moving-coil driver, electrical design project module[R]. department of engineering and design at the University of Sussex, 2006
    [23]叶云岳.直线电机原理与应用[M].北京:机械工业出版社. 2000: 68-73
    [24] J. P. Webb. Application of the finite-element method to electromagnetic and electrical topics[J]. Rep. Prog. Phys., 1995, 58: 1673-1712
    [25]刘国强. Ansoft工程电磁场有限元分析[M].北京:电子工业出版社. 2005: 130-144
    [26] C. Hirsch. Numerical computation of internal and external flows: fundamentals of computational fluid dynamics[M]. John Wiley & Sons, 2007: 1-140
    [27] C. Wagner, T. Hüttl and P. Sagaut. Large-eddy simulation for acoustics. Cambridge University Press[M], 2007, 1-166
    [28] R. D.白莱文斯.流体诱发振动[M].北京:机械工业出版社. 1981: 118-146, 255-287
    [29] FLUENT Inc. Fluent 6.0 acoustics models manual[M]. 2002
    [1]沈.强噪声学[M].北京:科学出版社, 1996: 137-138
    [2] A. Barney, C. H. Shadle, P. O. A. L. Davies. Fluid flow in a dynamic mechanical model of the vocal folds and tract. I. Measurements and theory[J]. J.Acoustic.Soc.Am., 1999, 105: 444-455
    [3] C. H. Shadle, A. Barney, P. O. A. L. Davies. Fluid flow in a dynamic mechanical model of the vocal folds and tract. II. Implications for speech production stydies[J]. J.Acoustic.Soc.Am., 1999, 105:456-466
    [4] B. R. Kucinschi. An analysis of the flow through a driven mechanical model of the vocal folds[D]. PhD thesis, The University of Toledo, 2004
    [5] M. Triep, C. Brücker, W. Schr?der. High-speed PIV measurements of the flow downstream of a dynamic mechanical model of the human vocal folds[J]. Experiments in Fluids, 2005, 39: 232-245
    [6] B. Erath. An experimental investigation of velocity fields in diverging glottalmodels of the human vocal tract[D]. Indiana: School of Mechanical Engineering, Purdue University, 2005
    [7] L. Mongeau, N. Franchek, C. H. Coker and R. A. Kubli. Characteristics of a pulsating jet through a small modulated orifice, with application to voice production[J]. J.Acoustic.Soc.Am., 1997, 102: 1121-1133
    [8] Z. Zhang, L. Mongeau and S. H. Frankel. Experimental verification of the quasi-steady approximation for aerodynamics sound generation by pulsating jets in tubes[J]. J.Acoustic.Soc.Am., 2002, 112: 1652-1663
    [9] F. Alipour and R. C. Scherer. Pulsatile airflow during phonation: An excised larynx model[J]. J.Acoustic.Soc.Am., 1995, 97: 1241-1248
    [10] Z. Zhang, L. Mongeau, S. H. Frankel, S. Thomson and J. B. Park. Sound generation by steady flow through glottis-shaped orifices[J]. J.Acoustic.Soc.Am., 2004, 116: 1720-1728
    [11] M. Deverge, X. Pelorson, C. Vilain, P. Y. Lagree, F. Chentouf, J. Wilems and A. Hirschberg. Influence of collision of the flow through in-vitro rigid models of the Vocal folds[J]. J.Acoustic.Soc.Am., 2003, 114:3354-3362
    [12] G. C. J. Hofmans, G. Groot, M. Ranucci, G. Graziani and A. Hirschberg. Unsteady flow through in-vitro models of the glottis[J]. J.Acoustic.Soc.Am., 2003, 113:1658-1675
    [13]刘胤.用PIV技术测量压气机内流的试验研究[D].北京:北京航空航天大学硕士, 2000:11-34
    [14]宋国亮.绕圆柱非稳态流动研究及无叶扩压器内流动的PIV测量[D].西安:西安交通大学, 2002:13-23
    [15]张燕.横流冲击射流涡旋结构的实验和数值研究[D].上海:上海大学博士学位论文, 2005:10-30
    [16]刘宝杰.复杂流动的PIV研究[D].北京:北京航空航天大学, 2000:23-40
    [17]代钦.超音速喷流流场的DPIV实验测量[D].北京:北京航空航天大学, 2000:1-19
    [1]沈.强噪声学[M].北京:科学出版社, 1996: 137-138
    [2]马大猷.调制气流声源的原理[J].物理学报. 1974,vol.23,no.1
    [3] W. A. Meyer. Theoretical analysis of the performance of an air-modulaspeaker[J]. J.Acoustic.Soc.Am., 1969, 45(4): 957-965
    [1] W. A. Meyer. Theoretical analysis of the performance of an air-modulated speaker[J]. J.Acoustic.Soc.Am., 1969, 45(4): 957-965
    [2]马大猷.调制气流声源的原理[J].物理学报, 1974, 23(1): 17-25
    [3]潘锦珊等.气体动力学基础[M].北京:国防出版社. 1989:146-214
    [4] S. S. Desai. Axisymmetric supersonic nozzle design: Foelsch method[R]. National Aeronautical Laboratory, 1977
    [5] F. L. Shope. Contour design techniques for super/hypersonic wind tunnel nozzles[J]. AIAA Paper, 2006-3665, 2006
    [6] J. C. Sivells. Aerodynamic design of axisymmetric hypersonic wind tunnel nozzles[J]. AIAA Journal of Spacecraft and Rockets, 1970, 7:1292-1299
    [7] J. J. Korte. Inviscid design of hypersonic wind tunnel nozzles for a real gas[J]. AIAA Paper, 2000-0677, 2000
    [8] R. L. Gaffney, B. K. Stewart, F. Stephen. The design of a high-Q, mach-5 nozzle for the NASA Langley 8-foot HTT[J]. AIAA Paper, 2006-2954, 2006
    [9] J. J. Korte. Aerodynamic design of axisymmetric hypersonic wind-tunnel nozzles using least-squares/parabolized Navier-Stokes procedure[J]. AIAA Paper, 92-0332, 1992
    [10] J. J. Korte, A. Kumar, D. J. Singh, J. A. White. CAN-DO, CFD-based aerodynamic nozzle design & optimization program for supersonic/hypersonic wind tunnels[J]. AIAA Paper, 92-4009, 1992
    [1] L. Piegl, W. Tiller. The NURBS book[M]. Springer Press, 1996: 1-140
    [2] J. Madsen, W. shyy, R. Haftka, J. Liu. Response surface technique for diffuser shape optimization[J]. AIAA Paper, 97-1801, 1997
    [3] D. W. Mayer, B. H. Anderson, T. A. Johnson. 3D subsonic diffuser design and analysis[J]. AIAA Paper, 98-3418, 1998
    [4] F. L. Pan, J. Coupland. An integrated optimization system for low noise nacelle design[J]. AIAA Paper, 2005-2945, 2005
    [5] C. Qian, C. Yuan. An integrated process of CFD analysis and design optimization with underhood thermal application[J]. Society of Automotive Engineers, 2001-01-0637, 2000
    [6]辛晓华,张武,周华.基于Fluent的绕流问题的数值模拟与并行计算[J].计算机工程与设计, 2005(8):2153-2154
    [7]程成,须文波,冷文皓.基于iSIGHT平台DOE方法的螺旋桨敞水性能优化设计, 2007(6):1455-1459
    [8]覃粒子,刘宇,王一白.线性塞式喷管型面快速设计方法[J].推进技术, 2004(2):144-147
    [9]王一白,覃粒子,刘宇等.圆转方塞式喷管型面设计和试验研究[J].宇航学报, 2006(5):843-848
    [10] J. Hur. NURBS based aerodynamic shape optimization[D]. Master’s thesis, Science in Aerospace Engineering, Mississippi State University, 1999
    [11] E. C. Perry. Three-dimensional shape optimization of internal fluid flow systems using arbitrary shape deformation coupled with computational fluid dynamics[D]. Doctor’s thesis, Department of Civil and Environmental Engineering, Brigham Young University, 1999
    [12] A. T. Lethander. Assessment of a leading edge fillet for decreasing vane endwall temperatures in a gas turbine engine[D]. Doctor’s thesis, Mechanical Engineering, Virginia Polytechnic Institute and State University, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700