新疆多浪羊和中国美利奴羊MHC-DRB1、DQB1基因SSCP多态性与包虫病抗性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绵羊主要组织相容性复合体(Major histocompitibility complex, MHC)又称为绵羊淋巴细胞表面抗原(Ovine Lymphocyte Antigen, OLA),是由紧密连锁、高度多态的基因位点组成染色体上的一个遗传区域,其中MHC-Ⅱ类分子的DRB和DQB基因所编码的MHC抗原在其免疫系统中发挥重要的作用,与许多动物疾病的抗性、易感性、免疫应答以及生产性能都有密切关系。本试验对新疆多浪羊和中国美利奴羊(新疆军垦型)MHC-DRB1、DQB1基因PCR-SSCP多态性与包虫病抗性进行了关联分析,在此基础上,探讨了中国美利奴羊不同单倍型个体在人工感染细粒棘球绦虫过程中的免疫应答反应,为绵羊抗病育种及免疫遗传研究提供参考依据。
     1、本试验利用PCR-SSCP方法,对新疆多浪羊MHC-DRB]、DQB1基因第2外显子进行遗传多态性分析。分析表明多浪羊DRB1和DQB1基因第2外显子均存在丰富的多态性。DRB1基因中出现了50种基因型,由22种等位基因控制。DQB1基因中出现了42种基因型,由17种等位基因控制。
     2、检测了包虫病阴性和阳性多浪羊中DRB1基因出现的等位基因,利用T检验进行差异显著性分析,结果表明等位基因B(p<0.01)、A和C(p<0.05)在阴性羊中的频率显著高于阳性羊,认为B、A、C是包虫病的抗性相关等位基因。等位基因G(p<0.01)、M和R(p<0.05)在阳性羊中的频率显著高于阴性羊,认为G、M和R是包虫病的易感性相关等位基因。分析包虫病阴性和阳性羊的基因型频率,发现基因型BB(p<0.05)在阴性羊中的频率显著高于阳性羊,提示BB是包虫病抗性相关基因型。基因型GG(p<0.01)和MM(p<0.05)在阳性羊中的频率显著高于阴性羊,说明GG和MM是包虫病的易感性相关基因型。
     3、进行包虫病阴性和阳性多浪羊DQB1基因中等位基因的差异显著性分析,分析表明等位基因H(p<0.05)和L(p<0.01)在阴性羊中的频率显著高于阳性羊,认为H、L是包虫病的抗性相关等位基因。等位基因J和M(p<0.01)在阳性羊中的频率显著高于阴性羊,认为J和M是包虫病的易感性相关等位基因。分析包虫病阴性和阳性羊的基因型,将它们的基因型频率进行差异显著性分析,结果表明基因型LL和DF(p<0.05)与包虫病抗性紧密相关。基因型MM(p<0.01)在阳性羊中的频率显著高于阴性羊,认为MM是包虫病的易感性相关基因型。
     4、为了进一步分析多浪羊DRB1、DQB1基因多态性与包虫病之间的关系,筛选出抗包虫病的遗传标记,本研究分析了不同单倍型与包虫病抗性或易感性的相互关系。结果表明:单倍型DRB1-BB/DQB1-DF (P<0.01)和DRB1-JJ/DQB1-DH (P< 0.05)与包虫病抗性相关,而单倍型DRB1-GGIDQB1-MM (P<0.01)和DRB1-MMIDQB1-JJ (P<0.05)与包虫病易感性相关。
     5、利用PCR-SSCP方法,分析中国美利奴羊MHC-DRB1、DQB基因第2外显子的多态性。分析显示,DRB1和DQB1基因第2外显子亦存在丰富的多态性。DRB1基因中出现了53种基因型,由22种等位基因控制。DQB1基因中出现了47种基因型,由17种等位基因控制。
     6、利用T检验进行包虫病阴性和阳性中国美利奴羊DRB1基因的等位基因差异显著性分析,结果表明等位基因K(p<0.05)、Q和T(p<0.01)在阴性羊中的频率显著高于阳性羊,表明K、Q、T与包虫病的抗性相关,等位基因A和L(p<0.01)在阳性羊中的频率显著高于阴性羊,认为与包虫病的易感性相关。分析包虫病阴性和阳性中国美利奴羊的基因型,发现基因型KK和TT(p<0.05)在阴性羊中的频率显著高于阳性羊,表明KK和TT是包虫病抗性相关基因型。同样分析表明,基因型AA和LL(p<0.01)、AL(p<0.05)是包虫病的易感性相关基因型。
     7、分析包虫病阴性和阳性中国美利奴羊DQB1基因出现的等位基因的差异,发现等位基因D和E(P<0.01)在阴性羊的频率显著高于阳性羊,说明D、E与包虫病的抗性相关。同样,结果表明等位基因C和K(p<0.01)与包虫病的易感性相关。分析包虫病阴性和阳性中国美利奴羊的基因型,发现基因型DD和EG(p<0.01)、EE(p<0.05)在阴性羊中的频率显著高于阳性羊,认为DD、EG和EE是包虫病抗性相关基因型。同样分析表明,基因型CC、KK和CK(p<0.01)是包虫病的易感性相关基因型。
     8、为了更全面地分析中国美利奴羊DRB1、DQB基因多态性与包虫病之间的关系,分析了中国美利奴羊不同单倍型与包虫病抗性或易感性的相关性。结果表明单倍型DRB-TT/DQB-EE (P<0.05)是包虫病抗性相关单倍型,而单倍型DRB1-LL/DQB1-CK和DRB1-AA/DQB1-C1与包虫病易感性相关。
     9、在DRB1和DQB1基因多态性分析的基础上,筛选中国美利奴羊抗性单倍型DRB1-TT/DQB1-EE个体作为抗性组,非抗性单倍型个体作为对照组进行人工感染攻虫试验,分析不同的单倍型个体感染包虫病过程中的免疫应答反应。在攻虫前7天(-7d)、攻虫当天(0d)、攻虫后第7d、21d、30d、60d用流式细胞仪分析外周血中CD4+T、CD8+T、B淋巴细胞亚群的变化,同时用ELISA方法定量分析不同感染时期血清中IgG、IgM、IgE、IFN-y含量,并利用瑞式染色法进行粒细胞计数。结果表明,CD4+T和B淋巴细胞两组之间差异不显著(P>0.05),CD8+T细胞在攻虫后第7d抗性组显著高于对照组(P<0.05):IgG水平在攻虫后第7d两组均显著高于攻虫前7d(P<0.05)。攻虫后第30d抗性组IgM和IFN-y水平均显著高于对照组(P<0.05)。抗性组的白细胞、淋巴细胞分别在攻虫后第7d、21d显著高于对照组(P<0.05),嗜中性粒细胞和总蛋白在攻虫后第21d抗性组显著低于对照组(P<0.01)。结论,抗性单倍型绵羊对E.g的抵抗力显著高于非抗性单倍型绵羊;抗性组绵羊体内的CD8+T细胞、IgM、IFN-y和白细胞、淋巴细胞水平在攻虫后不同时期显著高于非抗性组绵羊。
     10、抗性羊DRB1基因表达量在攻虫后第60d显著高于攻虫Od(P<0.05)和攻虫后第30d(P<0.05);非抗性羊DRB1基因表达量在攻虫后第21d显著高于攻虫0d(P<0.01)和攻虫后第7d(P<0.05),攻虫后第30d极显著低于攻虫后第21d(P<0.01)。抗性羊在攻虫后第21d(p<0.01)、60d(P<0.05)DQB1表达量显著高于攻虫0d,第30d时DQB1表达量显著低于攻虫后第21d(P<0.05);对照组DQB1表达量同抗性组的变化趋势基本一致,在攻虫后第21d的表达量显著高于攻虫0d(P<0.05),在攻虫后第30d显著低于攻虫后第21d(p<0.05)。抗性羊与非抗性羊之间两种基因的表达无显著差异。
The Major Histocompatibility Complex of sheep, also called Ovine Lymphocyte Antigen (OLA), is part of chromosomal region consisting of a group of closely linked and highly polymorphic loci, in MHC-Ⅱmolecules, the MHC antigen encoded by DRB and DQB genes in plays an important role in the immune system, which is closely related to many animal disease resistance, susceptibility, immune response and production performance. In this research, polymorphism of DRB1/DQB1 exon 2 and its resistance to Cystic Echinococcosis (C.E) were analyzed in Dolang sheep and Chinese Merino (Xinjiang Army Wasteland Reclamation) sheep, on the base of polymorphic analysis, to explore the immune response of different haplotypes in Chinese Merino sheep during the process of Echinococcus granulosus infection, which would provide an important basis and theoretical support for resist-breeding of sheep in the future..
     1. In this experiment, PCR-SSCP method was used to analyze the genetic polymorphism of MHC-DRB1/DQB1 gene exon 2 in Dolang sheep. The results showed that exon 2 of DRB1 and DQB1 gene had a high degree of polymorphism. While a total of 50 genotypes were identified in DRB1 gene, which were controlled by 22 alleles; 42 genotypes were identified in DQB] which were controlled by 17 alleles.
     2. The frequency of allele and genotype of DRB1 in C.E-negative and-positive Dolang sheep were analyzed by T-test, to assess the relationship between different genotypes and C.E significance. Firstly, the allele frequencies of DRB1 were ananlyzed. Results were sumerized as follows:i) Sigficantly higher allele frequencies interms of B (P< 0.01), A and C (P< 0.05) occured in the negative sheep when compared with the positive sheep, implying that B, A and C ralated to hydatidosis resistance, ii) Sigficantly higher allele frequencies interms of G (P< 0.01), M and R (P< 0.05) occured in the positive sheep when compared with the negative sheep, implying that G, M and R ralated to hydatidosis susceptibility. In addition, the genotypes frequencies of DRB1 were also tested. Results were sumerized as follows:i) Genotype BB (P< 0.05) occured more often in the negative sheep when compared with the positive sheep, implying that genotype BB was related to hydatidosis resistance, ii) Genotypes GG (P< 0.01) and MM (P < 0.05) occured more often in the positive sheep when compared with the negative sheep, implying that genotypes GG and MM were related to hydatidosis susceptibility.
     3. The allele frequemcy of DQB1 were analyzed which occurred in positive and negative echinococcosis of Dolang sheep, results showed that the allele frequency of H (P< 0.05) and L (P< 0.01) in the negative sheep were significantly higher than the positive sheep, to consider that the H and L is the resistance allele of hydatids disease, while the frequency of J and M (P< 0.01) in the positive sheep was significantly higher than negative sheep, that J and M are the susceptible to hydatid disease. To further analyze the genotype frequency of negative and positive hydatid disease of sheep, the results showed that the genotype frequency of LL and DF (P< 0.05) in the negative sheep were significantly higher than the positive sheep, that LL and DF genotype are associated echinococcosis resistance. The genotype frequency of MM(P< 0.01)in the positive sheep was significantly higher than negative sheep, that MM is hydatid disease susceptibility genotype.
     4. In order to select the resistant genic mark, the relationship between different haplotypes and resistance or susceptibility to C.E in Dolang Sheep was analyzed.The results showed that individuals with the genic haplotype DRB1-BB/DQB1-DF (P< 0.01) and DRB1-JJ/DQB1-DH (P < 0.05) were relatively resistant to Echinococcus granulosus (E.g), while individuals with the haplotypes DRB1-GGIDQB1-MM (P<0.01) and DRB1-MM/DQB1-JJ (P<0.05) were more susceptible to E.g.
     5. The polymorphism of MHC-DRB1/IDQB1 gene exon 2 in Chinese Merino sheep were analyzed by PCR-SSCP method, the results showed that polymorphisms in exon 2 of DRB1/IDQB1 gene are abundant there, emergence 53 genotypes in DRB1 gene, which controlled by 22 alleles; 47 genotypes in DQB1 gene, which controlled by 17 alleles.
     6. The allele and genotype frequency of DRB1 gene exon 2 in C.E positive and negative in Chinese Merino sheep was analyzed by T-test, the results showed that the allele K (P< 0.05),Q and T (P< 0.01) are related with resistance of C.E, while A and L (P< 0.01) are related with susceptivity of C.E. We further to analyze the genotype frequency found that KK and TT (P< 0.05) are the resistant to C.E, the genotype AA and LL (P< 0.01). AL (P< 0.05) are the susceptible to C.E.
     7. The alleles of DQB1 were ananlyzed which occurred in positive and negative C.E in Chinese Merino sheep, results showed that the allele frequency of D and E (P< 0.01) in the negative sheep were significantly higher than the positive sheep, to consider that the D and E are the resistance allele to C.E, while the frequency of C and K (P< 0.01) in the positive sheep were significantly higher than negative sheep, that C and K are the susceptible to C.E. To further analyze the genotype frequency of negative and positive C.E of sheep, the results showed that the genotype frequency of DD and EG (P< 0.01) in the negative sheep were significantly higher than the positive sheep, that DD and EG genotype are associated with C.E resistance. The genotype frequency of CC and KK,CK (P< 0.01) in the positive sheep were significantly higher than negative sheep, that CC, KK and CK are associated with susceptivity to C.E.
     8. In order to efficiently analyze the the polymorphism of DRB1/DQB1 gene and C.E, the relationship between different haplotypes and resistance or susceptibility to C.E was researched in Chinese Merino Sheep. The result found that individuals with the genie haplotype DRB1-TT/DQB1-EE (P< 0.05) are resist to C.E, while DRB1-LL/DQB1-CK and DRB1-AA/DQB1-CC (P<0.01) are susceptible to C.E.
     9. Based on the polymorphism analysis of DRB1 and DQB1 gene exon 2 in Chinese Merino sheep and Dolang sheep,16 Chinese Merino sheep with different haplotypes were artificially infected with Echinococcus granulosus (E.g) at the identical raising condition,8 sheep with resistant haplotype were selected as the test group, while 8 individuals with nonresistant haplotype were selected as the control group. The CD4+T, CD8+T, B lymphocyte subpopulations of peripheral blood were analyzed by flow cytometry at day (-7),0,7,21,30 and 60 after the artificial infection, meanwhile, the content of IgG, lgM, IgE, IFN-y of the blood serum and granulocyte quantity in the blood were also tested. The results showed that the incidence of Cystic Echinococcosis in the test group was significantly lower than that of the control group (P< 0.05), there was no significant difference of CD4+T cells percentage between the two groups (P>0.05). CD8+T cells of the test group were significantly higher than that of the control group (P< 0.05) at 7th day after infection., IgG level of the two groups at 7th day after infection were significantly higher than that at the (-7)th day (P<0.05). IgM and IFN-y of the test group were significantly higher than that of the control group (P< 0.05) at 30th day after infection. Leukocytes and lymphocytes of the test group were significantly more than that of the control group (P< 0.05) at 7th,21st day after infection. Neutrophils and albumin of the test group were obviously lower than the control group (P<0.01) at 21st day. (Conclusion) Significantly higher resistance to Echinococcus granulosus occurred in the resistant haplotype sheep, when compared with the nonresistant haplotype individuals. CD8+T cells, IgM, IFN-y, leukocytes and lymphocytes in the resistant haplotype sheep were significantly higher than those of nonresistant haplotype individuals during the different period after infection.
     10. DRB1 gene expression of the test group at 60 d after infection was significantly higher than at the 0 d (P< 0.05) and 30 d (P< 0.05); the expression of the control group at 21 d was significantly higher than at the 0 d (P< 0.01) and 7d (P< 0.05), and the expression at 30 d significantly lower at 21 d (P< 0.01).To analyze the DQB1 expression, the result showed that the expression of the resistant sheep at 21 d (P< 0.01) and 60 d (P< 0.05) were significantly higher than at the 0 d, the expression at the 30 d was significantly lower than at the 21 d (P< 0.05). The change tendency of DQB1 expression in the control group was similar to the test group, the expression at 21 d was significantly higher than at the 0 d (P< 0.05), and the expression at the 30 d was significantly lower than at the 21 d (P< 0.05). (Conclusion) The expression of DRB1 and DQB1 gene between the resistant and nonresistant sheep was no significant deviation.
引文
[1]Bahram. S, M.Bresnahan, D.E.Geraghty, and T.Spies. A second lineage of mammalian major histocompatibility complex class I genes [J]. Proc.Natl. Acad.Sci.USA,1994,91(14):6259-6263.
    [2]Jardetzky T. In:Browing M, McMichael A eds. HLA andMHC. Oxford:Bios Scientific Publishers,1996:249.
    [3]刘建欣,郑昌学.现代免疫学:免疫的细胞和分子基础[M].北京:清华大学出版社,2003.
    [4]Rammensee HG, Friede T, Stevanoviic S. MHC ligands and peptide motifs:first listing [J]. Immunogenetics,1995,41:178-228
    [5]Davenport MP, Hill VS. In:Browing M, McMichael Aeds. HLA and MHC. Oxford:Bios Scientific Publishers,1996:277.
    [6]赵桐茂HLA分型原理和应用[M]上海科学技术出版社,1982.
    [7]Andersson L, Bohme J., Rook L., and Peterson P.A.,.Genomuc hybridization of bovine class II MHC genes:Extensive polymorphism of DQA and DQB genes[J].Animal Genetics,1986,17:95-112.
    [8]Davies C J, Andersson L,Ellis SA,Hensen EJ,Lewin HA,Mikko S,Muggli-Cockett NE,van der Poel JJ and Russell G C.. Nomenclature for factors of the BoLA system,1996:report of the ISAG BolA Nomenclature Committee[J].Animal Genetics,1997,28:159-168.
    [9]蒋次鹏.我国包虫病流行现状[J].中国寄生虫学与寄生虫病防治杂志,1996,9:290-292.
    [10]Quinley ED. Immunohematology.2nd ed. Hong Kong:Lippincott-RavenPublishers,1998, 363-379.
    [11]Hughes AL, Yeager M, Carrington M, Peptide binding function and the paradox of HLA disease associations. Immun Cell Biol,1996,74:444-448.
    [12]Brahmajothi V, Pitchappan RM, Kakkanaiah VN, et al. Association of pulmonary tugerculosis and HLA in South India[J]. Tuberele,1991,72 (2):123-126.
    [13]Alisherov AS, Kitaev MI, Tarasenko OM, et al. HLA gene in patients with pulmonary tuberculosis in t he Kirghiz population[J]. Probl Tuberk,1997,1 (5):41-42.
    [14]Hafez M, EI2Salab SH, EI2Shennawy F, et al. HLA-antigens and tuberculosis in the Egyptian population [J]. Tuberele,1985,66 (1):35-40.
    [15]叶世辉,刘孟黎,贺晨,刘晟,何海妮HL A-DRB1等位基因与肺结核的相关性研究[J].中国输血杂志,2007,20(1):42-43.
    [16]罗开军,王晓红,侯娟,肖政,李辉HLA-DRB1基因与湘西土家族人群肺结核的易感性分析[J].现代医药卫生,2007,23(8):1122-1124.
    [17]时广利,岳思东,邱长春,胡秀玲,宋长兴HLA-DRB基因启动子区多态性与肺结核合并2型糖尿病的相关性[J].基础医学与临床,2005,25(6):521-524.
    [18]王敬慧,宋长兴,王民,等。人类白细胞抗原DRB1等位基因与肺结核的相关性研究[J].中华结核和呼吸杂志,,2001,24(5):302-305.
    [19]刘志辉,罗一鲁,周琳HLA-DR基因与中国南方汉族部分人群肺结核易感基因的研究[J].中华结核和呼吸杂志,2004,27(6):390-393.
    [20]罗一鲁,刘志辉,许婉华,谭耀驹,冯蝶仪,宋长兴,傅瑜,刘忠HLA-DQB1-HLA-DRB1单倍型与中国南方汉族肺结核的相关性分析[J].中国防痨杂 志,2004,26(4):199-202.
    [21]赵雁林,端木宏谨,宋长兴 人类白细胞抗原-DRB1和DQB1基因与肺结核合并糖尿病的相关性分析[J].中华结核和呼吸杂志,2001,24(2):75-79.
    [22]沈建国,童钟杭,傅启华,严力行HLA-DRB1基因与2型糖尿病的关联[J]。浙江医学,2000,22(3):142-143.
    [23]Rubinstein P. HLA and 1DDM:facts and speculations on the disease gene and its mode of inheritance. Hum Immunol,1991,30:270-277.
    [24]Li H, Lindholm E, Almgren P, et al. Possible human leukocyte antigen-mediated genetic interaction between type 1 and type 2 Diabetes. J Clin Endocrinol Metab, 2001,86:574-582.
    [25]Perez-Luque E, Malacara JM, Olivo2Diaz A, et al. Contribution of HLA class II genes to end stage renal disease in mexican patients with type 2 diabetes mellitus. Hum Immunol, 2000,61:1031-1038.
    [26]Friday RP, Trucco M, Pietropaolo M. Genetics of Type 1 diabetes mellitus. Diabetes Nutr Metab,1999,12:3-26.
    [27]Banerji MA, Norin AJ, Chaiken RL, et al. HLA-DQ associations distinguish insulin-resistant and insulin-sensitive variants of NIDDM in black Americans. Diabetes Care,1993,16: 429-433.
    [28]Banerji MA, Chaiken RL, Huey H, et al. GAD antibody negative NIDDMin adult black subjects with diabetic ketoacidosis and increased frequency of human leukocyte antigen DR3 and DR4. Flatbush diabetes. Diabetes,1994,43:741-745.
    [29]Banerji MA, Chaiken RL, Huey H, et al. GAD antibody negative NIDDMin adult black subjects with diabetes ketoacidosis and increased frequency of human leukocyte antigen DR3 and DR4, Diabete,1994,43:741.
    [30]Banerji MA, Norin AJ, Chaiken RL, et al. HLA-DQ associations distinguish insulin-resistant and insulin sensitive varants of NIDDMin black Americans. Diabetes Care,1993,16: 429.
    [31]傅正英,朱淑,常爱华,张文成HLA-DRB1等位基因与妊高征发病的相关研究[J]。武警医学,2004,15(12):903-906.
    [32]王崇刚,彭则,刘卓拉,宋满景支气管哮喘HLA-DRBI等位基因研究[J]。山西临床医药杂志,2000,9(6):417-419.
    [33]乔海灵,杨静,张跃文,刘久红青霉素类过敏反应与HLA-DRB基因多态性[J]。四川生理科学杂志,2003,25(3):142..
    [34]Shambesh, M. K., Craig, P. S., Macpherson, C. N. L.,et al. Anextensive mass ultrasound and serological study to investigate the prevalence of human cystic echinococcosis in Libya. American Journal of Tropical Medicine and Hygiene 1999; 60,462-468.
    [35]Craig, P. S., Giraudoux, P., Shi, D., et al. An epidemiological and ecological study of human alveolar echinococcosis transmission in south Gansu, China.Acta Tropica 2000; 77,167-177.
    [36]Wang, Y. H, Rogan, M. T. Vuitton, D. A, Wen, H, et al. Cystic echinococcosis in semi-nomadic pastoral communities in northwest China. Transactions of the Royal Society of Tropical Medicine and Hygiene.2002;95,153-158.
    [37]Vuitton, D. A. Host immunogenetics and role in epidemiology of larval cestodes. In Cestode Zoonoses:Echinococcosis and Cysticercosis. An Emergent and Global Problem (ed. Craig, P. S. and Pawlowski, Z.),2002; pp.183-194.
    [38]P. S. Craig, Zeyhle E., Romig T. Hydatid disease; research and control in Turkana. II. The role of immunological techniques for the diagnosis of Hydatid disease. Trans R Soc trop Med Hyg,1986;80:183-192.
    [39]Dessein AJ, Chevillard C, Marquet S, et al. Genetics of Parasitic Infections. Drug Metabolism and Disposition 2001; 29(4):484-488.
    [40]Eiermann TH, Bettens F, Tiberghien P, et al. HLA and alveolar echinococcosis. Tissue Antigens,1998; 52:124-129.
    [41]Cabera M, Shaw M, Sharpes C, et al. Polymorphism in tumor necrosis factor genes associated with mucocutaneous leishmaniasis. J Exp Med 1995; 182:1259.
    [42]Godot V, Harraga S, Beurton I, et al. Resistance/susceptibility to Echinococcus multilocularis infection and cytokine profile in humans. Ⅱ.Influence of the HLA B8, DR3, DQ2 haplotype.Clin Exp Immunol.2000; Sep; 121(3):491-498.
    [43]Li Furong, Shi Youen, Shi Dazhong, et al. HLA-DRB1 allele in 35 patients with alveolar echinococcosis in Gansu Province of China. Chinese Medical Journal,2003; 116(10):1557-1560.
    [44]Azab ME, Bishara SA, Ramzy RM, et al. The evaluation of HLA-DRB1 antigens as susceptibility markers for unilocular cystic echinococcosis in Egyptian patients. Parasitol Res. 2004; Apr; 92(6):473-7.
    [45]Gottstein B, Bettens F. Association between HLA-DR13 and susceptibility to alveolar echinococcosis. J Infect Dis.1994; Jun; 169 (6):1416-1417.
    [46]Gottstein B, Bettens F, Parkinson AJ, Wilson F. Immunological parameters associated with susceptibility or resistance to alveolar hydatid disease in Yupiks/Inupiats. Arctic Med Res. 1996; Jan; 55(1):14-9.
    [47]Shcherbakov AM, Monje-Barredo PA. The distribution of the HLA antigen system among patients with echinococcosis. Med Parazitol(Mosk).1989; Nov-Dec; (6):75-80.
    [48]张琰 包虫病所致免疫应答及易感性的研究[D].新疆医科大学博士论文,2006
    [49]Li Furong, Shi Youen, Shi Dazhong, et al. HLA-DRB1 allele in 35 patients with alveolar echinococcosis in Gansu Province of China[J]. Chinese Medical Journal,2003; 116(10):1557-1560.
    [50]BALLINGALL K T, FARDOE K. Genomic organisation and allelic diversity within coding and non-coding regions of the Ovar-DRB1 locus[J]. Immunogenetics,2008,60:95-103.
    [51]Lynn M. Herrmann-Hoesing, Stephen N. White, Michelle R. Mousel, Gregory S. Lewis, Donald P. Knowles Ovine progressive pneumonia provirus levels associate with breed and Ovar-DRB1 [J]. Immunogeneti,2008,60:749-758.
    [52]Sayers G, Good B, Hanrahan J P, Ryan M, Angles J M, and Sweeney T. (2005) Major Histocompatibility Complex DRB1 gene:its role in nematode resistance in Suffolk and Texel sheep breeds[J]. Parasitology,2005,131:403-409.
    [53]OUTTERIDGE P M, ANDERSSON L, Douch P G, Green R S, et al. The PCR typing of MHC-DRB genes in the sheep using primers for an intronic microsatellite:application to nematode parasite resistance[J]. Immunol Cell Biol,1996,74(4):330-336.
    [54]HOHENHAUS M A, OUTTERIDGE P M. The Immunogenetics of resistance to Trichostrongylus colubriformis and Haemonchus contortus parasites in sheep[J]. Br Vet J 1995,151(2):119-140.
    [55]SCOTT P C, MADDOX J F, GOGOLlN-EWENS K T, et al. The nucleotide sequence and evolution of ovine MHC class ⅡB genes:DQB and DRB[J]. Immunogenetics,1991,34: 80-87
    [56]Mikko S, Roed K, Schmutz S, andersson L. Monomorphism and polymorphism of MHC DRB lociin domestic and wild ruminants [J]. Immunological Reviews,1999,167:169-178.
    [57]Begona M Jugo, Alberto Vicario. Single strand conformational polymorphism and sequence polymorphism of MHC-DRB in Latxa and Karrantzar sheep:implications for Caprinae phylogeny[J].Immunogenetics,2000,51:887-897.
    [58]Konnai S, Nagaoka, Takesima S, et al. (2003) DNA typing for ovine MHC-DRB 1 using polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) [J]. J Dairy Sci,86:3362-3365.
    [59]Konnai S, Nagaoka Y, Takeshima S, Onuma M, Aida Y..Sequences and diversity of 17 new Ovar-DRB1 alleles from three breeds of sheep[J].Eur J lmmunogenet.2003,30(4):275-282.
    [60]Keith T.Ballingall, Anthony Luyai, Declan J.McKeever.Analysis of genetic diversity at theQA loci in African cattle:evidence for a BoLA-DQA3 locus[J].Immunogenetics, 1997,46:237-244.
    [61]Gruszczynska J., Brokowska K., Charon K M, Swiderek WP. Restriction fragment length polymorphism of exon 2 Ovar-DRB1 gene in Polish Heath Sheep and Polish Lowland Sheep.[J]J.Appl Genet,2005,46(3):311-314.
    [62]Russell G.C., Gallagher A., Craigmile S. and Glass E.J.Characterization of cattle cDNA sequences from two DQA loci[J].Immunogenetics,1997,45:455-458.
    [63]Bota J.,Karlsson L.J.E.,Greef J.. Witt C. Association of the MHC with production traits in Merino ewes[J].Livestock Prod. Sci.,2004,86:85-92.
    [64]孙东晓,张沅,李宁哈萨克绵羊M HC-DRB基因位点的多态性分析[J].草食家畜,1999,2:28-30.
    [65]孙东晓,张沅,李宁 蒙古绵羊和哈萨克绵羊MHC-DRB3基因外显子2的多态性[J].遗传学报,2003,30(8):761-765.
    [66]尚友国,宋美玲,李建平,于艳,王建民小尾寒羊MHC-DRB3基因外显子2的多态性分析[J].中国畜牧兽医,2006,33(2):36-38.
    [67]刘云芳,剡根强,王新峰多浪羊MHC-DRB3基因座的PCR-RFLP多态性分析[J].遗传,2004,26(1):59-62.
    [68]彭林泽,申红,贾斌,余智勇,曾献存,刘宏坤,彭波,陈明辉,郭玉强 中国美利奴羊MHC-DRB1基因PCR-RFLP多态性分析[J].畜牧兽医学报,2007,38(10):1115-1119.
    [69]贾斌,申红,余智勇,陈明辉,刘宏坤,李海,陈玉林,彭林泽,杜迎春多浪羊和中国美利奴羊MHC-DRB1基因多态性与包虫病的遗传易感性[J].中国人兽共患病学报,2007,23(10):1014-1012.
    [70]余智勇,李海,贾斌,蒋文生,彭林泽,申红,曾献存,杜迎春多浪羊MHC-DRB1基因多态性与包虫病抗性分析[J].畜牧兽医学报,2007,38(11):1149-1153.
    [71]申红,贾斌,陈玉林,杜迎春,曾献存,刘宏坤,白建伟,陈明辉中国美利奴羊MHC-DQB1基因多态性与包虫病的抗性分析[J].中国预防兽医学报,2008,30(9):682-688.
    [72]申红,杜迎春,贾斌,陈玉林,彭林泽,曾献存,田永芝,李海多浪羊MHC-DQB1基因多态性与包虫病的抗性分析[J].中国人兽共患病学报,2009,25(1):17-22.
    [73]Lynn M. Herrmann, Wendy C, Brown,Greg S, Lewis, Donald P, Knowles. Identification and phylogenetic analysis of 15 MHC class Ⅱ DRB1 β1 expressed alleles in a ewe-lamb flock [J]. Immunogenetics,2005,57:855-863.
    [74]Nagaoka Y., Kabeya H., Onuma M., Kasai N., Okada K., and Aida Y. Ovine MHC Class II DRB1 Alleles Associated with Resistance or Susceptibility to Development of Bovine Leukemia Virus-induced Ovine Lymphomal [J]. Cancer Research 1999,59(15):975-981.
    [75]C. J. WOODALL, L. J. MACLAREN, N. J. WATT Differential Levels of mRNAs for Cytokines, the Interleukin-2 Receptor and Class Ⅱ DR/DQ Genes in Ovine Interstitial Pneumonia Induced by Maedi Visna Virus Infection[J] Vet Pathol,1997,34:204-211.
    [76]马卓.MHC与动物的抗病性[J].畜牧与兽医,1996,28(1):35-37.
    [77]王兴平,昝林森,许尚忠.家畜MHC基因研究现状[J].黄牛杂志,2004,30(1):23-25.
    [78]刘秀,胡江,罗玉柱藏绵羊基因OLA-DQA2第2外显子多态性分析[J].中国农业科学,2009,42(8):2930-2936.
    [79]申红中国美利奴羊和多浪羊DRB1, DQB1基因多态性与包虫病抗性关联分析[D].石河子大学博士论文,2008.
    [80]Amills M, Francino O. Nest PCR allows the characterization of Taq I and Pst 1 RFLPs in the second exon of the Caprine MHC class Ⅱ DRB gene[J]. Veterinary Immunology and Immunopathology,1995,48:313-321.
    [81]Amills M, Francino O. A PCR-RFLP typing method for the Caprine MHC class Ⅱ DRB gene[J].Veterinary Immunology and Immunopathology,1996,55:255-260.
    [82]M.Amills, C.Sulas, A.Sanchez, et al. Structural characterization of the caprine major histocompatibility complex class Ⅱ DQB1 (Cahi-DQBl) gene[J]. Molecular Immunology, 2004,41:843-846.
    [83]M.Amills, C.Sulas, A.Sanchez, et al. Nucleotide sequence and polymorphism of the caprine major histocompatibility complex class Ⅱ DQA1 (Cahi-DQAl) gene[J]. Molecular Immunology,2005,42:375-379.
    [84]H.Zhou, J.G.H.Hickford, and Q.Fang.Polymorphism of the DQA2 gene in goats[J].Journal of Animal Science,2005,83:963-968.
    [85]杨易,徐金瑞,王杰,杨雪,郑玉才四川4个地方山羊品种(群体)MHC-DRB3外显子2的多态性[J].黑龙江畜牧兽医,2006,1:12-14.
    [86]王杰,郑玉才,杨易,王永,欧阳熙 自贡黑山羊MHC-DRB3基因的多态性研究[J].中国畜牧杂志,2006,42(7):7-9.
    [87]邢凤,李培培,李珏,李成渤,王建民山羊GOLA-DQB1基因外显子2多态性与免疫性状的相关分析[J].遗传,2008,30(7):870-876.
    [88]Solbu H, Spooner R A possible influence of the bovine ma-jor histocompatibility complex (BoLA) on mastitis[A]. In:Pro-ceedings of the 2nd World Congress on Genetics Applied to Live-stock Production[C]. Madrid,Spain,1982,7:368-371.
    [89]Oddgeirsson O,Simpson S P,Morgan A L G, Ross DS, Spooner RL.Relationship between the bovine major histocompatibility complex (BoLA),erythrocyte markers and susceptibility to mastitis in Icelandic cattle[J]. Animal Genetics,1988,19:11-16.
    [90]Spooner R, Morgan A, Sales D, Simpson, P, Solbu, H. and Lie, O. MHC associations with mastitis[J]. Animal Genetics,1988,19 (Suppl.1):57-58.
    [91]Weigel K A, Freeman A E. Association of class I bovine lympho-cyte antigen complex alleles with health and production traits in dairy cattle [J]. J Dairy Sci,1990,73:2538-2546.
    [92]Lunden A, Edfors-Lilja I, Johansson K, Liljedahl LE. Associations between MHC genes and production traits in White Leghorns [J] Poult Sci.1993,72(6):989-999.
    [93]Vage D I, Lingaas F, Spooner R L. A study on association between mastitis and serologically defined class I bovine lymphocyte antigens (BoLA-A) in Norwegian cows[J]. Animal Genetics,1992,23:533-536.
    [94]Mejdell C M,Lie Φ, Solbu H, Arnet E. F. and Spooner R. L. Association of major histocompatibility complex antigens (BoLA-A) with AI bull progeny test results for mastitis, ketosis and fertility in Norwegian cattle [J].Animal Genetics,1994,25:99.
    [95]Aarestrup F M,Jensen N E Φ,stergard H. Analysis of associations between major histocompatibility complex (BoLA) class I haplotypes and subclinical mastitis of dairy cows[J].J Dairy Sci,1995,78:1684-1692.
    [96]Sharif Mallard B A, Sargeant J M. Associeont of the bovine major histocompatibility complex DRB3 (BOLA-DRB3) alleles with occurrence of disease and milk somatic cell scare in Canadian山iry cattle. Anim t ienet,1998,29(3):85-93.
    [97]Lunden A, Sigurdardottir S, Edfors-lilja I, et al. The relationship between bovine major histocompatibility complex class II polymorphism and disease studied by use of bull breeding values[J]. Animal Genetics,1990,21:221-232.
    [98]王昆.部分中国黄牛BoLA-DQB. DRB_3基因及其上游调控区序列分析:博十学位论文.北京:中国农业大学,2004.
    [99]Rothsehild M F, The role of biology infuture Pig breeding Programs, Proe.4th world Congr.Genet.APPl.Livest.Prod.XV:1990,415-424.
    [100]Renard C, Vaiman M., Chiannilkulchai N., Cattolico L., Robert C. and Chardon P. Sequence of the Pig major histocompatibility region containing the classical classlgenes, Immunogenetics,2001,53:490-500.
    [101]Lunney J K, Butler J E.lmmunogenetics.In:Rothschild M F,Ruvinsky A.(eds).The Genetics of the Pig.CAB International,Wallinford,1998:165-166.
    [102]唐国庆,王金用勇,李学伟.猪抗病育种研究进展[J]国外畜牧科技第29卷第6期2002年12月29-32
    [103]刘榜.15个猪品种MHC 11类区4个基因的SNPs分析及与免疫性状的关联:博十学位论文.武汉:华中农业大学,2003.
    [104]Garcia-Camacho L, Schat K A, Brooks R, Bounous D.l.Early cell-mediated immune responses to Marek's disease virus in two chicken lines with defined major histocompatibility complex antigens [J].Veterinary Immunology and Immunopathology,2003,95 (3-4) 145-153.
    [105]Dalgaard T S, Vitved L, Skjodt K, Thomsen B., Labouriau R., K. Jensen H., Juul-Madsen H. R.Molecular characterization of major histocompatibility complex class I (B-F) mRNA variants from chickens differing in resistance to marek's disease [J].Scandinavian Journal of Immunology,2005,62:259-270.
    [106]Maeri H, Read L, Wilkie B N.Identification of peptides associated with chicken major histocompatibility complexclass Ⅱ molecules of B21 and B19 haplotypes[J].lmmunogenetics, 2005,56:854-859.
    [107]Liu W, Miller M, Lamont S J.Association of MHC class I and class Ⅱ gene polymorphisms with vaccine or challenge response to Salmonella enteritidis in young chicks Animal models of endocrine/organ-specific autoimmune diseases:do they really help us to understand human autoimmunity [J].Springer Seminars in Immunopathology.Immunogenetics 2002,54:582-590.
    [108]罗怀容,施鹏,张亚平.单核苷酸多态性的研究技术[J].遗传,2001,23(5):471-476.
    [109]董承良,邓昌彦.基因突变检测技术进展[J].黄牛杂志,1998,24(3):49-52.
    [110]Noumi T, Mosher M, et al. A pheny Ialanine for serine substitution in the βsubunit of Eseheriehia Coli F-ATPase afects dependence of its activity On divalenficafion[J]. Journal of Biological Chemistry,1984,259:10071.
    [111]Orita M, lwahana H, et al. Detection of polymorphisms of human DNA by gel dectrophoresis as single-strand conformation polymorphisms [J] Proc Natl Acad Sci USA, 1989.86:2766-2770.
    [112]Orita M, SuzukiY, et al. Rapid and sensitive detection of oint mutations and DNA polymorphisms using the polymerase chain reaction [J]. Genomics,1989,5(4):87.
    [113]Hoshino S, Kimara A S, et al. Polymerase chain reaction single strand conformation polymorphism analysis of polymorphism in DPA1 and DPB1 genes:a single, economical and rapid method for histocompatibility testing [J]. Hum Immunol,1992,33(2):98.
    [114]Oto M, Satoshi M, Yasuhito Y. Optimization of nonradioisotopic single strand conformation polymorphism analysis with a conventional minislab gel dectrophoresis apparatus[J]. Analytical Biochemistry,1993,213:19-22.
    [115]Iwahana H, Yoshimoto K, Mizusawa N, et al, Multiple Fluoresence-based PCR-SSCP Analysis Biotechniques,1994,16(2):296-300.
    [116]Liu Q,Sommers S. Restriction endonuclease fingerprinting(REF):a sensitive method for screening mutations in long contiguous segments of DNA[J]. Biotechnics,1995,18(3) 470-477.
    [117]Maruya E, Saji H, Yokoyama S. PCR-LIS-SSCP (Low ionic strength single-stranded conformation polymorphism)a simple method for high-resolution allele typing of HLA-DRB1.-DQB1, and-DPB1. Genome Research,1996,6(1):51.
    [118]肖朝庭,狄冉,储明星,傅衍,方丽,马月辉,李奎,徐作鹏.5个绵羊品种BMP6基因部分片段的多态及序列分析[J].畜牧兽医学报2008,39(12):1631-1639.
    [119]何远清,储明星,王金玉,方丽,叶素成6个山羊品种高繁殖力候选基因BMP15多态性研究[J].安徽农业大学学报,2006,33(1):61-64.
    [120]高爱琴,李宁,赵兴波,李金泉 不同绵羊品种FGF5基因的多态性分析[J]. 畜牧兽医学报,2006,37(4),326-330.
    [121]牟玉莲,储明星,孙少华,方丽,叶素成绵羊催乳素受体基因PCR-SSCP分析[J].畜牧兽医学报,2006,37(10),956-960.
    [122]梁琛,储明星,张建海,刘文忠,方丽,叶素成FSHp基因PCR-SSCP多态性及其与济宁青山羊高繁殖力关系的研究[J].遗传,2006,28(9):1071-1077.
    [123]孙洁,储明星,陈宏权,方丽,马月辉,李奎GnRHR基因多态性及其与小尾寒羊高繁殖力关系[J].农业生物技术学报,2008,16(2):230-236.
    [124]狄冉,梁琛,储明星,刘文忠,方丽,马月辉,李奎促黄体素β基因多态性及其与济宁青山羊产羔数的关系[J]. 畜牧兽医学报,2009,40(8):1171-1178.
    [125]余刚,罗军,刘俊霞,韩雪峰,绳贺军,张丽娟,武会娟,曹艳红 陕北白绒山羊DGAT1基因外显子14多态性及其与部分生长和胴体性状的关系[J]. 西北农林科技大学学报(自然科学版),2008,36(5):1-6.
    [126]刘俊霞,罗军,滕炎玲,绳贺军,林先滋,余刚 陕北白绒山羊HSL基因外显子1的 SNPs及其与部分生产性状的相关分析[J].西北农林科技大学学报(自然科学版),2009,37(1):1-4.
    [127]王利心,孙瑞萍,朱广琴,宋宇轩,王建刚,梁昭义,程雪妮,曹斌云 山羊级进杂交后代GH基因第4和第5外显子的多态性与体重性状的相关分析[J].西北农林科技大学学报(自然科学版),2008,36.(8):1-6.
    [128]孙瑞萍,王利心,朱广琴,王建刚,宋宇轩,梁昭义,曹斌云PRLR基因外显子10多态性与西农萨能奶山羊产奶性能的相关分析[J].畜牧兽医学报,2008,39(12):1654-1660.
    [129]Thompson, R. C. A. Biology and systematics of Echinococcus, In R. C. A. Thompson and A. J. Lymbery (ed.), The biology of Echinococcus and hydatid disease. CAB International, Wallingford, United Kingdom.1995,1-50.
    [130]温浩,张亚楼,Jean-Mathieu BART, Giraudoux P, Vuitton DA,马旭东,邹林樾,苗玉清,Craig PS犬体内细粒棘球绦虫和多房棘球绦虫的混合感染[J].中国寄生虫学与寄生虫病杂志,2006,24(1):10-13.
    [131]赵玲玲,高睿,石晓东,杨丽丽,王裕卿.细粒棘球绦虫形态结构观测.畜牧兽医科技信息,2007,(7):29.
    [132]吴观陵.人体寄生虫学[M].人民卫生出版社,2005,541-553.
    [133]Wenbao Zhang, Jun Li, Donald P. McManus Concepts in Immunology and Diagnosis of Hydatid Disease Clinical Microbiology Rwviews,2003,18-36.
    [134]李文桂,陈雅棠 细粒棘球绦虫疫苗研究进展[J].中国地方病学杂志,2003,22(6):564-566.
    [135]Eckert,J.,P.Deplazes,P.S.Craig,M.A.Gemmell,B.Gottstein,D.Heath,D.JJenkins,M.Kamiya and M.Lightowlers[J].Echinococcosis in animals:clinical aspects,diagnosis and treatment,2001;p.72-99.
    [136]钟华 脑包虫病的诊断及防治措施[J].草食动物,2008,8:62-63.
    [137]李伟 肝包虫病的诊断[J].热带病与寄生虫学,2006,4(1):54-55.
    [138]郭丽英,栾梅香.学龄前儿童肝包虫病的诊断和治疗体会.中华肝胆外科杂志,2003,9(1):13.
    [139]张洪伟,苏凤琴,沈维力 羊脑包虫病的症状表现和防治措施[J].兽医临床,2009,1
    [140]Johannes Eckert and Peter Deplazes. Biological, Epidemiological, and Clinical Aspects of Echinococcosis, a Zoonosis of Increasing Concern [J]. Clinical Microbiology Reviews, 2004,17(1):107-135.
    [141]Conchedda M, Gabriele E, Bortoletti G. Immunobiology of cystic echinococcosis[J]. Parassitologia,2004,46:375-380.
    [142]Rickard MD, Williams JF. Hydatidosis/cysticercosis:immune mechanisms and immunization against infection [J]. Adv Parasitol,1982,21:229-296.
    [143]Rogan MT, Craig PS. Immunology of Echinococcus granulosus infections[J]. Acta Trop, 1997,67:7-17.
    [144]Lightowlers MW, Jensen O, Fernandez E, et al. Vaccination trails in Australia and Argentina conform the effectiveness of the Eg95 hydatid vaccine in sheep[J]. Int J Parasitol,1999, 29:531-534.
    [145]Dematteis S, Rottenberg M, Baz A. Cytokine response and outcome of infection depends on the infective dose of parasites in experimental infection by Echinococcus granulosus [J]. Parasit Immunol,2003,25:189-197.
    [146]Dematteis S, Baz A, Rottenberg M. Antibody and Thl/Th2-Type responses in BALB/c mice inoculated with live or dead Echinococcus granulosus protoscoleces[J]. Parasit Immunol, 1999,21:19-26.
    [147]Baz A, Richier A, Puglia A, et al. Antibody response in CD4-depleted mice after immunization or during early infection with Echinococcus granulosus[J]. Parasit Immunol, 1999,21:141-150.
    [148]Meeusen E, Barcham GT, Gorrell MD, et al. Cysticercosis cellular immune responses during primary and secondary infection [J].Parasit Immunol,1990,12:403-418.
    [149]Ferreira AM, Breijo M, Sim RB, et al. Contribution of C5-mediated mechanisms to host defence against Echinococcus granulosus hydatid infection[J].Parasit Immunol, 2000,22:445-453.
    [150]Zhang W B, You H, Li J, et al. Immunoglobulin profiles in a murine intermediate host model of resistance for Echinococcus granulosus infection[J]. Parasit Immunol,2003,25:161-168.
    [151]Sakamoto T, Cabrera PA. Immunohistochemical observations on cellular response in unilocular hydatid lesions and lymph nodesof cattle[J]. Acta Trop,2003,85:271-279.
    [152]Diaz A, Willis AC, Sim RB. Expression of the proteinase specialized in bone resorption cathepsin K in granulomatous inflammation[J]. Mol Med,2000,6:648-659.
    [153]吕海龙,彭心宇 肝细粒棘球蚴病的免疫研究进展[J].中国寄生虫学与寄生虫病杂志,2007,25(5):426-429.
    [154]Baz A, Ettlin GM, Dematteis S. Complexity and function of cytokine responses in experimental infection by Echinococcus granulosus[J]. Immunobiology,2006,211:3-9.
    [155]Bortoletti G, Gabriele F, Conchedda M. Natural history of cystic echinococcosis in humans[J]. Parassitologia,2004,46:363-366.
    [156]Pan WQ, Tang LH. Molecular Parasitology[M]. Shanghai:Shanghai Science & Technology Publishing House,2004.354-359. (inChinese)
    [157]Zhang W, Li J, McManus DP. Concepts in immunology and diagnosis of hydatid disease[J]. Clin Microbiol Rev,2003,16:18-36.
    [158]Annen JM. Cytotoxicity of Echinococcus granulosus cyst fluid in vitro[J]. Parasitology, 1981,82:65-79.
    [159]吴向未,彭心宇,张示杰,等.肝脾棘球蚴囊周围纤维性囊壁形成机制的差异及临床意义[J].中国寄生虫学与寄生虫病杂志,2004,22:1-4.
    [160]Steers NJR, Rogan MT, Heath S. In vitro susceptibility of hydatid cysts of Echinococcus granulosus to nitric oxide and the effect of the laminated layer on nitric oxide production[J]. Parasit Immunol,2001,23:411-417.
    [161]Ortona E, Margutti P, Delunardo F, et al. Molecular and immunological characterization of the C-terminal region of a new Echinococcus granlosus heat shock protein 70 [J]. Parasit Immunol,2003,25:119-126.
    [162]Dematteis S, Irotto F, Marques J, et al. Modulation of the cellular immune response by a carbohydrate rich fraction from Echinococcusgranulosus protscoleces in infected or immunized BALB/c mice[J]. Parasit Immunol,2001,23:1-9.
    [163]Rigano R, Profumo E, Buttari B, et al. Cytokine gene expression in peripheral blood mononuclear cells (PBMC) from patients with pharmacologically treated cystic echinococcosis [J]. Clin Exp Immunol,1997,118:95-101.
    [164]Rigano R, Proffumo E, Di Felice G, et al. Immunological markers indicating the effectiveness of pharmacological treatment in human hydatid disease[J]. Clin Exp Immunol, 1995,102:281-285.
    [165]A1-Qaoud KM, Abdel-Hafez SK. Humoral and cytokine response during protection of mice against secondary hydatidosis caused by Echinococcus granulosus[J]. Parasitol Res,2005, 98(l):54-60.
    [166]Ortona E, Margutti P, Vaccari S, et al. Elongation factor 1β/of Echinococcus granulosus and allergic manifestations in human cystic echinococcosis[J]. Clin Exp Immunol,2001, 125:110-116.
    [167]Ortona E, Vaccari S, Margutti P, et al. Immunological characterization of Echinococcus granulosus cyclophilin, an allergen reactive with IgE and lgG4 from patients with cystic echinococcosis[J]. Clin Exp Immunol,2002,128:124-130.
    [168]Cannistraci C, Parola ILLA, Rigano R, et al. Acute generalized exanthematous pustulosis in cystic echinococcosis:immunological characterization[J]. Br J Dermatol,2003, 148:245-1249
    [169]郑宏,徐志新,杨戈雄,等.感染细粒棘球蚴绵羊诱发过敏性休克期间IgG. IgGl和IgE水平的探讨[J].中国寄生虫学与寄生虫病杂志,2003,21:42-45.
    [170]Allen JE, Maizels RM. Immunology of human helminth infection[J]. Int Arch Allergy Immunol,1996,109:3-10.
    [171]许晏,朱明,王松,等.肝包虫病患者可溶性白细胞介素2受体的研究[J].地方病通报,1997,12(4):47-48.)
    [172]Rigano R, Profumo E, Bruschi F, et al. Modulation of human immune response by Echinococcus granulosus antigen B and its possible role in evading host defenses[J]. Infect Immunol,2001,69:188-296.
    [173]Diaz A, lrigoin F, Ferreira F, et al. Control of host complement activation by the Echinococcus granulosus hydatid cyst [J].Immunopharmacology,1999,42:91-98.
    [174]刘云芳,高建峰,潘晓亮等.绵羊全血中DNA的微量提纯[J].石河子大学学报,1997,1(2):136-138.
    [175]Konnai S, Nagaoka Y, Takesima S, et al. DNA typing for ovine MHC DRB1 using polymerase chain reaction-restriction fragment length polymorphism(PCR-RFLP)[J].J Dairy Sci,2003,86:3362-3365.
    [176]M.Amills, C.Sulas, A.Sanchez, et al. Structural characterization of the caprine major histocompatibility complex class Ⅱ DQB1 (Cahi-DQB1) gene[J]. Molecular Immunology, 2004,41:843-846.
    [177]彭林泽,多浪羊和中国美利奴羊MHC-DRB. DQB基因PCR-RFLP多态性分析[D].石河子大学硕士论文
    [178]朱军.遗传学.北京:中国农业出版社,2002,340-343.
    [179]盛志廉,吴常信.数量遗传学.北京:中国农业出版社,1994.
    [180]宋素芳.生物统计学.北京:中国农业大学出版社,1999,103-109.
    [181]Botstein D,White R L.Construction of a genetic link-age map in man using restriction fragment length pol-ymorphisms[J].Am JHumGenet,1980,32:314-331.
    [182]杨东英 中国荷斯坦乳牛DRB3基因多态性的PCR-SSCP分析及其与泌乳性状的相关[J].中国兽医科学,2008,38(10):889-892.
    [183]高树新,许尚忠,李金泉,任红艳,马云2种兼用型牛BoLA-DQB exon2基因的多态性与乳房炎的相关性[J].西北农林科技大学学报(自然科学版),2008,36(3):8-12.
    [184]Lewin.H.A, Schmitt.K., Hubert.R., et al. Close linkage between bovine prolactin and BoLA-DRB3 genes-genetic mapping in cattle by single sperm typing.Genomics,1992,13:44-48.
    [185]储明星,程金华.微卫星标记OarAE101和BM1329在五个绵羊品种中的初步研究[J].遗传学报,2001,28(6):510-517.
    [186]赵宗胜,王根林,郭继刚,等.中国美利奴(新疆军垦型)绵羊9个微卫星基因座多态性研究[J].遗传,2006,28(8):939-944.
    [187]贾斌,赵宗胜,李大全,等.新疆3个地方品种绵羊微卫星遗传分析[J].石河子大学学报(自然科学版),2005,4(2):194-199.
    [188]Botstein D,White R L.Construction of a genetic link-age map in man using restriction fragment length pol-ymorphisms[J].Am JHumGenet,1980,32:314-331.
    [189]Johannes Buitkamp, Petra Filmether, Michael J. Stear Joerg T. Epplen. Class I and class Ⅱ major histocom-patibility complex alleles are associated with faecal egg counts following natural, predominantly Ostertagia circumcincta infection. Parasitol Res, (1996) 82:693-696.
    [190]Orla M. Keane, Ken G. Dodds, Allan M. Crawford, and John C. McEwan. Transcriptional profiling of Ovis aries identifies Ovar-DQAl allele frequency differences between nematode-resistant and susceptible selection lines. Physiol Genomics.2007,30:253-261.
    [191]Amaia Larrus kain, Esmeralda Minguijon, Koldo Garcia-Etxebarri,Bernardino Moreno,Inmacu-Iada Arostegui, Ramon A. Juste,Begona M.Jugo. MHC class Ⅱ DRB1 gene polymorphism in the pathogenesis of Maedi-Visna and pulmonary adenocarcinoma viral diseasesin sheep. Immunogenetics,2010,62:75-83.
    [192]GILL H S. Cell-mediated immunity in Merino lambs with genetic resistance to Haemonchus contortus[J]. Int J Parasitol,1994,24:749-756.
    [193JBURKHARD J, REUTER S, WENDLAND T, et al. Increased activation and oligoclonality of peripheral CD8+T cells in the chronic human helminth infection Alveolar Echinococcosis[J]. Infection and Immunity,2002,70(3):1168-1174.
    [194]Rabinovich G A, Ariel A, Hershkoviz R, et al Specific inhibition of T-cell adhesion to extracellular matrix and proinflammatory cytokine secretion by human recombinant galectin-1[J]. Immunology,1999,97:100-106.
    [195]Montagne A, O. Grepinet. O, Peloille.M, Lantier. F, Lalmanach. AC, Quantification of ovine cytokine gene expression by a competitive RT-PCR method[J]. Journal of Immunological Methods,2001,253:83-93.
    [196]Wang S, Xu Y, Zhu M. Cytokine development in mice with secondary Echinococcus granulosus infection[J]. Endemic Dis Bull,2002,17:8-11. (in Chinese)
    [197]Taratuto AL, Venturiello SM. Echinococcosis [J]. Brain Pathol,1997,7:673-679.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700