运营隧道健康诊断及剩余寿命评估研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运营隧道作为铁路运营线路上的重要基础设施,其技术状态直接影响着铁路行车安全。因隧道衬砌先天不足而造成的缺陷,以及因运营逐渐劣化而形成的病害,都在严重降低衬砌结构承载力安全储备,缩短其剩余寿命,进而影响隧道的正常使用。然而,目前对于隧道技术状态,尤其是衬砌结构剩余寿命的评估方面尚缺乏全面深入的研究。本文采用有效的调查、检测手段获取影响运营隧道衬砌结构的主要技术参数,运用合理的评估模型,对衬砌结构剩余寿命给出合理评价,为运营隧道的维修养护和新建隧道工程设计提供理论参考。
     1、运营铁路隧道衬砌结构安全性检算方法研究
     研究了影响运营隧道衬砌结构安全性的隧道荷载类型和取值,衬砌结构尺寸、材料性能,以及结构计算模型等因素,提出以运营隧道实际技术状态为依据的衬砌结构安全性检算方法,并通过算例验证其合理性。与拟建隧道工程计算方法相比,该方法更具有针对性,得出的计算结果更符合运营隧道的实际情况。
     2、运营铁路隧道安全性评定研究
     在总结吸收国内外研究成果的基础上,采用实际调查与理论研究相结合的方法,对我国铁路运营隧道管理的现状进行分析,基于运营铁路隧道安全信息表征,归纳总结出影响隧道安全性的七个主要参数,并通过相应指标对主要参数划分等级,提出定性和定量相结合的多指标、多参数运营隧道安全性评定模型和方法。为了获得较为合理的评价结果,将隧道衬砌安全性评价指标划分为三个层次,应用模糊数学理论,提出了运营铁路隧道衬砌安全性三级模糊综合评价方法,并通过工程实例举例说明该方法的评价过程。计算结果表明,采用此方法得到的评价结果与基于经验判断的评价方法相吻合,证明了此评价方法的可行性和合理性。
     3、运营隧道衬砌结构剩余寿命评估模型研究
     以铁路隧道混凝土整体式衬砌为研究对象,全面分析了影响隧道衬砌结构剩余寿命的诸多因素,包括衬砌与围岩之间的接触状态、围岩状态劣化、衬砌裂损、渗漏水及冻害、衬砌材料劣化、计算模型等,建立起基于荷载-结构模型的运营隧道衬砌结构剩余寿命评估模型。该模型以衬砌混凝土强度为可变参数,结合隧道衬砌结构当前状况计算衬砌结构内力,采用破损阶段法求出衬砌各截面安全系数,并以三截面破坏作为衬砌结构剩余寿命终结的标准,最终确定其剩余寿命。评估模型充分发挥了隧道衬砌承载力,较好地反映了各主要影响因素,符合运营隧道的实际情况。同时,通过算例分析可知,病害的存在会大大降低衬砌结构承载力安全储备,缩短其剩余寿命。
     给出衬砌结构剩余寿命评估流程,重点分析了评估模型主要参数的获取方法。衬砌结构几何尺寸和衬砌与围岩之间的接触状态可采用隧道限界量测方法结合地质雷达法获得。衬砌混凝土材料特性,尤其是混凝土强度检测需要通过大量室内试验、无损检测来获得。围岩状态的检测包括围岩及衬砌背后回填料的材料特性、围岩松动高度(围岩压力)等的检测,需要进行室内试验、原位测试和地质雷达法检测确定。衬砌结构裂损、渗漏水及冻害等衬砌病害需进行现场调查和观测,病害较严重时,需要对衬砌裂损的范围及发展情况、水压力、围岩冻胀力等进行量测和检测。
     4、铁路隧道衬砌状态地质雷达检测模拟试验研究
     以我国单线铁路隧道常见的模筑混凝土整体式衬砌和复合式衬砌为研究对象,建立衬砌试件和隧底模型,并在模型中设置衬砌背后空洞、回填不密实等工况类型,进行地质雷达检测模拟试验。试验结果表明,地质雷达检测可反映出试验中预设的各种工况类型,可识别衬砌试件及隧底模型中各介质层层位,并能够定量分析出其厚度。地质雷达法是检测隧道衬砌结构尺寸及衬砌与围岩接触状态的目前尚可利用的有效方法之一。
The operation tunnels are critical infrastructure on the railway lines, and the technology of the operating tunnel directly impacts the traffic safety. Both defects caused by deficiencies, such as construction quality and construction error, and diseases due to the long-term operation can reduce the safety stock of the lining bearing capacity, shorten its residual life, and are serious threat to the use of the tunnel. Currently, there is lack of research on the operating tunnel technology, especially the assessment of residual life of the tunnel lining. In this paper, the main technical parameters which affect the lining operation are obtained by effective investigation and detection, and reasonable model is built to assess the residual life of the lining structure. This will have important reference value for the repair and maintenance of the operating tunnel and the design of the new tunnel engineering.
     Study on calculation method of structure safety of operating railway lining
     The factors which affect the safety of the tunnel lining are deeply studied, such as the tunnel load types and values, the lining structure dimensions and material properties, structural calculation model, and so on. Then the calculation method based on the actual technical state of the operating tunnel is put forward, and its legitimacy is verified by a numerical example. The calculation results obtained by this method compared with the results by the proposed tunnel project are more targeted, and more similar to the actual situation of the operating tunnel.
     Study on safety evaluation of operating railway tunnels
     Referring to the research results from home and abroad, as well as adopting the research methods integrating theory with practice, the current situation of the operation and management on the railway tunnels was analysed, and seven main parameters was summarized. The parameters were graduated by correspondence indexes. And then the model and method of indexes and parameters which were combined in qualitative and quantitative was set up. The model of safety evaluation of the operation railway tunnels was based on expression and indication for safety information of operation tunnel. In order to obtain more reasonable assessment results, all the indexes are divided into three levels, and the three-level fuzzy synthetic evaluation method for the safety of the operating railway tunnel is proposed in accordance with the fuzzy mathematics theory. Furthermore, the evaluation process by means of this method is illustrated by an engineering example. The results show that the evaluation results obtained by means of this method is correspondent with the results by the evaluation method based on empirical judgments, which proves that this evaluation method is feasible and reasonable.
     Study on assessment model of residual life of lining structure
     In this paper, the integral lining of the railway tunnel is chosen as the study object. The factors which affect the residual life of the tunnel lining are studied, such as the contact state between the lining and the surrounding rock, deterioration state of the surrounding rock, the lining dehiscence, leakage water and frost damage, deterioration of the lining materials, computational model and so on, and the assessment model of the residual life of lining structure is established according to the load-structural model. In this assessment model, the lining concrete strength is chosen as variable parameter, and the lining structural internal force is calculated combined with the current status of the lining. Then the lining safety factors of each cross-section are calculated by means of the plastic stage design method. Besides, the damage of three cross-sections is considered as the standards of the end of the residual life of the lining structure. Finally, the residual life of the lining is determined. The assessment model makes good use of the bearing capacity of the tunnel lining, and better reflect the actual situation of the operating tunnel. A numerical example shows that the lining diseases will greatly reduce the safety stock of the lining carrying capacity and reduce residual life of the lining.
     The evaluation process of the residual life of the lining structure is shown, and the acquisition method of the main parameters of the assessment model is studied. The geometric dimensions of lining structure and the contact state between the lining and the surrounding rock can be obtained by tunnel clearance measurement combined with ground penetrating radar (GPR). Lining concrete material properties, especially concrete strength can be obtained through a large number of laboratory tests and nondestructive tests. The state of the surrounding rock including the material properties of the surrounding rock and the backfill behind the lining, the surrounding rock loose height (rock pressure) detection, can be obtained by laboratory tests, in situ testing and GPR detection. Lining structure breakage, leakage water and frost damage can be gained by field investigations and observations, and the scope and development of the lining crack, water pressure, the surrounding rock frost heaving force should be considered when the lining diseases are more serious.
     Simulation test of GPR detection of railway lining state
     The integral lining and composite lining which are the common-mode on single-track railway are chosen to be studied, and lining specimen and the model of the tunnel bottom are built, where the type of working conditions including the empty behind the lining, uncompacted backfill are set. Then GPR detection simulation test is performed. The test results show that the GPR detection can reflect the types of working conditions pre-set in the test, and identify dielectric layers in the model, whose thickness can be quantitative analysed. GPR detection is an effective way to detect geometric dimensions of lining structure and the contact state between lining and surrounding rock.
引文
[1]铁道部运输局基础部.铁路隧道检测技术手册.北京.中国铁道出版社.2007.22-363
    [2]吴利民.中国铁道年鉴2001-2006.北京.《中国铁道年鉴》编辑部.2001-2006.1-1000
    [3]《中国铁路隧道史》编委.中国铁路隧道史.北京.中国铁道出版社.2004.1-600
    [4]G.W.Housner,L.A.Bergman,T.K.Caughey,et al.Structural control:past,present,and futurejouranl of engineering mechanics.1997.(9).897-971
    [5]陈长征,罗跃纲等.结构损伤检测与智能判断.北京.科学出版社.2001.1-35
    [6]杨艳娟.结构健康诊断研究简述.煤炭技术.2007.26(4).84-86
    [7]W.G.Friebel,Dr.lng.J.Krieger.Quality assurance and assessing the state of road tunnel using non-destructive test methods.Quality Assurance.2000.31-34
    [8]董聪,范立础,陈肇元.结构智能健康诊断的理论与方法.中国铁道科学.2002.23(1).11-24
    [9]姜增国,赵志国.大型桥梁健康诊断的研究与发展初探.交通科技.2004.(4).23-25
    [10]中国铁道科学研究院,北京交通大学.铁路隧道衬砌状态检测技术及装备研究报告.2011.1-160
    [11]J.A.Richards.Inspection,maintenance and repair of tunnels:International lessons and practice.Tunnelling and Underground Space Technology.1998.13(4)369-375
    [12]关宝树.隧道工程维修管理要点集.北京.人民交通出版社.2004.1-480
    [16]ASAKURA Toshihiro, KOJIMA Yoshiyuki. Tunnel maintenance in Japan. Tunnlling and Underground Space Technology.2003.18(2-3).161-169
    [17]Akira Inokuma,Shigero Inano.Road Tunnels in Japan:Deterioration and Countermeasures. Tunnelling and Underground Space Technology.1996.11(3)305-309
    [19]ASAKURA Toshihiro,KOJIMA Yoshiyuki,SATO Yutaka,et al.The evaluation of the tunnel with structural defect in lining and its countermeasures.QR of RTRI.1998.39(1).40-45
    [20]KAWATA hiroyuki, MATSUMOTO yoshio, HACHIGA akira, et al.Development of expert system(TIMES-1) for tunnel inspection and diagnosis.QR of RTRI.1989.30(4).143-148
    [21]Michitsugu Ikuma. Maintenance of the undersea section of the Seikan Tunnel. Tunnlling and Underground Space Technology.2005.20(2).143-149
    [22]Harada T, Miyazawa S,Wu Z S. Structural health monitoring in a tunnel management system. Proceedings of the International Symposium on Innovation & Sustainability of Structures in Civil Engineering (Volume 2).Nanjing,2005.1411-1420
    [23]杨炎培,洪志增,吴重林等.铁路隧道漏水及腐蚀问题的调查.铁道建筑.1981.(8).5-9
    [24]马永潮.山区铁路隧道洞口病害.铁道建筑.1982.(10).13-16
    [25]肖颂鸿.电化铁路隧道洞门下锚后病害分析初探.铁道标准设计.1993.(5).17-20
    [26]蔡清华,周革.马蹄迳隧道出口段工程病害分析与整治.铁道勘察.1996.32(1).52-54
    [27]赵国旗.铁路隧道衬砌开裂病害整治方法初探.岩石力学与工程学报.1996.15(4).385-389
    [28]熊学军.大瑶山隧道病害研究及治理.中国铁路.1997.(10).39-42
    [29]廖树耀.大瑶山隧道运营安全问题的研讨.铁道建筑.1998.(5).10-12
    [30]花涛,李军,齐林玉等.侯月线桃坪铁路隧道病害分析及整治建议.长沙铁道学院学报.1999.17(1).98-101
    [31]何定高,来继富.成昆铁路既有百家岭隧道病害浅析.山西建筑.2000.(1).98-99,102
    [32]陈双庆.大瑶山隧道衬砌裂纹整治设计及施工.铁道勘测与设计.2001.(4).30-33
    [33]孙吉堂.青藏铁路关角隧道病害的综合整治.现代隧道技术.2001.38(5).45-49,57
    [34]郭卫社,何君茹.浅谈铁路隧道病害防治.铁道建设.2003.23(3).55-58
    [35]曹玉,彭勇,滕伟福等.运营铁路隧道渗漏水与衬砌裂损病害分析与整治.西部探矿工程.2003.15(6).92-94,97
    [36]梅涛,滕伟福,曹玉等.铁路隧道衬砌混凝土病害与基底类病害分析与整治.岩土工程界.2003.6(7).69-71
    [37]陈婉愉,廖茂汀.特种水泥在大瑶山隧道大面积渗漏治理中的应用.广东土木与建筑.2003.(11).13-14,16
    [38]廖树耀.大瑶山隧道渗漏水的整治方法.铁道建筑.2004.(2).32-33
    [39]彭立敏,覃长炳,施成华等.铁路隧道基底病害整治现场试验研究.中国铁道科学.2005.26(2).39-43
    [40]殷涛.严寒地区铁路隧道的病害成因与根治措施.铁道建筑技术.2005.(6).35-38
    [41]施成华,彭立敏,黄娟.铁路隧道基底病害产生机理及整治措施.中国铁道科学.2005.26(4).62-67
    [42]刘福.某铁路隧道病害整治的技术探讨.铁道工程学报.2005.(4).55-58
    [43]朱素华,张安迪.采用抬轨梁整治隧道道床病害技术.铁道标准设计.2005.(12).81-82
    [44]贾宝军.隧道洞身衬砌混凝土裂纹的产生与整治初探.工程建设与设计.2005.(12).72-73
    [45]徐明根.焦柳线虾子溪隧道渗漏综合整治技术.铁道标准设计.2006.(1).81-83
    [46]宋嘉辉.蔺家川隧道病害治理.铁道建筑.2006.(3).53-55
    [47]黄鑫琢,柳华.铁路隧道拱圈衬砌裂缝病害整治技术.西部探矿工程.2006.18(3).139-140
    [48]李永才.铁路隧道衬砌病害整治若干问题的研究.长沙铁道学院学报.2006.7(1).218-219
    [49]张惠兰.京广铁路南岭隧道病害整治.铁道建设.2006.26(3).82-85
    [50]曾水长.既有铁路隧道病害整治.铁道建筑.2006.(8).40-41
    [51]张文革.阳安线铁路隧道病害整治研究[学位论文].成都.西南交通大学.2003.1-25
    [52]杨新安,黄宏伟等.隧道病害与防治.上海.同济大学出版社.2003.1-30
    [53]方利成,杜彬,张晓峰等.隧道工程病害防治图集.北京.中国电力出版社.2001.1-25
    [54]王永安,白明洲,王连俊.雷达探测方法在隧道病害治理中的应用研究.西部探矿工程.2002.14(1).82-83
    [55]郭有劲.地质雷达在铁路隧道衬砌质量检测中的应用.铁道工程学报.2002.74(2).71-74
    [56]林懂明.铁路隧道病害的综合检测与治理.中国铁道科学.2003.24(1).99-103
    [57]中华人民共和国铁道部.TB10223-2004.铁路隧道衬砌质量无损检测规程.北京.中国铁道出版社.2004.1-25
    [58]徐宏武,胡运兵,宋劲等.应用地质雷达无损检测清凉山隧道的质量问题及评估.矿业安全与环保.2004.31(4).22-24,57
    [59]贾志清,张顶立.隧道病害地质雷达检测结果自动处理系统.铁道建设.2005.25(1).80-84
    [60]张峰,陈曦.探地雷达在铁路隧道衬砌质量检测中的应用.铁道勘察.2006.32(1).36-39
    [61]李晋平,邵玉彦,谷枚.地质雷达在铁路隧道工程质量检测中的应用.中国铁道科学.2006.27(2).56-59
    [62]王洁.对《铁路隧道衬砌质量无损检测规程》(TB10233-2004)的理解.铁道标准设计.2006.(3).74-78
    [63]王玉清,张晓春,张维新.探地雷达在铁路隧道衬砌质量检测中的应用.地质灾害与环境保护.2006.17(1).86-89
    [64]周荣.隧道衬砌无损检侧技术及应用.企业技术开发.2006.25(4).40-41
    [65]罗方.地质雷达在隧道健康诊断中的应用.岩石力学与工程学报.2006.26(3).51-54
    [66]姜松湖.铁路隧道病害(变异)诊断专家系统[学位论文].成都.西南交通大学.1990.1-30
    [67]孙国瑛,沈善良.铁路工务.成都:西南交通大学.1998.1-370
    [68]吴江滨,张顶立,王梦恕.铁路运营隧道病害现状及检测评估.中国安全科学学报.2003.13(6).49-52
    [69]中华人民共和国铁道部.铁路工务规则.北京.人民铁道出版社.1972.1-250
    [70]中华人民共和国铁道部.铁路桥隧建筑物大修维修规则.北京:中国铁道出版社.2000.1-150
    [71]中华人民共和国铁道部.TB/T2820.2-1997.铁路桥隧建筑物劣化评定标准-隧道.1-30
    [72]中华人民共和国铁道部.铁路运营隧道衬砌安全等级评定(暂行规定).2004.1-25
    [73]杨春枝.铁路桥隧维修管理手册.北京:中国铁道出版社.2006.20-80
    [74]中华人民共和国铁道部.TG/GW103-2010.铁路桥隧建筑物修理规则.北京.中国铁道出版社.2010.70-71
    [75]刘永华.高速公路隧道安全性评价研究[学位论文].成都.西南交通大学.2004.1-20
    [76]中禄坤.公路隧道结构安全性评价体系及评价方法研究[学位论文].成都.西南交通大学.2007.1-40
    [77]汤渊.公路隧道健康数字化系统的开发[学位论文].上海.同济大学.2007.1-40
    [78]关宝树,高波.地下结构剩余寿命评估方法研究的现状和发展.西部探矿工程.1994.6(4).12-16
    [79]牛荻涛.混凝土结构耐久性与寿命预测.北京.科学出版社.2003.1-180
    [80]赵尚传,赵国藩.基于可靠性的在役混凝土结构剩余使用寿命预测.建筑科学.2001.17(5).19-22
    [81]赵尚传,赵国藩,贡金鑫.在役混凝土结构最优剩余使用寿命预测.大连理工大学学报.2002.42(1).83-88
    [82]李志强,孙国柱,霍丽芳.混凝土结构剩余使用寿命的评估.河北建筑工程学院学报.2003.21(4).24-26
    [83]王元,刘斌.火灾后混凝土结构剩余使用寿命的预测.混凝土.2003.(12).15-16,50
    [84]邓志勇.桥梁结构评估与剩余寿命预测[学位论文].武汉.武汉理工大学.2005.1-20
    [85]仲伟秋.既有钢筋混凝土结构的耐久性评估方法研究[学位论文].大连.大连理工大学.2003.1-25
    [86]万臻,李乔,毛学明.基于可靠度的桥梁结构剩余使用寿命预测方法.公路交通科技.2006.23(9).51-53,62
    [87]吕颖钊,贺拴海,宋一凡.考虑可靠指标与评估准则统一的在役桥梁剩余使用寿命预测.武汉理工大学学报(交通科学与工程版).2006.30(6).1048-1051
    [88]A H Craig, E H Bradley, M Mckenne.Extending the life of a Victorian tunnel.tunnels & tunneling.1995.27(12).46-48
    [89]孙富学,荣耀.隧道衬砌结构耐久寿命预测研究.地下空间与工程学报.2006.2(3).358-360
    [90]孙富学,梁本亮.隧道衬砌结构耐久性寿命影响因素敏感性分析.地下空间与工程学报.2006.2(2).214-216,220
    [91]孙富学.海底隧道衬砌结构寿命预测理论与试验研究[学位论文].上海同济大学.2006.1-20
    [92]刘继林,于清洁,谢勇涛.隧道衬砌结构耐久性寿命预测及防治措施.中国科技信息.2010.(7).76-79
    [93]吴江滨.铁路运营隧道衬砌状态评估体系的建立及工程应用研究[学位论文].北京.北京交通大学.2006.1-34
    [94]康孝先,余林.新建公路对既有红山隧道结构的影响分析与加固.成铁科技.2005.(1).2-4
    [95]汪正军.二坪子隧道近接施工设计分析.铁道建设.2005.25(6).20-22,26
    [96]中华人民共和国铁道部.TB 10003-2005,J 449-2005铁路隧道设计规范.北京.中国铁道出版社.2005.10-80
    [97]钟桂彤.铁路隧道.北京.中国铁道出版社.1990.10-200
    [98]中华人民共和国铁道部.GB 50111-2006(2009年版)铁路工程抗震设计规范.北京.中国计划出版社.2009.40-43
    [99]牛荻涛,王庆霖.一般大气环境下混凝土强度经时变化模型.工业建筑.1995.25(6).36-38
    [100]刘海京,郑佳艳,林志.存在衬砌病害的隧道计算模型研究与应用.公路隧道.2009.(3).1-4
    [101]张永杰,曹文贵,赵明华等.岩溶区公路路基稳定性的区间模糊评判分析方法.岩土工程学报.2011.33(1).38-44
    [102]程晔,曹文贵,赵明华.高速公路下伏岩溶顶板稳定性二级模糊综合评判.中国公路学报.2003.16(4).21-24
    [103]刘尧军.铁路隧道围岩类别的模糊综合评判.石家庄铁道学院学报.1992.5(4).80-88
    [104]陈守煜.系统模糊决策理论与应用.大连.大连理工大学出版社.1994.10-245
    [105]李士勇.工程模糊数学及应用.哈尔滨.哈尔滨工业大学出版社.2004.25-155
    [106]邓祥辉.考虑外水压力的山岭深埋隧道变形分析.铁道建筑.2011.(4).70-72
    [107]谭忠盛,李健,薛斌.岩溶隧道衬砌水压力分布规律研究.中国工程科学.2009.11(12).87-92
    [108]孙祺.铁路旧山线三义~后里间桥梁隧道检测(一)~(三).台铁资料.2005.321-323.76-146
    [109]贺少辉,张弥,郑荣亮等.杨家峪隧道裂拱机理研究.岩石力学与工程学报.1998.17(5).581-588
    [110]中华人民共和国铁道部.TBJ3-85.铁路隧道设计规范.北京.中国铁道出版社.1985.10-44
    [111]中华人民共和国铁道部.铁路隧道设计规范TBJ3-85条文说明.北京.中国铁道出版社.1992.39-45
    [112]潘理丽.混凝土强度等级与原规范混凝土标号的关系.重庆交通学院学报.1990.9(4).107-110
    [113]景诗庭,朱永权,宋玉香.隧道结构可靠度.北京:中国铁道出版社,2002.20-173
    [114]倪章勇,李海.地质雷达解释隧道衬砌空洞大小的定量研究.铁道勘察.2010.(1).59-61
    [115]中华人民共和国铁道部.TB10426-2004,J342-2004.铁路工程结构混凝土强度检测规程.北京.中国铁道出版社.2004.4-32
    [116]中华人民共和国铁道部.TB10115-98.铁路工程岩石试验规程.北京.中国铁道出版社.1998.4-140
    [117]中华人民共和国铁道部.TB10018-2003,J261-2003.铁路工程地质原位测试规程.北京.中国铁道出版社.2003.6-106
    [118]方钱宝,马建林,喻渝,杨建民,王新东.大断面黄土隧道围岩弹性抗力系数、变形模量与压缩模量试验研究.岩石力学与工程学报.2009.28(增2).3932-3937
    [119]杨永杰,刘传孝,将金泉等.巷道围岩松动圈的地质雷达探测及应用.工程地质学报.1997.5(3).276-281
    [120]郭亮,李俊才,张志铖等.地质雷达探测偏压隧道围岩松动圈的研究与应用.岩石力学与工程学报.2011.30(增1).3009-3015
    [121]张民庆,黄鸿健,苗德海等.岩溶隧道水压力的研究与确定.铁道工程学报.2008.(5).53-58
    [122]张恩义.地质雷达技术在隧道底部混凝土质量检测中的应用.铁道勘察.2009.(2).35-37
    [123]康富中,江波,贺少辉等.地质雷达在风火山隧道病害检测中的应用与结果分析.工程地质学报.2010.18(6).963-970
    [124]康富中,齐法琳,贺少辉等.地质雷达在昆仑山隧道病害检测中的应用.岩石力学与工程学报.2010.29(增2).3641-3646
    [125]杨峰,彭苏萍.地质雷达探测原理与方法研究.北京.科学出版社.2010.181-190
    [126]Harry M.Jol.Ground Penetrating Radar:Theory and Applications. Amsterdam, Netherlands; Oxford, UK:Elsevier Science.2009.150-444
    [127]杨峰,彭苏萍,刘杰等.衬砌脱空雷达波数值模拟与定量解释.铁道学报.2008.30(5).92-96
    [128]咎月稳,章锡元,张安学.铁路路基检查车的研究.铁道工程学报.2007.(9).17-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700