苹果砧木平邑甜茶(M.hupehensis Rehd.)的木质素代谢及其调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验于2001年至2003年在山东农业大学果树试验园及激素试验室进行。以1-3年生平邑甜茶(M.hupehensis Rehd.)实生苗为试材,采用水培、土培和自然取样等方法,首先研究了平邑甜茶幼苗不同部位的木质素合成代谢基本规律,在此基础上研究了弱光对平邑甜茶幼苗叶片生长发育和木质素合成代谢的调控;最后,用羟自由基和壳聚糖两种诱抗剂来调控平邑甜茶幼苗生长发育和木质素合成代谢,探讨了其潜在的应用价值。另外,还对平邑甜茶叶片超微弱发光测量方法进行了探索。结果如下:
    1.平邑甜茶幼苗的根茎叶、不同根类和不同叶位的木质素含量及其相关酶等生理指标存在差异。木质素含量高低依次为茎>根>叶。老根的木质素含量和POD都显著高于新根。不同根类的木质素含量高低依次为输导根>过渡根>生长根>吸收根。叶位越低,木质素含量和POD活性越高,PAL和4Cl活性与木质素含量并不一致。
    2.遮荫可以大大降低平邑甜茶叶片的比叶重、木质素含量及其相关酶POD、PAL的活性,表明遮荫对木质素合成代谢有调控作用。此外,遮荫还可以降低平邑甜茶叶片的超微弱发光和CAT活性,证明遮荫使其叶片的抗性减弱,这与木质素合成代谢水平降低有关。
    3.适当浓度的羟自由基能够改善平邑甜茶幼苗的根系发育,激发植株超微弱发光,提高木质素代谢水平,有望作为诱抗剂应用于生产。根施羟自由基使根重增加,冠重减少,根冠比增大。根施羟自由基均提高了平邑甜茶幼苗根系的活跃吸收面积百分比、TTC根系活力和CAT活性。羟自由基浸根的植株超微弱发光反应速度快于浸水植株,且最后稳定在较高的水平。随着羟自由基浓度的提高,PAL、POD活性和木质素含量提高。
    4.壳聚糖不仅可以促进平邑甜茶幼苗子叶的增重,改善根系发育,还可以提高木质素的合成代谢水平,能够作为诱抗剂应用于生产。在
    
    0.05%~0.35%浓度范围内,随着壳聚糖浓度升高,子叶重量增加。适宜浓度(0.2%)能够提高新根质量,促进植株生长。根施壳聚糖不同程度的提高了细根的根尖数、面积、长度、平均直径和根系活力,改善了植株发育。根施壳聚糖均提高了平邑甜茶幼苗根系的POD、PAL活性和木质素含量,促进了根系木质素的合成。
    5.平邑甜茶幼苗叶片超微弱发光与摆放方式、圆片直径和圆片数关系密切。平铺的超微弱发光显著高于堆叠的;圆片直径越大,圆片数越多,超微弱发光越强。
The experiments were conducted from 2001 to 2003 in the orchard and hormone laboratory, College of Horticulture, Shandong Agricultural University. The 1-3 years old trees of M.hupehensis Rehd were used as materials. The method of the experiment were water culture, soil culture and normal sampling etc. Firstly, the elementary law of lignin synthesis metabolism in different part of the seedlings of M.hupehensis Rehd was studied. On the base of it, then the regulation of weak light on the growth development and lignin synthesis metabolism of leaves of M.hupehensis Rehd seedlings was researched. Finally, using two elicitor, hydroxy radical and chitosan, to regulate the growth development and lignin synthesis metabolism of the seedlings, whose potential apply value was discussed. In addition, the Ultraweak luminescence(UL) assay method of the leaves of M.hupehensis Rehd was studied. The results obtained are summarized as follows.
     1. The lignin content and the relative enzymes activity are different among roots, stem and leaves of M.hupehensis Rehd seedlings, the same as among different type of roots and different position leaf of the seedlings. The concrete results is following. The sequence of lignin content is stem>root>leaf and conducting root>transitional root>growing root>absorbing root. The lignin content and POD activity in old roots is obviously higher than those in new roots. The lower the leaf position of the same shoot is, the higher the lignin content and the POD activity are. The lignin content is not according with activity of PAL and 4Cl in leaves of different position.
    2. Shade can greatly decrease SLW, lignin content and the relative enzymes activity, such as POD and PAL in leaves of M.hupehensis Rehd seedlings,
    
    which indicates that shade has regulation function on the lignin synthesis metabolism. Moreover, shade decrease UL and the activity of CAT of the seedlings leaves, which proved that shade can weaken the resistance of leaves and this is relative to the low level of lignin synthesis metabolism.
    3. The treatment of fit concentration of hydroxy radical on M.hupehensis Rehd roots can improve the root development, elicit the seedlings UL and increase the level of lignin synthesis metabolism, which make it possible to apply the agent as elicitor to agricultural production. The treatment of hydroxy radical on roots may increase root weight and decrease cap weight, so the root/cap ratio increase. The treatment of hydroxy radical increase the active absorbing area per., TTC root vigor and CAT activity. The response speed of UL in the seedlings whose roots were dipped in hydroxy radical solution is faster than that in water and the former kept a higher level finally. With the increase of the hydroxy radical concentration, the lignin content and the activity of POD and PAL also increased.
    4. The treatment of chitosan on M.hupehensis Rehd seedlings not only increase cotyledon weight, promote root development, but also increase the level of lignin synthesis metabolism and chitosan can be applied to agricultural production as an elicitor. With the increase of chitosan concentration ranging from 0.05% to 0.35%, cotyledon weight increases, under the fit concentration (0.2%), the quality of new root and plant growth are improved. To some extent, the treatment of applying chitosan to roots all increase tip number, area, length, average diameter and the vigor of fine roots and improve plant development. Moreover, these treatment increase lignin content and the activity of POD and PAL in roots, promote the lignin synthesis in root.
    
    
    5. The leaf UL intensity of M.hupehensis Rehd seedlings is closely related to putting ways, wafer diameter and wafer number. The UL intensity of tiled leaves is higher than that of piled leaves. The wider the wafer diameter is and the more the number of wafer is, the stronger the UL intensity is.
引文
[1] K.Chaitzoulakis等,余丽清译.遮荫对四个猕猴桃品种的气体交换比叶重和叶绿素含量的影响[J].湖北农业科学,增刊1994(1):78-79.
    [2] 陈国菊,吴筱颖,陈日远,等.遮荫与露地对小鸟花生长及细胞组织结构的影响[J].华南农业大学学报,2001,21(1):93-94.
    [3] 迟伟,王荣富,张成林.遮荫条件下草莓的光合特性变化[J].应用生态学报2001,12(4)∶566-568.
    [4] 丛斌,杨茂成.小麦根法细胞分化过程中木质素合成及其相关酶的活性变化[J].复旦学报(自然版),1997,36(5):550-554.
    [5] 董静,贾克功.遮荫及叶施蔗糖对桃树生长发育的影响[D].北京:中国农业大学硕士论文,2001,5.
    [6] 胡日生,孙焕良,郭清泉,等.苎麻胶质的基因型差异与成因及育种中利用的研究Ⅱ.苎麻胶质及其组分含量时空变化的品种间差异[J].湖南农业大学学报 2000,26(6):422-425.
    [7] 江昌俊,余有本.苯丙氨酸解氨酶的研究进展[J].安徽农业大学学报,2001,28(4):425-430.
    [8] 鞠志国,阎升平.莱阳茌梨酚类物质合成的调节及其对果实品质的影响[J].中国农业科学,1993,26(4):44-48.
    [9] 孔祥瑞.自由基及其分子生物学研究进展[J].生物科学动态,1984,4:11-18.
    [10] 李寿田,龚义勤,周健民,等.萝卜贮藏期间木质素含量变化与糠心的关系[J].园艺学报, 2001,28(6):562-564.
    [11] 李兴军,李三玉,吕均良,等.GA_3对杨梅叶片木质素水平及其相关酶活性和成花的影响[J].园艺学报,2001,28(2):156-158.
    
    
    [12] 林葵,黄祥辉,王隆华等.甜瓜子叶不定芽分化过程中PAL活性和木质素含量变化研究[J].华东师范大学学报(自然科学版),1996(2):92-97.
    [13] 林植芳,李双顺,林桂珠,等.水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系[J].植物学报,1984,26(6):605-615.
    [14] 刘爱新,梁元存,张博,等.植物诱导抗病性研究进展.山东农业大学学报,1998,29(3):410-414.
    [15] 刘贤赵,康绍忠,邵明安,等.土壤水分与遮荫水平对棉花叶片光合特性的影响研究[J].应用生态学报,2000,11(3):377-381.
    [16] 刘学群,杜爱玲.暗期红光、远红光间断处理对小麦叶片细胞壁成分的影响[J].华中农业大学学报,1996,15(3):221-224.
    [17] 马鹏鹏.甲壳素及其衍生物在农业生产中的应用[J].植物生理学通讯,2001,10(5):475-478.
    [18] 毛志泉.有机物料对平邑甜茶实生苗根系结构与功能影响的研究[D].泰安:山东农业大学果树学博士论文,2002,6.
    [19] 穆环珍,曾文,黄衍初,等.增效磷肥的研制与增产效应研究[J].农业环境保护,2002,21(1):26-28.
    [20] 潘瑞炽,豆志杰,叶庆生.茉莉酸甲酯对水分胁迫下花生幼苗SOD活性和膜脂过氧化作用的影响[J].植物生理学报,1995,21(3):221-228.
    [21] 山东农学院,西北农学院.植物生理学实验指导[M].济南:山东科学技术出版社,1985.
    [22] 邵素琴,李建中.植物诱抗剂研究进展[J].农药,2002,41(6):12-14.
    
    
    [23] 苏新国,郑永华,张兰,等.壳聚糖涂膜对菜用大豆荚采后衰老和品质的影响[J].植物生理学报,2001,27(6):467-472.
    [24] 孙文全.联苯胺比色法测定果树过氧化物酶活性的研究[J].果树科学,1988,5(3):105-108.
    [25] 王爱国,余叔文,汤章诚.植物生理与分子生物学[M] .北京:科学出版社,1998:366-389.
    [26] 王绍辉,郝翠玲,张振贤.植物遮荫效应的研究与进展[J]. 山东农业大学学报,1998,29(1):130-133.
    [27] 王维江,韩俊英.生物超弱发光机制及其检测方法研究进展[J].广东工业大学学报,2000,17(1):49-54.
    [28] 魏建华,宋艳茹.木质素生物合成途径及调控的研究进展[J].植物学报, 2001,43(8):771-779.
    [29] 席玙芳,罗自生,程度,等.竹笋采后活性氧代谢对木质化的影响[J].中国农业科学,2001,34(2):197-199.
    [30] 谢平,左清凡.冬春季不同遮荫水平对香蕉假植苗单株生物量的影响[J].中国农业气象,2001,22(2):6-11.
    [31] 许勇,葛秀春.枯萎病菌诱导的结构抗性和相关酶活性的变化与西瓜枯萎病抗性的关系[J].果树科学,2000,17(2):123-127.
    [32] 薛应龙.植物生理学实验手册[M].上海:上海科学技术出版社,1985,191-192.
    [33] 杨洪强,贾文锁,张大鹏.失水对苹果新根ABA含量和蛋白激酶活性的影响[J].园艺学报,2000,27(2):79-84.
    [34] 杨洪强,接玉玲.苹果砧木实生苗根系个体差异研究.山东农业大学学报,1997,28(4):487-491.
    杨淑慎,高俊凤.活性氧、自由基与植物的衰老[J].西北植物学
    
    [35] 报,2001,21(2):215-220.
    [36] 于明革,杨洪强,刘高峰,等.壳聚糖对黄瓜种子萌发和生长发育的影响[J].长江蔬菜,2003(3):42-43.
    [37] 俞明亮,马瑞娟,赵密珍,等.桃树体内生化代谢与其对流胶病抗性的关系[J].江苏农业学报 2001,17(4):241-243.
    [38] 张继澍.植物生理学[M].西安:世界图书出版社,1999,363-365.
    [39] 张静,杨洪强,魏钦平.几丁质及其衍生物的生物活性与农业应用[J].植物学通报,2003,20(2):178-183.
    [40] 张学昆,唐章林,谌利,等.脱乙酰化几丁质的乙酰化程度对诱导油菜抗性的影响[J].中国农业科学,2002,35(3):287-290.
    [41] 张振贤,郭延奎,邹琦.遮荫对生姜叶片显微结构及叶绿体超微结构的影响[J].园艺学报,1999,26(2):96-100.
    [42] 赵世杰,刘华山,董新纯.植物生理学实验指导[M].北京:中国农业科技出版社,1998,39-42.
    [43] 中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理实验指南[M].北京:科学出版社,1999,289,318.
    [44] 中野準三,高洁,鲍禾,李忠正译.木质素的化学.北京:轻工业出版社,1988.
    [45] 周治国,孟亚利,施 培.苗期遮荫对棉苗茎叶结构及功能叶光合性能的影响[J].中国农业科学,2001,34(5):465—468.
    [46] 自由基生命科学进展(第五集)[M].北京:原子能出版社,1997,7.
    [47] Abbott JC, Barakate A, Pincon G, et al. Simultaneous suppression of multiple genes by single transgenes Down-regulation of three unrelated lignin biosynthetic genes in tobacco [J]. Plant Physiology, 2002, 128(3): 844-853.
    
    
    [48] Alit P, Gargi Sengupta, Prajjal Datta, et al. Lignin and lignification with special reference to its down regulation for the improvement of wood and bast fibre quality [J]. Indian Journal of Plant Physiology, 2001, 6(3): 217-228.
    [49] Baucher M, Bernard Vailhe M A, Chabbert B et al. Down-regulation of cinnamyl alcohol dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect on lignin composition and digestibility [J]. Plant Molecular Biology, 1999, 39(3): 437-447.
    [50] Bell A, Hubbard J C, Liu L, et al. Effects of chitin and chitosan on the incidence and severity of Fusarium yellows of celery [J]. Plant Dis., 1998, 82 (3): 322-328.
    [51] Berg B. Initial rates and limit values for decomposition of Scots pine and Norway spruce needle litter: a synthesis for N-fertilized forest stands [J]. Canadian Journal of Forest Research, 2000, 30(1): 122-135.
    [52] Boudet, A M, Goffner D, Teulires, C, et al. Genetic manipulation of lignin profiles: a realistic challenge towards the qualitative improve- ment of plant biomass [J]. AgBiotech News and Information, 1998, 10(9): 295-303.
    [53] Budikova S, Uzik M. Structural reactions of different crop plant roots to aluminium toxicity [J]. Piest'any, 1999, 8:155-159.
    [54] Carpin S, Crevecoeur M, Greppin H, et al. Molecular cloning and tissue-specific expression of an anionic peroxidase in zucchini [J]. Plant physiol, 1999, 120(3): 799-810.
    [55] Chabannes M, Barakate A, Lapierre-C, et al. Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants [J]. Plant Journal, 2001, 28(3): 257-270.
    Chance B, et al. Methods on enzymology [M]. New York: Academic
    
    [56] Press, 1955, (12): 764-765.
    [57] Chen CY, Seguin Swartz G. Reaction of wild crucifers to Leptosphaeria maculans, the causal agent of blackleg of crucifers [J]. Can J. plant pathol., 1999, 21(4):361-367.
    [58] Chen Y A, Shin J W, Liu Z H. Effect of light on peroxidase and lignin synthesis in mungbean hypocotyls [J]. Plant Physiology and Bioche- mistry, 2002,40(1): 33-39,79.
    [59] Connell A, Halpin C, Holt K, et al. Reducing lignin contents and improved pulping and paper characteristics through inhibition of Cinnamoyl CoA reductase [C]. Proceedings of the Second International Wood Biotechnology Symposium, 1999, 200-206.
    [60] Cui Y X, Bell A A, Joost O, et al. Expression of potential defense response genes in cotton [J]. Physiol. Mol. plant pathol., 2000,56 (1):25-31.
    [61] Donaldson LA. Abnormal lignin distribution in wood from severely drought stressed Pinus radiata trees [J]. IAWA Journal, 2002, 23(2): 161-178.
    [62] Dong airong, Zhang xinyu, Wang yuantao, et al. Pathogenetic and physiological mechanisms of poplarice nucleation active bacterial canker [J]. Journal of Forestry Research, 2001, 12(4): 253-256.
    [63] El Modafar C, El Boustani E. Cell wall-bound phenolic acid and lignin contents in date palm as related to its resistance to Fusarium oxysporum [J]. Biologia Plantarum, 2001, 44(1): 125-130.
    [64] Elfstrand M, Sitbon F, Lapierre C, et al. Altered lignin structure and resistance to pathogens in spi 2-expressing tobacco plants [J]. Planta, 2002, 214(5): 708-716.
    [65] Estrada B, Bernal MA, Diaz J, et al. Fruit development in Capsicum annuum: changes in capsaicin, lignin, free phenolics, and peroxidase patterns [J]. Journal of Agricultural and Food Chemistry, 2000, 48(12): 6234-6239.
    
    
    [66] Fang Guigan, Castellan A, Bernard J de, et al. Chemical modification of lignin in poplar APMP pulps to prevent light-induced yellowing [J]. Chemistry and Industry of Forest Products, 2000, 20(3): 51-59.
    [67] Franke R, Hemm MR, Denault JW, et al. Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis [J]. Plant Journal, 2002, 30(1): 47-59.
    [68] Freepons D. Application of chitin and chitosan [M]. Lancaster: Technomic Publishing Company inc., 1997,129-139.
    [69] Fridovichi. The biology of oxygen radicals [J]. Science, 1978, 201:875-880.
    [70] Gaelle P, Matthieu C, Catherine L, et al. Simultaneous down-regulation of caffeic/5-hydroxy ferulic acid-o-methyltransferase I and cinnamoyl- coenzyme A reductase in the progeny from a cross between tobacco lines homozygous for each transgene consequences for plant develop- ment and lignin synthesis [J]. Plant physiology, 2001, 126, 145-155.
    [71] Garcia C, Garcia L, Vallejo A, et al. Forecasting by laboratory tests of nitrogen leached and absorbed in soil-plant system with urea-based controlled-release fertilizers coated with lignin [J]. Communications in Soil Science and Plant Analysis, 1998, 29(15-16): 2479-2491.
    [72] Gavnholt B, Larsen K. Molecular biology of plant laccases in relation to lignin formation [J]. Physiologia Plantarum, 2002, 116(3): 273-280.
    [73] Gonzalez L F, Perez F, Rojas M C. Indole-3-acetic acid control on acidic oat cell wall peroxidases [J]. J. plant growth reg., 1999,18 (1): 25-31.
    [74] Grima Pettenati J, Piquemal J, Lacombe E, et al. Cinnamoyl CoA reductase, the first committed step of the lignin branch pathway: characterization, expression and down-regulation through antisense strategy [C]. Proceedings of the Second International Wood Biotechnology Symposium, 1999, 37-41.
    Hafren J, Fujino T, Itoh T, et al. Ultrastructural changes in the compound middle lamella of Pinus thunbergii during lignification
    
    [75] and lignin removal [J]. Holzforschung, 2000, 54(3): 234-240.
    [76] Hartley S E, Jones C G, Couper G C, et al. Biosynthesis of plant phenolic compounds in elevated atmospheric CO2 [J]. Global Change Biology, 2000, 6(5): 497-506.
    [77] He Xinqiang, Cui Keming, Li Zhengli. Dynamic changes in distribution of lignin and hemicelluloses in cell wall during differentiation of secondary xylem in eucommia ulmoides [J]. Acta Botanica Sinica, 2001, 43(9): 899-904.
    [78] Hu Jian, Jiang Y M, Yin S X, et al. Inhibition of chitosan-oligosac- charides on some phytopathogens [J]. Yangzhou University Journal of Natura Science Edition, 2000, 3(2): 42-44.
    [79] Hu JingJiang, Zhu Wei, Wen JianLei, et al. The relation between the accumulation of HRGP and lignin in cell wall of poplars and the resistance to poplar canker [J]. Acta Phytopathologica Sinica, 1999, 29(2): 151-156.
    [80] Jacqueline G P, Deborah G. Lignin genetic engineering revisited [J]. Plant Science, 1999,145,51-65.
    [81] Johnson SE, Sollenberger LE, Andrade IF, et al. Nutritive value of rhizoma peanut growing under varying levels of artificial shade [J]. Agronomy Journal, 2002, 94(5): 1071-1077.
    [82] Jouanin L, Goujon T, Nadai V de, et al. Lignification in transgenic poplars with extremely reduced caffeic acid O-methyltransferase activity [J]. Plant Physiology, 2000, 123(4): 1363-1373.
    [83] Kaiserwm. The effect of hydrogen peroxidide on CO2 fixation of isolated in tact chlorolasts [J]. Biochem Biophys Acta, 1976, 400: 476 -482.
    [84] KanoY, Fukuoka N, et al. Studies on the occurrence of hollow root in Japanese radish cv.Gensuke.16.Comparison of the lignification of cells in the central region of root among cultivars by auxin treatment [J]. J. Jap. Hort. Sci., 1992, 61(Suppl1): 330-331.
    [85] KanoY, Fukuoka N. Effects of soil temperature on hollowingin Japanese radish (Raphanus sativus L. cv. Gensuke) [J]. Scientia Horticulturae, 1995, 61:157-166.
    [86] KanoY, Fukuoka N. Varietal differences in the occurrence of hollowing and lignification of parenchymatous cells in the roots of Japanese radish [J]. J Japan Soc. Hort. Sci., 1994,62(4): 801-809.
    Ketsa S, Atantee S. Phenolics, lignin, peroxidase activity and increased firmness of damaged pericarp of mangosteen mangosteenfruit after
    
    [87] impact [J]. Postharvest Biology and Technology, 1998,14(1): 117-124.
    [88] Lapierre C, Pollet B, MacKay JJ, et al. Lignin structure in a mutant pine deficient in cinnamyl alcohol dehydrogenase [J]. Journal of Agricultural and Food Chemistry, 2000, 48(6): 2326-2331.
    [89] Lapierre C, Pollet B, Petit Conil M, et al. Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping [J]. Plant Physiology, 1999, 119(1): 153-163.
    [90] Levine LH, Heyenga AG, Levine HG, et al. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment [J]. Phytochemistry, 2001, 57(6): 835-846.
    [91] Li Hanbing, Bai Kezhi, Kuang Tingyun, et al. Structural characteristics of thicker-culms in the high-yield wheat cultivars [J]. Acta Botanica Sinica, 2000,42(12): 1258-1262.
    [92] Lim EngKiat, Li Yi, Parr A, et al. Identification of glucosyltransferase genes involved in sinapate metabolism and lignin synthesis in Arabidopsis [J]. Journal of Biological Chemistry, 2001,276(6): 4344 -4349.
    [93] Lin Zhanbing, Ma Qinghu, Ma Mi. Cloning and expression analysis of two wheat cDNA encoding cinna moyl-CoA reductase [J]. Acta Botanica Sinica, 2001,43(10): 1043-1046.
    [94] Liu Wenzhe, Hu Xuejun, Gao Xiaorong, et al. Cloning of A Full-length cDNA Encoding 4-Coumarate:CoA Ligase of Amorpha fruticosa by PCR-Based Methods [J]. Forestry Studies in China, 2002,4(1): 13-17.
    [95] Mala J, Cvrckova H, Brezinova A, et al. Endogenous contents of phytohormones and phenylpropanoids in sessile oak somatic embryos in relation to their conversion potential [J]. Journal of Forest Science, 2000, 46(5): 197-204.
    [96] Meng HuaBin, Campbell WH, Meng HB. Substrate profiles and expression of caffeoyl coenzyme A and caffeic acid O-methyltransferases in secondary xylem of aspen during seasonal development [J]. Plant Molecular Biology, 1998, 38(4): 513-520.
    
    
    [97] Meyermans H, Morreel K, Lapierre C, et al. Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down- regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis [J]. Journal of Biological Chemistry, 2000, 275(47): 36899-36909.
    [98] Muhammad Islam, Adams M A, Islam M. Mineral content and nutritive value of native grasses and the response to added phosphorus in a Pilbara rangeland [J]. Tropical Grasslands, 1999, 33(4): 193-200.
    [99] Niinemets U, Kull O, Tenhunen JD. Variability in leaf morphology and chemical composition as a function of canopy light environment in coexisting deciduous trees [J]. International Journal of Plant Sciences, 1999, 160(5): 837-848.
    [100] Osuji GO, Cuero RG. N-carboxymethylchitosan enhancement of the storage protein conteins of maize seeds (Zea mays L.) [J]. Food Biotechnol, 1992,6(2): 105-126.
    [101] Oven P, Torelli N, Vilhar B, et al. Response of the cambial zone in conifers to wounding [J]. Phyton Horn, 1999, 39(3): 133-137.
    [102] Pincon G, Maury S, Hoffmann L, et al. Repression of O-methyltransfer- ase genes in transgenic tobacco affects lignin synthesis and plant growth [J]. Phytochemistry, 2001, 57(7): 1167-1176.
    [103] Quiroga M, Guerrero C, Botella M A, et al. A tomato peroxidase involved in the synthesis of lignin and suberin [J]. Plant Physiology, 2000, 122(4): 1119-1127.
    [104] Ralph J, Hatfield R D, Piquemal J, et al. NMR characterization of altered lignins extracted from tobacco plants down-regulated for lignification enzymes cinnamyl-alcohol dehydrogenase and cinnamoyl- CoAreductase [C]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(22): 12803-12808.
    
    
    [105] Ralph J, Lapierre C, Marita JM, et al. Elucidation of new structures in lignins of CAD- and COMT-deficient plants by NMR [J]. Phytochemi- stry, 2001, 57(6): 993-1003.
    [106] Ralph L, Nicholson T, Raymond H. Phenolic compounds and their role in disease resistance [J]. Annu. Rev. Phytopathol, 1992,30:369-389
    [107] Ramanathan A, Vidhasekaran P, Samiyappan R. Induction of defense mechanisms in greengram leaves and suspension cultured cells by Macrophomina phaseolina and its elicitors [J]. Zeitschrift fur Pflanzen- krankheiten und Pflanzenschutz, 2000, 107(3): 245-257.
    [108] Ranocha P, Chabannes M, Chamayou S, et al. Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar [J]. Plant Physiology, 2002, 129(1): 145-155.
    [109] Richard S, LaPointe G, Rutledge R G, et al. Induction of chalcone synt- hase expression in white spruce by wounding and jasmonate [J]. Plant cell physiol, 2000, 41 (8): 982-987.
    [110] Rodriguez A, Jimenez A, Guillen R, et al. Postharvest changes in white asparagus cell wall during refrigerated storage [J]. J. agric. food chem., 1999,47 (9): 3551-3557.
    [111] Ros Barcelo A, Morales M, Pedreno M A. Specific compartmentaliz- ation of peroxidase isoenzymes in relation to lignin biosynthesis in the plant cell, Lignin and lignan biosynthesis [M]. Washington, 1998,84-95.
    [112] Ruel K, Montiel MD, Goujon T, et al. Joseleau-JP. Interrelation betwe- en lignin deposition and polysaccharide matrices during the assembly of plant cell walls [J]. Plant Biology, 2002, 4(1): 2-8.
    [113] Ruel K. Topochemistry and microdiversity of lignin in plant cell walls [J]. IAWA Journal, 1998, 19(4): 475.
    Salini Bhasker, Mohankumar C, Bhasker S. Association of lignifying enzymes in shell synthesis of oil palm fruit (Elaeis guineensis --
    
    [114] dura variety) [J]. Indian Journal of Experimental Biology, 2001,39(2): 160-164.
    [115] Schopfer P, Lapierre C, Nolte T. Light-controlled growth of the maize seedling mesocotyl: Mechanical cell-wall changes in the elongation zone and related changes in lignification. Physiologia Plantarum, 2001, 111(1): 83-92.
    [116] Seca A M L, Cavaleiro J A S, Domingues F M J. Structural characteriz- ation of the lignin from the nodes and internodes of Arundo donax reed [J]. Journal of Agricultural and Food Chemistry, 2000, 48(3): 817-824.
    [117] Sharp JK, et al. Purification and partial characteriation of a β-glucan- fragment that elicist phytoalxin accumulation soybean. J. Biol. Chem., 1984, 256:11312-11320.
    [118] Tang Ming, Chen Hui. mechanism of vesicular arbuscular mycorrhizal fungi enhanced resistance of poplar to canker [J]. scientia silvae sinicae,2000,36(2):87-92.
    [119] Tang Wei, janet ogbon, Aquilla McCoy. Genetic engineering and lignin biosynthetic regulation in forest tree species [J]. Journal of Forestry Research, 2001,12(2): 75-83.
    [120] Vander P, Varum K M, Domard AE, et al. Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves [J]. Plant Physiology, 1998, 118(4): 1353-1359.
    [121] Veiga BGA da, Abreu H dos S, Marjerowicz N, et al. Effect of oxygen on formation of lignin in Ipomoea batatas in a controlled environment [J]. Floresta e Ambiente, 1999, 6(1): 59-64.
    [122] Watanabe Y, Miura S. Resistance to pythium snow rot and lignin content in winter barley [Hordeum vulgare] varieties. Tohoku Journal of Crop Science, 1997, 40: 45-46.
    
    
    [123] Wei Jianhua, Zhao Huayan, Zhang jingyu, et al. Cloning of cDNA encoding CCoAOMT from Populus to mentosa and down-regulation of lignin content in transgenic plant expressing antisense gene [J]. Acta Botanica Sinica, 2001,43(11): 1179-1183.
    [124] Wu Xiaoqin, Zhu Jinmao, Huang Ruzhu, et al. Evidence of casparian strip in the foliar endodermis of pinus bungeana [J]. Acta Botanica Sinica, 2001,43(10): 1081-1084.
    [125] Zhong R, Kays SJ, Schroeder BP, et al. Mutation of a chitinase-like gene causes ectopic deposition of lignin, aberrant cell shapes, and overproduction of ethylene [J]. Plant Cell, 2002, 14(1): 165-179.
    [126] Zhong Rui Qin, Ripperger A, YeZheng Hua, et al. Ectopic deposition of lignin in the pith of stems of two Arabidopsis mutants [J]. Plant Physiology, 2000, 123(1): 59-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700