舰载激光武器稳定平台控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
舰载激光武器系统与一般的光电跟踪系统不同,它不仅要求能在规定的视场内快速稳定地跟踪目标,而且要求能将激光光束锁定在目标的某一点上,持续辐照一定时间,这就要求跟踪精度达到角秒级。舰载激光武器系统要克服舰船摇摆的影响,一般的单稳定平台结构由于摩擦力矩、机械谐振、大转动惯量等因素很难达到这样的跟踪精度。
     本文首先针对舰载激光武器高跟踪精度和存在舰船摇摆干扰的特点,提出了粗、精组合的双平台结构。粗平台为捷联式三轴常平架结构,通过控制器将舰船惯导系统提供的舰船姿态角经过坐标变换转变为粗平台三个轴上的等效运动,然后利用粗平台的稳定系统控制粗平台朝相反的方向转动,实现粗平台相对地理坐标系的稳定。精平台安装在粗平台上,粗平台为精平台提供一个相对稳定的基座。对于舰载激光武器系统来说,如果要以角秒级精度快速稳定地跟踪运动目标,首先要保证光电跟踪仪器瞄准线的稳定,即视轴的稳定。同时跟踪架承担了全部的跟踪、扫瞄设备,很难以灵敏的反应速度跟踪目标。因此,精平台设计成宏微复合控制结构。宏控制系统为方位、俯仰两轴常平架结构,实现快速粗跟踪,同时隔离粗平台的剩余摇摆误差,稳定光电系统的视轴。微控制系统为光路中的快速反射镜系统,以低惯量保证高精度跟踪。
     其次,根据粗平台的结构特点,建立了粗平台的状态空间模型。从粗平台的状态空间模型可以发现,该模型是严反馈的、状态可检测的。影响粗平台稳定精度的主要因素是系统的非线性摩擦力矩,而滑模控制可以很好地解决非线性问题,但是摩擦力矩干扰是不匹配的,无法直接进行滑模控制器设计。同时作为稳定平台驱动元件的电机,参数也不是一成不变的。为了克服这个缺点设计了基于PID滑模面的自适应滑模控制器,并给出了闭环系统的稳定性分析。
     然后,建立了宏控制系统的模型,该模型主要由内环视轴稳定回路和外环光电跟踪回路组成。由于光电跟踪回路的误差检测元件宏跟踪器存在20ms的脱靶量时滞,该时滞会造成系统相位裕度的降低,从而导致系统超调量的增加,甚至使系统振荡,最终导致系统的不稳定。针对宏控制系统脱靶量时滞和高精度跟踪问题,提出了基于Kalman预报的跟踪控制方法。基于Kalman预报的跟踪控制分为两部分:Kalman预报器的设计和视轴稳定控制系统的设计。为了解决脱靶量时滞对系统的影响,提出了Kalman预报器的预报滤波方法,提高了系统的预报精度。针对视轴稳定系统中的摩擦力矩干扰不匹配问题以及状态变量之间没有直接的微分关系的特点,提出了基于神经网络Backstepping控制方法,提高了视轴稳定系统的跟踪精度。
     最后,建立了微控制系统的数学模型,针对快速反射镜驱动器PZT的迟滞以及不匹配问题,将动态面控制方法应用于微控制系统,并进行了稳定性分析。同时给出了舰载激光武器稳定控制系统的仿真,结果表明,采用粗、精组合的稳定技术及精平台的宏微复合控制技术后,有效地隔离了舰船摇摆,达到了角秒级的跟踪精度。
The shipborne laser weapon system is different from the normal optical tracking system, which requires not only to track the moving targets in the field of view steadily and quickly, but also to lock the beam on a certain point of the target for a certain period of time, which requires the tracking accuracy of angular second. The shipbore laser weapon system will swing with the ship. In this case, the single platform structure is difficlt to achieve such precision because of the friction torque, mechanical resonance and large inertia etc..
     For the features of high tracking accuracy and the ship swing disturbane of the shipbore laser weapons, the double platform structure of primary and precise was suggested. Primary platform is three-axis strapdown gimbal structure. The controller will transform the ship attitude angles, which provided by ship inertial navigation system, into a equivalent movement of three axes of the primary platform. Then the stabilized control system rotates the primary platform in the opposite direction to achieve a relatively stabilization in inertial space.The precise platform is installed on the primary platform, and primary platform provide a relatively stable base for precise platform. For shipborne laser weapon system, if tracking the moving targets in angle-second precision fast and stably is wanted, the stablilization of line-of-sight(LOS) optical tracker must be ensured. At the same time, the tracking frame is difficult to tracking the target with sensitive reaction-speed, because it bears all the equipment of tracking and scanning. Therefore, the the structure of precise platform is designed as compound macro-micro control. The macro-control system is used to achieve a fast tracking, while isolating the remaining swing error of primary platform and stabilizing the LOS optical tracker. The micro-control is a fast steering mirror system, which is used to ensure high-precision tracking.
     According to the structural features of the primary platform, a state space model is established. From the state space model it can be found that the model is strictly feedback and state could be detected. The main factor that affects the stabilization accuracy of the primary platform is the nonlinear friction torque, and the sliding mode control can solve the robust control problems under the matching condition. But the friction torque disturbance is mismatched, which can not be compensated by designing sliding mode controller directly. At the same time, the motor as a driver of the primary platform, its parameters are not static. To overcome this disadvantage, an adaptive sliding mode control with PID sliding surface is proposed, and the stability analysis of the closed-loop system is given.
     The model of macro control system is estibilished, and the model is formed by the LOS stabilization loop and the optical tracking loop. Because there is 20ms target-missing delay in the optical tracking loop, the delay limits system performance, such as reducing the phase margin of the system, increasing the overshoot of system, or making the system oscillation, even instability. Based on Kalman predictor, a tracking control is proposed for the high precision and the target-missing delay problems of macro control system. Tracking control can be divided into two parts:Kalman predictor design and LOS stability control system design. The Kalman predictor is proposed to solve the problem of the target-missing delay and improve the prediction accuracy of the system. A NN-based Backstepping control is designed to solve the mismatched friction torque disturbane problem of LOS stablilization system to improve the tracking accuracy.
     Finally, a mathematical model of micro-control system is estibilished. For the mismatched hysteresis problem of the driver PZT, a dynamic surface control method is applied to the micro-control system and the stability analysis is given. The simulations of shipborne laser weapons stablilized platform control system show that the primary and precise combination technology and the compound macro-micro control of precise platform isolate the ship swing effectively and the angular-second tracking accuracy has been achieved.
引文
[1]李文军.复合轴光电跟踪系统控制策略的研究[D].长春:中国科学院研究生院长春光学精密机械与物理研究所博士论文,2006:1-60页
    [2]周伟,杨争,董露.激光武器在未来防御作战中的应用[J].红外与激光工程,2008,37:349-352页
    [3]蒋鸿旺.舰载激光武器[J].舰载武器.2002,3:30-33页
    [4]田武,鲍鹏.美国海军舰载激光武器概览[J].舰载武器,2003,1:55-58页
    [5]冯寒亮,韩锋,张平.美国海军舰载高能激光武器[J].激光与光电子学进展,2006,(7):41-45页
    [6]姬寒珊,秦致远,赵东新.国外激光武器发展的经验与前景[J].激光与光电子学进展,2006,(5):14-19页
    [7]隋江波,孙东延,马乐梅.舰载激光武器反导作战使用研究[J].现代防御技术,2006,(4):6-9页
    [8]赵江.战术激光武器的发展分析[J],船舶电子工程,2007,27(2):42-47页
    [9]赵江,徐世录.激光武器的现状与发展趋势[J].激光与红外,2005,(2):67-70页
    [10]任国光.高能激光武器的现状与发展趋势[J].激光与电子学进展,2008,45(9):62-69页
    [11]任国光,黄裕年.机载激光武器的发展现状与未来[J].激光与红外,2005,(5):309-314页
    [12]宛东生.关注美国机载激光武器(ABL)计划[J].激光与光电子学进展,2006,(3):28-31页
    [13]路遥.美国空中激光武器发展现状[J].国际航空,2006,(5):62-63页
    [14]任国光.机载激光计划的最新动向[J].先进防御技术,2007,(6):1-12页
    [15]Simpon J. Laser DEMO expended to February 2008; flight test scheduled for 2015[J]. Inside Missile Defense,2007,18(11):5-6P
    [16]Air Force Seeks to improve battlefield logistics with recycled laser fuel[J].Military& Aerospace Electronics,2006,17(11):7P
    [17]John Liang. MDA completes COIL module installation aboard ABL aircraft[J]. Inside Missile Defense,2008,14(5):2P
    [18]Hill A E. Progress toward realization of a kW-class EOIL Laser[C].SPIE,2008,6874: A1-A11P
    [19]Jeff Hecht. Advanced tactical laser is ready for flight tests[J]. Laser Focus World,2008, 44(2):54-57P
    [20]Brinton T. U. S. Missile defense agency budget funds ABL[J]. Defense News,2007, 22(37):35P
    [21]Staff Writers. Boeing begins firing high-energy laser aboard advanced tactical laser aircraft[J]. www.space war.com/May 20,2008
    [22]Simpson j. Boeing:2009 shoot-down'key to survival'for airborne laser program[J]. Inside The Air Force,2008,19(13):1.10-12P
    [23]石永山.舰载激光武器的发展分析[J].舰船电子工程,2008,28(7):30-34页
    [24]马锐,马轶鸥.舰载激光武器的研制计划与发展动向[J].船舶电子工程,2008,28(11):30-34页
    [25]王苏.舰载激光武器高精度稳定平台系统研究[D].哈尔滨工程大学硕士论文,2008:1-5页
    [26]Cook J R, Albertine J R. The navy's high-energy laser weapon system[J]. Proc. SPIE. 2005,2988(264):264-271P
    [27]Dunn R J III. Operational implications of laser weapons. http://www.analysiscenter. northropgrumman.com/files/operational implications of laser weapons.pdf, northrop grumman corporation,2005:1-24P
    [28]张世英,刘淼森,陈栋.道路曲折的舰载高能激光武器[J].现代舰船,2006,5:34-36页
    [29]冯寒亮,韩锋,张平.美国海军舰载高能激光武器[J].激光与光电子学进展,2006,7:41-45页
    [30]姬伟.陀螺稳定光电跟踪平台伺服控制系统研究[D].东南大学博士论文,2006:1-7,38-40,83-85页
    [31]王连明.机载光电平台的稳定与跟踪伺服控制技术研究[D].中国科学院长春精密机械与物理研究所博士论文.2002:1-11页
    [32]Chin-Sheng Chen.The feedforward friction compensation of linear motor using genetic learning algorithm[J].The International Fedration of Automatic Control. Seoul, Korea, July 6-11,2008:15696-15701P
    [33]Celiane C. Machado, Sebastiao C.P.Gomes, Alavaro L.de Bortoli, etc. Adaptive neuro-fuzzy friction compensation mechanism to robotic actuators[J]. The Seventh Interna-tional Conference on Intelligent Systems Design and Application,2007:581-586P
    [34]L.Mostefai, M.Denai, Y.Hori. Friction compensation in servo systems using a local control design approach[J]. The International Fedration of Automatic Control.Seoul, Korea, July 6-11,2008:1772-1777P
    [35]Hongliu Du,Satish S.Nair. Modeling and Compensation of Low-Velocity Friction with Bounds[J].IEEE Transaction on Control Systems Technology,1999,7(1):110-121P
    [36]Jayesh Amin. Implementation of A Friction Estimation and Compensation Technique [J]. IEEE Control Systems,1997,8:71-76P
    [37]Bona B, Indri M.Friction compensation in robotics:an overview[C].Proc of the 44th IEEE Conf on Decision and Control.Seville,Spain:IEEE,2005:4360-4367P
    [38]Zhu Y. Pagilla P Static and dynamic friction compensation in trajectory tracking control of robots[C]. Proc of IEEE Int Conf on Robotics and Automation,Washington, IEEE,2002:2644-2649P
    [39]王忠山,王毅,苏宝库.一种精密转台系统自适应摩擦补偿方法[J].华南理工大学学报(自然科学版),2007,35(9):55-59页
    [40]C. Canudas de Wit,H. Olsson, K. J. Astrom,etal. A new model for control of system with friction [J].IEEE Transactions on Automatic Control,1995,40(3):419-425P
    [41]Hyok-Jo Kwon, Sang-Jin Oh, Jihong Lee. A modeling of frictional contact for haptic display[J]. International Conference on Control, Automation and Systems,2007:1116-1119P
    [42]By LuLU, Bin Yao, Qingfeng Wang, Zheng Chen.Adaptive robust control of linear motor systems with dynamic friction compensation using modified LuGre model[J].IEEE Conference on Advanced Intelligent Mechatronis,2008:961-966P
    [43]Xiaodong Zhang,Jia Qingxuan, Sun Hanxu, Chu Ming. Adaptive control of manipulator flexible-joint with friction compensation using LuGre model[J].3rd IEEE Conference on Industrial Electronics and Applications,2008:1234-1239P
    [44]YAZDIZADEH A, KHORASANI K. Adaptive friction compensation based on the Lyapunov scheme[A].Proc. of the IEEE International Conference on Control Applications [C].1996.1060-1065P
    [45]L IAO T L, CHEN T I. An exponentially stable adaptive friction compensator[J]. IEEE Trans. on Automatic Control,2000,45(5):977-980P
    [46]MISOVEC K M, ANNASWAMY A M. Friction compensation using adaptive nonlinear control with persistent excitation[J]. International Journal of Control,1999, 72(7):457-479P
    [47]Hung N, Tuan H, Narikiyo T,etal. Adaptive controls fornonlinearly pararneterized uncertainties in robot manipulators[C].Proc of the 41st IEEE Conf on Decision and Control.Las Vegas, Nevada, USA:IEEE,2002:1727-1732P
    [48]WIT C C, OLSSON H, ASTROM K J, etal. A newmodel for control of systems with friction [J].IEEETrans. On Automatic Control,1995,40 (3):419-424P
    [49]克晶,苏宝库,曾鸣.一种直流力矩电机系统的自适应摩擦补偿方法[J].哈尔滨工业大学学报,2003,35(5):536-540页
    [50]TAN K K,HUANG S N, L EE T H. Robust adaptive numerical compensation for friction and force ripple impermanent-magnet lineate motors[J], IEEE Trans. On Magnetics,2002,38 (1):221-228P
    [51]Ching-Lung Tsai, Ti-Chung Lee,Shir-Kuan Lin. Friction compensation of a mini voice coil motor by sliding mode control [J]. IEEE International Symposium on Industrial Electronics,2009:609-614P
    [52]Kuang-Yow Lian, Cheng-Yao Hung, Chian-Song Chiu, Liu, P. Induction motor control with friction compensation:An approach of virtual-desired-variable synthesis[J]. IEEE Transactions on Power Electronics,2005,20(5):1066-1074P
    [53]Wahyudi, Tijani, I.B. Friction compensation for motion control system using multilayer feedforward network[J].5th International Symposium on Mechatronics and Its Applications,2008:1-6P
    [54]Xie Delin,Yuan Jiahu,Yang Hu.Stabilization of line-of sight for airborne O-E tracking and imaging system[C].SPIE Conference on Acquisition,Tracking and Pointing Ⅻ, 1998,3365:191-201P
    [55]Jesse J.Ortega.Gunfire performance of stabilized electro-optical sights[C].SPIE Conference on Acquisition,Tracking and Pointing Ⅻ,1999,3692:74-83P
    [56]James C DeBruin.Feedforward Stabilization Testbed[C].SPIE,1996,2739:204-214P
    [57]罗俊萍.机载光测设备视轴稳定精度分析[J].飞行器测控学报,2001,20(1):50-54页
    [58]邹东明,刘栖山,陈长青,等.舰载光电跟踪设备视轴稳定分析[J].兵工自动化,2003,22(1):15-19页
    [59]耿延洛,王合龙,周洪武.机载光电探测跟踪系统总体精度分析方法研究[J].电光与控制,2004,11(2):18-20页
    [60]J.A.Krishna, R. Marathe, V.R.Sule'. H∞ control law for line-of sight stabilization for mobile and vehicles[J].Optical Engineering,2002,41(11):2935-2944P
    [61]K.K.Tan,T.H. Lee, A.Mamum, etc. Composite control of a gyro mirror line-of-sight stabilization platform-design and auto-tuning[J].ISA Transation,2001,40(2):155-171P
    [62]K.K.Tan,T.H. Lee, E.F. Khor, etc. Design and real-time implementation of a multivari-able gyro-mirror line-of-sight stabilization platform[J].Fuzzy Sets and Systems,2002, 39(4):81-93P
    [63]Li Wang, Mingxiang Ling, Dongzhe Wang, Yao Chen, Changhong Wang. Line-of-sight stabilization system based on fractional-order control[J].2nd International Symposium on Systems and Control in Aerospace and Astronautics, 2008:1-4P
    [64]Liu Shan-zhong, Sun Long-he. Research on stabilizing and tracking control of electro-optical tracking and sighting platform based on fuzzy control[J].2010 Internatio-nal Conference on Measuring Technology and Mechatronics Automation (ICMTMA), 2010:175-178P
    [65]Wu Nengwei1, Zhao Lirong, Zhou Hui, Chen Juan, The advanced position compensation to improve the dynamic tracking ability for fast moving target in an optoelectronic tracking system[J].Optical Devices and Instruments,2005,6024:1-9P
    [66]Man Yiming, Gong Jianwei, Chen Huiyan, etc. Design optimization of control parameters for strap-down line-of-sight stable tracking platform based on the taguchi method[J].2009 Chinese Control and Decision Conference,2009:2167-2172P
    [67]Hilkert, J.M., Cohen, Steve. Development of mirror stabilization line-of-sight rate equations for an un-conventional sensor-to-gimbal orientation[J]. The International Society for Optical Engineering, Acquisition, Tracking, Pointing, and Laser Systems Technologies XXIII.2009,7388:1-12P
    [68]Hussein F. Soliman, A.A. Attia, M.A.L.Badr. Fuzzy logic controller for electric motor driving the astronomical telescope[J]. SPIE,1998,3351:415-424P
    [69]毕永利,刘洵,葛文奇等.机载多框架陀螺稳定平台速度稳定环设计[J].光电工程,2004,31(2):16-18页
    [70]姬伟,李奇,杨浦.陀螺惯性平台视轴稳定双速度环串级控制的研究[J].仪器仪表学报,2007,28(1):114-119页
    [71]Slobodan N.Vukosavic.Suppression of torsional oscillations in a high-performance speed servo drive[J].IEEE Transation on Industry Electronics,1998,45(1):108-117P
    [72]杨蒲,李奇.基于滑模变结构的陀螺稳定平台非线性解耦控制[J].仪器仪表学报,2008,29(4):771-776页
    [73]杨蒲,李奇.陀螺稳定平台自适应分层滑模速度控制[J].兵工学报,2008,29(7):864-869页
    [74]刘珊中,孙隆,车宏.模糊控制在光电跟瞄平台稳定控制中的应用[J].航天学报,2008,26(2):55-58页
    [75]刘琳,葛文奇.基于神经网络的MBP算法及应用[J].长春理工大学学报,2003,26(2):46-48页
    [76]Tang Zhiyong, Pei Zhongcai, Wu Baolin.Research on image-stabilizing system based on platform with reflector[J]. Seventh International Symposium on Instrumentation and Control Technology:Measurement Theory and Systems and Aeronautical Equipment, SPIE,2008,7128P
    [77]Ho-Pyeong Lee and Inn-Eark Yoo. Robust control design for a two-axis gimbaled stabilization system[J]. IEEE, Aerospace Conference,2008,1-7P
    [78]J. A. R. Krishna Moorty, Hari Babu. Fuzzy controller for line-of-sight stabilization Systems[J]. Society of Photo-Optical Instrumentation Engineers. SPIE,2004,1394-1400P
    [79]James Downs,Steve Smith,Jim S,etc. High-Performance Gimbal Control for Self-protection Weapon Systems[C].SPIE Conference on Acquisition, Tracking and Pointing XII,1998,3365:77-86P
    [80]John S.Allenl,Joe Stufflebeam, Dan Feller. Development of a feed-forward controller for a tracking telescope[C].SPIE Conference on Acquisition, Tracking and Pointing XVIII,2004,5430:1-12P
    [81]李朝伟,周希元,沈文亮Kalman滤波算法在被动跟踪中的应用[J].专题技术与工程应用2007,37(5):49-51页
    [82]李文军,陈涛.基于卡尔曼滤波器的等效复合控制技术研究[J].光学精密工程,2006,14(2):279-283页
    [83]薛峰,刘忠,张晓锐.高斯和粒子滤波器及其在被动目标跟踪中的应用[J].系统仿真学报,2006,18(2):900-902页
    [84]黄永梅,马佳光,付承毓.目标速度预测在光电跟踪控制系统中的应用[J].红外与激光工程,2004,33(5):477-481页
    [85]Wen shu Yang, Jia guang Ma. A New Tracking and Measuring Control System for Optical and Electronic Theodolite[C].SPIE Conference on Acquisition, Tracking and Pointing XVI,2002,4714:118-123P
    [86]杨秀华,吉桐伯,陈涛.卡尔曼滤波器在光电经纬仪中的应用[J].测试技术学报,2003,17(4):324-328页
    [87]黄永梅,张桐,唐涛,等.卡尔曼预测滤波对跟踪传感器延迟补偿的算法研究[J].光电工程,2006,3(6):4-9页
    [88]宋骊平,姬红兵,高新波.多站测角的机动目标最小二乘自适应跟踪算法[J].电子与信 息学报,2005,27(5):793-796页
    [89]许波,姬伟.基于鲁棒H∞滤波的光电跟踪机动目标状态预测估计[J].光电工程,2008,35(1):5-10页
    [90]薛锋,刘忠,石章松.粒子滤波器在机动目标被动跟踪中的应用[J].数据采集与处理,2007,22(2):234-237页
    [91]沈文亮,方玲炜.自适应EKF在被动跟踪中的应用研究[J].信号与信息处理,2007,37(5):30-32页
    [92]Tai Quach,M.Farooq.A fuzzy logic-based target tracking algorithm[C]. SPIE,1998, 3390:476-487P
    [93]王秋平,陈娟,王显利.光电跟踪系统几种次优非线性卡尔曼滤波性能比较[J].电光与控制2008,15(3):10-13页
    [94]杨秀华,陈涛,王延风,等.光电跟踪目标的非线性滤波算法研究[J].仪器仪表学报,2004,25(4):810-812页
    [95]J LI X R, JILKOV V P. A survey of maneuvering target tracking:approximation techniques for nonlinear filtering[J]. Proceedings of SHE,2004,5428:537-550P
    [96]ZHAOZ L, LIXR, JILKOVVP. Best linear unbiased filtering with nonlinear measurements for target tracking [J]. IEEE Transactions on Aerospace and Electronic Systems,2004,40 (4):1324-1336P
    [97]JULIER S.A skewed approach to filtering[J].SPIE,1998,73(33):271-282P
    [98]JULIER S. UHLMANN J, DURRANT-WHYTE H F. A new method for nonlinear transformation of means and covariances in filters and estimators [J]. IEEE Transactions on Automatic Control,2000,5(3):477-482P
    [99]SAULSON B, CHANG K C. Comparison of nonlinear estimation for ballistic missile tracking[J].SPIE,2003,96(50):13-24P
    [100]NORGAARD M, POI T ISEN N K, RAVN O. New developments in state estimation for nonlinear systems [J]. Automatic,2000,36(11):1627-1638P
    [101]RISTIC B, ARULAMPALAM M S. Tracking a manoeuvring target using angle-only measurements:algorithms and performance[J]. Signal Processing,2003,83:1223-1238P
    [102]ZHONG Zhi-tong, YANG Xiu-ting, YU Jia-xiang, ZHU Hui. The applications of nonlinear Kalman in passive tracking with bearing-only measurements[J]. Technical Acoustics.2008,27(6):912-916P
    [103]Shreenath Shetty.A multi-sensor tracking system with an image-based maneuver detector[J]. IEEE Transaction on Aerospace and Electronic Systems,1996,32(1):167-181P
    [104]冉再奇,王正明.一种新的目标跟踪定位数据融合处理方法[J].无线电工程,2005,35(5):6-8页
    [105]张进,王万平,吴钦章.基于光电跟踪系统的联合Kalman滤波器算法研究[J].光电技术应用,2008,29(4):602-605页
    [106]王霞.机载CCD图像消旋控制技术研究[D].中国科学院长春精密机械与物理研究所博士论文.2004:22-31页
    [107]王红波.双处理器架构的舰载猎雷声纳基阵稳定控制系统设计[D].哈尔滨工程大学硕士论文.2008:7-24页
    [108]李学良,王毅.用于精密跟踪的复合轴伺服系统[J].光电工程,1980:50-56页
    [109]刘廷霞.光电跟踪系统复合轴伺服控制技术的研究[D].中国科学院研究生院长春光学精密机械与物理研究所博士论文,2005
    [110]彭绪金,马佳光.光电精密跟踪中的复合轴控制系统的实验和研究[J].光电工程.1994,21(5):1-10页
    [111]宋丰华.现代空间光电系统及应用[M].北京:国防工业出版社,2004:290-296页
    [112]白宏.光电跟踪系统的视轴稳定控制[D].电子科技大学硕士论文.2005:12-20页
    [113]孟范涛.基于单片面阵CCD实现粗精复合光斑检测技术研究[D].长春理工大学硕士论文.2009:14-26页
    [114]李德辉.自由空间激光通信系统ATP粗跟踪单元研究[D].长春理工大学硕士论文.2006:5-15页
    [115]张秉华,张守辉.光电成像跟踪系统[M].成都:电子科技大学出版社,2003:1-202页
    [116]张丽敏,郭劲,陈娟.快速反射镜机械结构研究综述[J].研究生论坛.2005:21-24页
    [117]罗彤.星光通信ATP中捕获,跟踪技术研究[D].电子科技大学博士论文.2004:1-37页
    [118]Mark Schwalm, Bridget Gority. Silicon carbide telescopes for space based lasercom. IEEE Proe. Aerospace Conference,2000,3:79-83P
    [119]邹东明,刘栖山,陈长青等.舰载光电跟踪设备视轴稳定分析[J].兵工自动化,2003,22(1):15-19页
    [120]罗俊萍.机载光测设备视轴稳定精度分析[J].飞行器测控学报,2001,20(1):50-54页
    [121]耿延洛,王合龙,周洪武.机载光电探测跟踪系统总体精度分析方法研究[J].电光与控制,2004,11(2):18-20页
    [122]Jesse J. Ortega. Gunfire performance of stabilized electro-optical sights[J].SPIE Conference on Acquisition, Tracking and Pointing XII,1999,3692:74-83P
    [123]B.K.Das. Testing and evaluation of tactical missile system using electro-optical tracking system [J]. ITEA Journal,2009,30:143-148P
    [124]张荆,苏泽清,黄青机载光电火控系统的精度分析[J].红外与激光工程,1999,28(5):55-59页
    [125]张璟玥,纪明,王慧林.机载稳瞄控制系统模型及仿真分析[J].应用光学,2006,27(6):491-496页
    [126]Mancini,D.,Brescia, M., Cascine, E, and Schipani, P.. A variable structure control law for telescopes pointing and tracking [J]. Acquistion, Tracking, and Pointing,SPIE,1997, 3086:72-84P
    [127]Mancini,D., Cascone, E, and Schipani,P. Telescope control system stability study using a variable structure controller[J]. SPIE,1998,3351:165-171P
    [128]朱义胜,董辉,李作洲(译).非线性系统[M].北京,电子工业出版社,2005:409-449页
    [129]Yangmin Li,Qingsong Xu.Adaptive sliding mode control with perturbation estimation and PID sliding surface for motion tracking of a piezo-driven micromanipulator[J]. IEEE Transactions on Control Systems Technology.1-13P
    [130]Hsin-Jang Shieh,Po-Kai Huang.trajectory tracking of piezoelectric positioning stage using a dynamic sliding-mode control[J]. IEEE Transaction on Ultrasions, Ferroelectrics and Frequency Control.2006,53(10):1872-1882P
    [131]Hsin-Jang Shieh,Yun-Jen,and Yen-Ting Chen.A filtered switching-type sliding-mode Backstepping control approach for a piezoposition[J].Proceedings of Internation Conference on Mechatronics. Kumamoto Japan.8-10.May.2008.1-5P
    [132]I.Eker.Sliding mode control with PID sliding surface and experimental application to an electro-mechanical plant[J].ISA Trans.2006,45(1):109-118P
    [133]Hsin-Jang Shieh,Chia-Hsiang Hsu.Precise trajectory tracking of a piezoactuator-driven stage using an adaptive Backstepping control schme[J]. IEEE Transaction on Ultrasions, Ferroelectrics and Frequency Control.2007,54(4):705-713P
    [134]Lin, C. L.,& Hsiao, Y. H. Adaptive feedforward control for disturbance torque rejection in seeker stabilizing loop[J]. IEEE Transactions on Control Systems Technology,2001,9(1),108-121P
    [135]Usui, K., Kisaka, M., Okuyama, A.,& Nagashima, M. Reduction of external vibration in hard disk drives using adaptive feedforward control with single shock sensor[J]. In Advanced Motion Control Istanbul, Turkey,2006,138-142P
    [136]White, M. T.,& Tomizuka, M. Increased disturbance rejection in magnetic disk drives by acceleration feedforward control and parameter adaptation [J]. Control Engineering Practice,1997,5(6),741-751P
    [137]Polycapou, M. M.,& Mears, M. J. Stable adaptive tracking of uncertain systems using nonlinearly parameterized on-line approximator[J].International Journal of Control, 1998,70(3),363-384P
    [138]王忠山.高精度机械轴承转台摩擦补偿研究[D].哈尔滨工业大博士论文.2007:1-17,88-109页
    [139]魏立新.X-Y数控平台摩擦补偿及边缘跟踪力控制研究[D].燕山大学博士论文.27-51页
    [140]张克勤.滑模变结构控制理论及其在倒立摆系统中的应用研究[D].浙江大学博士论文.2003:8-14页
    [141]郁明,基于滑模理论的位置系统控制及摩擦力补偿[D].中国科学技术大学博士论文.2007:49-74页
    [142]吕建婷.三轴稳定卫星姿态控制算法研究[D].哈尔滨工业大学博士论文.2007:22-26,73-94.页
    [143]A.Isidori,Nonlinear Control System[M],3rd,New York:Springer-Verlag,1995
    [144]Jean-Jacques E.Slotine,Weiping Li. Applied Nonlinear Control[M].1991:121-125P
    [145]王洪元,史国栋.人工神经网络技术及其应用[M].河北:中国石化出版社,2002:1-164页
    [146]袁曾任.人工神经网络及其应用[M].北京:清华大学出版社.1999:1-150页
    [147]Xuemei Ren, Frank L. Lewis, Jingliang Zhang. Neural network compensation control for mechanical systems with disturbances[J]. Automatic,2008,12(9):1221-1226P
    [148]Lewis, F. L., Yesildirek, A.,&Liu,K. Multilayer neural net robot controller with guaranteed tracking performance[J]. IEEE Transactions on Neural Networks,1996,7(2), 388-399P
    [149]Lewis,F.L.,Jagannathan, S.,& Yesildirek, A Neural network control of robot manipulators and nonlinear systems[J]. London:Taylor and Francis,1999
    [150]Lewis, F. L., Dawson, D. M.,& Abdallah, C. T. Robot manipulator control:Theory and practice[C]. New York:Marcel Dekker,2004
    [151]Hsin-Jang Shieh,Chia-Hsiang Hsu.An Adative Approximator-Based Backstepping Control Approach for Piezoactuator-Driven Stages[J]. IEEE Transaction on Industrial Electrinics.2008,55(4):1729-1738P
    [152]Gorinevsky, D.,Feldkamp, L.A. RBF network feedforward compensation of load disturbance in idle speed control[J]. IEEE Control Systems,2001,16(6),108-121P
    [153]马佳光.捕获跟踪与瞄准系统的基本技术问题[J].光学系统.1989.81(3):1-41.
    [154]HANCHING GRANT WANG and THOMAS C. WILLIAMS. High-accuracy inertially stabilized platforms for hostile environments. IEEE Control System Magazine.2008: 65-84P
    [155]J.M. HILKERT. Inertially stabilized platform technology concepts and principles[J]. IEEE Control System Magazine.2008:26-46P
    [156]阮毅,陈维钧.运动控制系统[M].北京:清华大学出版社,2006.
    [157]刘艳行.伺服系统的几个关键技术[J].中国科技信息.2007.20:270-271页
    [158]杨秀华.预测滤波技术在光电目标跟踪中的应用研究[D].中国科学院长春精密机械与物理研究所博士论文.2004:27-35页
    [159]潘泉,梁彦,杨峰,程永梅.现代目标跟踪与信息融合[M].北京:国防工业出版社,2009:32-61页
    [160]权太范.目标跟踪新理论与技术[M].北京:国防工业出版社,2009:17-115页
    [161]邓自立.最优估计理论及其应用[M].哈尔滨:哈尔滨工业大学出版社,2005:98-115页
    [162]纪明.反射镜稳定系统的仿真与误差分析[J].应用光学,2000,21(5):19-22页
    [163]傅承毓,姜凌涛等.快速反射镜成像跟踪系统[J].光电工程,1994,21(3):1-8页
    [164]王强,陈科,傅承毓.基于闭环特性的音圈电机驱动快速反射镜控制[J].光电工程,2005,32(2):9-18页
    [165]邓耀初,贾建援,陈贵敏,刘亚琴.振动环境下的快速反射镜精跟踪系统[J].激光与红外,2008,38(1):11-13页
    [166]张丽敏,郭劲.快速反射镜双X-Y轴控制的仿真研究[J].光学精密工程,2005,13(增刊):142-147页
    [167]Hsin-Jang Shieh,Po-Kai Huang. Trajectory Tracking of Piezoelectric Positioning Using a Dynamic Sliding-mode Control[J].IEEE Transactions on Ultrasonics, ferroelectrics, and frequency control,2006,53(10):1872-1882P
    [168]节德刚.宏/微驱动高速高精度定位系统的研究[D].哈尔滨工业大学博士论文.2006:21-86页
    [169]于风卫,孙红英.基于动态面的船舶航向自适应神经网络控制[J].造船技术.2008,286(6):35-38页
    [170]Yongming Li,Shaocheng Tong,Yanjun Liu.Robust adaptive fuzzy dynamic surface control of uncertain nonlinear for system[C].Chinese control and Decision Conference (CCDC),2008:5019-5024P
    [171]张大兴.三轴ATP运动平台的若干关键问题研究[D].西安电子科技大学博士论文.2008:23-34页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700